Advertisement

Mitochondrial functions and melatonin: a tour of the reproductive cancers

  • Luiz Gustavo de Almeida ChuffaEmail author
  • Fábio Rodrigues Ferreira Seiva
  • Maira Smaniotto Cucielo
  • Henrique Spaulonci Silveira
  • Russel J. Reiter
  • Luiz Antonio Lupi
Review

Abstract

Cancers of the reproductive organs have a strong association with mitochondrial defects, and a deeper understanding of the role of this organelle in preneoplastic–neoplastic changes is important to determine the appropriate therapeutic intervention. Mitochondria are involved in events during cancer development, including metabolic and oxidative status, acquisition of metastatic potential, resistance to chemotherapy, apoptosis, and others. Because of their origin from melatonin-producing bacteria, mitochondria are speculated to produce melatonin and its derivatives at high levels; in addition, exogenously administered melatonin accumulates in the mitochondria against a concentration gradient. Melatonin is transported into tumor cell by GLUT/SLC2A and/or by the PEPT1/2 transporters, and plays beneficial roles in mitochondrial homeostasis, such as influencing oxidative phosphorylation and electron flux, ATP synthesis, bioenergetics, calcium influx, and mitochondrial permeability transition pore. Moreover, melatonin promotes mitochondrial homeostasis by regulating nuclear DNA and mtDNA transcriptional activities. This review focuses on the main functions of melatonin on mitochondrial processes, and reviews from a mechanistic standpoint, how mitochondrial crosstalk evolved in ovarian, endometrial, cervical, breast, and prostate cancers relative to melatonin’s known actions. We put emphasis on signaling pathways whereby melatonin interferes within cancer-cell mitochondria after its administration. Depending on subtype and intratumor metabolic heterogeneity, melatonin seems to be helpful in promoting apoptosis, anti-proliferation, pro-oxidation, metabolic shifting, inhibiting neovasculogenesis and controlling inflammation, and restoration of chemosensitivity. This results in attenuation of development, progression, and metastatic potential of reproductive cancers, in addition to lowering the risk of recurrence and improving the life quality of patients.

Keywords

Melatonin Mitochondrial function Ovarian cancer Breast cancer Endometrial cancer Cervical cancer Prostate cancer 

Notes

Acknowledgements

We are grateful to Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP—Grant number 2016/03993-9) for providing financial support.

Author contributions

LGAC, LALJ, HSS, FRFS, and MSC: concept and design of the review and drafted the manuscript. RR: critical revision of the manuscript. All authors significantly contributed with compilation of the literature and approved the final version of the manuscript.

Compliance with ethical standards

Conflict of interest

Authors declare no conflict of interest.

References

  1. 1.
    Weiderpass E, Labrèche F (2012) Malignant tumors of the female reproductive system. Saf Health Work 3:166–180PubMedPubMedCentralCrossRefGoogle Scholar
  2. 2.
    Chuffa LG, Lupi-Júnior LA, Costa AB, Amorim JP, Seiva FR (2017) The role of sex hormones and steroid receptors on female reproductive cancers. Steroids 118:93–108PubMedCrossRefGoogle Scholar
  3. 3.
    Stangelberger A, Waldert M, Djavan B (2008) Prostate cancer in elderly men. Rev Urol 10:111–119PubMedPubMedCentralGoogle Scholar
  4. 4.
    Kong B, Tsuyoshi H, Orisaka M, Shieh DB, Yoshida Y, Tsang BK (2015) Mitochondrial dynamics regulating chemoresistance in gynecological cancers. Ann N Y Acad Sci 1350:1–16PubMedCrossRefGoogle Scholar
  5. 5.
    Dan HC, Sun M, Kaneko S et al (2004) Akt phosphorylation and stabilization of x linked inhibitor of apoptosis protein (XIAP). J Biol Chem 279:5405–5412PubMedCrossRefGoogle Scholar
  6. 6.
    Abedini MR, Muller EJ, Brun J, Bergeron R, Gray DA, Tsang BK (2008) CDDP induces p53-dependent FLICE-like inhibitory protein ubiquitination in ovarian cancer cells. Cancer Res 68:4511–4517PubMedCrossRefGoogle Scholar
  7. 7.
    Woo MG, Xue K, Liu JY, McBride H, Tsang BK (2012) Calpain-mediated processing of p53 associated, Parkin-like cytoplasmic protein (PARC) affects chemosensitivity of human ovarian cancer cells by promoting p53 subcellular trafficking. J Biol Chem 287:3963–3975PubMedCrossRefGoogle Scholar
  8. 8.
    Lissoni P, Rovelli F, Meregalli S et al (1997) Melatonin as a new possible anti-inflammatory agent. J Biol Regul Homeost Agents 11:157–159PubMedGoogle Scholar
  9. 9.
    Vijayalaxmi Thomas CR Jr, Reiter RJ, Herman TS (2002) Melatonin: from basic research to cancer treatment clinics. J Clin Oncol 20:2575–2601PubMedCrossRefGoogle Scholar
  10. 10.
    Seely D, Wu P, Fritz H et al (2012) Melatonin as adjuvant cancer care with and without chemotherapy: a systematic review and meta-analysis of randomized trials. Integr Cancer Ther 11:293–303PubMedCrossRefGoogle Scholar
  11. 11.
    Wang YM, Jin BZ, Ai F et al (2012) The efficacy and safety of melatonin in concurrent chemotherapy or radiotherapy for solid tumors: a meta-analysis of randomized controlled trials. Cancer Chemother Pharmacol 169:1213–1220CrossRefGoogle Scholar
  12. 12.
    Del Fabbro E, Dev R, Hui D, Palmer L et al (2013) Effects of melatonin on appetite and other symptoms in patients with advanced cancer and cachexia: a double-blind placebo-controlled trial. J Clin Oncol 31:1271–1276PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    Sookprasert A, Johns NP, Phunmanee A et al (2014) Melatonin in patients with cancer receiving chemotherapy: a randomized, double-blind, placebo-controlled trial. Anticancer Res 34:7327–7337PubMedGoogle Scholar
  14. 14.
    Ben-David MA, Elkayam R, Gelernter I et al (2016) Melatonin for prevention of breast radiation dermatitis: a phase II, prospective, double-blind randomized trial. Isr Med Assoc J 18:188–192PubMedGoogle Scholar
  15. 15.
    Onseng K, Johns NP, Khuayjarernpanishk T et al (2017) Beneficial effects of adjuvant melatonin in minimizing oral mucositis complications in head and neck cancer patients receiving concurrent chemoradiation. J Altern Complement Med 12:957–963CrossRefGoogle Scholar
  16. 16.
    Reiter RJ, Rosales-Corral S, Tan DX, Jou MJ, Galano A, Xu B (2017) Melatonin as a mitochondria-targeted antioxidant: one of evolution’s best ideas. Cell Mol Life Sci 74:3863–3881PubMedCrossRefGoogle Scholar
  17. 17.
    Proietti S, Cucina A, Minini M, Bizzarri M (2017) Melatonin, mitochondria, and the cancer cell. Cell Mol Life Sci 74:4015–4025PubMedCrossRefGoogle Scholar
  18. 18.
    Cedikova M, Kripnerova M, Dvorakova J et al (2016) Mitochondria in white, brown, and beige adipocytes. Stem Cells Int 2016:6067349PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    Tan DX, Manchester LC, Qin L, Reiter RJ (2016) Melatonin: a mitochondrial targeting molecule involving mitochondrial protection and dynamics. Int J Mol Sci 17:E2124PubMedCrossRefGoogle Scholar
  20. 20.
    TeSlaa T, Setoguchi K, Teitell MA (2016) Mitochondria in human pluripotent stem cell apoptosis. Semin Cell Dev Biol 52:76–83PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Chandel NS (2014) Mitochondria as signaling organelles. BMC Biol 12:34PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Kaelin WG Jr, McKnight SL (2013) Influence of metabolism on epigenetics and disease. Cell 153:56–69PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Lenaz G, Genova ML (2010) Structure and organization of mitochondrial respiratory complexes: a new understanding of an old subject. Antioxid Redox Signal 12:961–1008PubMedCrossRefGoogle Scholar
  24. 24.
    Ahmed KA, Sawa T, Ihara H, Shigemoto F, Hozumi M, Takaaki A (2012) Regulation by mitochondrial superoxide and NADPH oxidase of cellular formation of nitrated cyclic GMP: potential implications for ROS signalling. Biochem J 441:719–730PubMedCrossRefGoogle Scholar
  25. 25.
    Obata T (2002) Role of hydroxyl radical formation in neurotoxicity as revealed by in vivo free radical trapping. Toxicol Lett 132:83–93PubMedCrossRefGoogle Scholar
  26. 26.
    Lipinski B (2011) Hydroxyl radical and its scavengers in health and disease. Oxid Med Cell Longev 2011:809696PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Baharvand-Ahmadi B, Bahmani M, Tajeddini P, Nasrollah N, Mahmoud RK (2016) An ethno-medicinal study of medicinal plants used for the treatment of diabetes. J Nephropathol 5:44–50PubMedCrossRefGoogle Scholar
  28. 28.
    Sadeghi M, Khosravi-Boroujeni H, Sarrafzadegan N et al (2014) Cheese consumption in relation to cardiovascular risk factors among Iranian adults-IHHP study. Nutr Res Pract 8:336–341PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Sharafati-Chaleshtori R, Shirzad H, Rafieian-Kopaei M, Soltani A (2017) Melatonin and human mitochondrial diseases. J Res Med Sci 22:2PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    Penta JS, Johnson FM, Wachsman JT, Copeland WC (2001) Mitochondrial DNA in human malignancy. Mutat Res 488:119–133PubMedCrossRefGoogle Scholar
  31. 31.
    Uttara B, Singh AV, Zamboni P, Mahajan RT (2009) Oxidative stress and neurodegenerative diseases: a review of upstream and downstream antioxidant therapeutic options. Curr Neuropharmacol 7:65–74PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Yang Y, Karakhanova S, Hartwig W, D’Haese JG, Philippov PP, Werner J, Bazhin AV (2016) Mitochondria and mitochondrial ROS in cancer: novel targets for anticancer therapy. J Cell Physiol 231:2570–2581PubMedCrossRefGoogle Scholar
  33. 33.
    Suzuki S, Naito A, Asano T, Teresa TE, Shrikanth AG, Masahiro H (2008) Constitutive activation of AKT pathway inhibits TNF-induced apoptosis in mitochondrial DNA-deficient human myelogenous leukemia ML-1a. Cancer Lett 268:31–37PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Orrenius S, Zhivotovsky B, Nicotera P (2003) Regulation of cell death: the calcium-apoptosis link. Nat Rev Mol Cell Biol 4:552–565PubMedCrossRefGoogle Scholar
  35. 35.
    Yu J, Nagasu H, Murakami T, Hoang H, Broderick L, Hoffman HM, Horng T (2014) Inflammasome activation leads to caspase-1 dependent mitochondrial damage and block of mitophagy. Proc Natl Acad Sci USA 111:15514–15519PubMedCrossRefGoogle Scholar
  36. 36.
    Fulda S, Galluzzi L, Kroemer G (2010) Targeting mitochondria for cancer therapy. Nat Rev Drug Discov 9:447–464PubMedCrossRefGoogle Scholar
  37. 37.
    Zhang E, Zhang C, Su Y, Cheng T, Shi C (2011) Newly developed strategies for multifunctional mitochondria-targeted agents in cancer therapy. Drug Discov Today 16:140–146PubMedCrossRefGoogle Scholar
  38. 38.
    Chen X, Qian Y, Wu S (2015) The Warburg effect: evolving interpretations of an established concept. Free Radic Biol Med 79:253–263PubMedCrossRefGoogle Scholar
  39. 39.
    Fantin VR, St-Pierre J, Leder P (2006) Attenuation of LDH-A expression uncovers a link between glycolysis, mitochondrial physiology, and tumor maintenance. Cancer Cell 9:425–434PubMedCrossRefGoogle Scholar
  40. 40.
    Ward PS, Thompson CB (2012) Metabolic reprogramming: a cancer hallmark even Warburg did not anticipate. Cancer Cell 21:297–308CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Jose C, Bellance N, Rossignol R (2011) Choosing between glycolysis and oxidative phosphorylation: a tumor’s dilemma? Biochim Biophys Acta 1807:552–561PubMedCrossRefGoogle Scholar
  42. 42.
    Smolkova K, Bellance N, Scandurra F et al (2010) Mitochondrial bioenergetic adaptations of breast cancer cells to a glycemia and hypoxia. J Bioenerg Biomembr 42:55–67PubMedCrossRefGoogle Scholar
  43. 43.
    Goto M, Miwa H, Suganuma K et al (2014) Adaptation of leukemia cells to hypoxic condition through switching the energy metabolism or avoiding the oxidative stress. BMC Cancer 14:76PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    Smolkova K, Plecita-Hlavata L, Bellance N, Benard G, Rossignol R, Ježek P (2011) Waves of gene regulation suppress and then restore oxidative phosphorylation in cancer cells. Int J Biochem Cell Biol 43:950–968PubMedCrossRefGoogle Scholar
  45. 45.
    Carew JS, Huang P (2002) Mitochondrial defects in cancer. Mol Cancer 1:9PubMedPubMedCentralCrossRefGoogle Scholar
  46. 46.
    Ju YS, Alexandrov LB, Gerstung M et al (2014) Origins and functional consequences of somatic mitochondrial DNA mutations in human cancer. Elife 1:3Google Scholar
  47. 47.
    Zong WX, Rabinowitz JD, White E (2016) Mitochondria and cancer. Mol Cell 61:667–676PubMedPubMedCentralCrossRefGoogle Scholar
  48. 48.
    Tan DJ, Bai RK, Wong LJ (2002) Comprehensive scanning of somatic mitochondrial DNA mutations in breast cancer. Cancer Res 62:972–976PubMedGoogle Scholar
  49. 49.
    Sharp MG, Adams SM, Walker RA, Brammar WJ, Varley JM (1992) Differential expression of the mitochondrial gene cytochrome oxidase II in benign and malignant breast tissue. J Pathol 168:163–168PubMedCrossRefGoogle Scholar
  50. 50.
    Liu VW, Shi HH, Cheung AN et al (2001) High incidence of somatic mitochondrial DNAmutations in human ovarian carcinomas. Cancer Res 61:5998–6001PubMedGoogle Scholar
  51. 51.
    Feng D, Xu H, Li X et al (2016) An association analysis between mitochondrial DNA content, G10398A polymorphism, HPV infection, and the prognosis of cervical cancer in the chinese han population. Tumour Biol 37:5599–5607PubMedCrossRefGoogle Scholar
  52. 52.
    Zhai K, Chang L, Zhang Q et al (2011) Mitochondrial C150T polymorphism increases the risk of cervical cancer and HPV infection. Mitochondrion 4:559–563CrossRefGoogle Scholar
  53. 53.
    Guardado-Estrada M, Medina-Martínez I, Juárez-Torres E et al (2012) The amerindian mtDNA haplogroup B2 enhances the risk of HPV for cervical cancer: de-regulation of mitochondrial genes may be involved. J Hum Genet 57:269–276PubMedCrossRefGoogle Scholar
  54. 54.
    Liu VW, Yang HJ, Wang Y et al (2003) High frequency of mitochondrial genome instability in human endometrial carcinomas. Br J Cancer 89:697–701PubMedPubMedCentralCrossRefGoogle Scholar
  55. 55.
    Wang Y, Liu VW, Tsang PC, Chui PM, Cheung ANY, Khoo US, Nagley P (2006) Microsatellite instability in mitochondrial genome of common female cancers. Int J Gynecol Cancer 1:259–266CrossRefGoogle Scholar
  56. 56.
    Semczuk A, Lorenc A, Putowski L, Bartnik E (2006) Clinic prognostical features of endometrial cancer patients with somatic mtDNA mutations. Oncol Rep 16:1041–1045PubMedGoogle Scholar
  57. 57.
    Kalsbeek AMF, Chan EKF, Grogan J et al (2018) Altered mitochondrial genome content signals worse pathology and prognosis in prostate cancer. Prostate 78:25–31PubMedCrossRefGoogle Scholar
  58. 58.
    Kalsbeek AMF, Chan EKF, Corcoran NM, Hovens CM, Hayes VM (2017) Mitochondrial genome variation and prostate cancer: a review of the mutational landscape and application to clinical management. Oncotarget 8:71342–71357PubMedPubMedCentralCrossRefGoogle Scholar
  59. 59.
    Creed J, Klotz L, Harbottle A, Maggrah A, Reguly B, George A, Gnanapragasm V (2018) A single mitochondrial DNA deletion accurately detects significant prostate cancer in men in the PSA ‘grey zone’. World J Urol 36:341–348PubMedCrossRefGoogle Scholar
  60. 60.
    Feng YM, Jia YF, Su LY, Wang D, Lv L, Xu L, Yao YG (2013) Decreased mitochondrial DNA copy number in the hippocampus and peripheral blood during opiate addiction is mediated by autophagy and can be salvaged by melatonin. Autophagy 9:1395–1406PubMedCrossRefGoogle Scholar
  61. 61.
    Peng TI, Hsiao CW, Reiter RJ, Tanaka M, Lai YK, Jou MJ (2012) mtDNA T8993G mutation-induced mitochondrial complex V inhibition augments cardiolipin-dependent alterations in mitochondrial dynamics during oxidative, Ca(2+), and lipid insults in NARP cybrids: a potential therapeutic target for melatonin. J Pineal Res 52:93–106PubMedCrossRefGoogle Scholar
  62. 62.
    Scott AE, Cosma GN, Frank AA, Wells RL, Gardner HS (2001) Disruption of mitochondrial respiration by melatonin in MCF-7 cells. Toxicol Appl Pharmacol 171:149–156PubMedCrossRefGoogle Scholar
  63. 63.
    Gilad E, Cuzzocrea S, Zingarelli B, Salzman AL, Szabó C (1997) Melatonin is a scavenger of peroxynitrite. Life Sci 60:169–174CrossRefGoogle Scholar
  64. 64.
    Mansouri A, Gaou I, De Kerguenec C et al (1999) An alcoholic binge causes massive degradation of hepatic mitochondrial DNA in mice. Gastroenterology 117:181–190PubMedCrossRefGoogle Scholar
  65. 65.
    Mansouri A, Demeilliers C, Amsellem S, Pessayre D, Fromenty B (2001) Acute ethanol administration oxidatively damages and depletes mitochondrial dna in mouse liver, brain, heart, and skeletal muscles: protective effects of antioxidants. J Pharmacol Exp Ther 298:737–743PubMedGoogle Scholar
  66. 66.
    Lerner AB, Case JD, Takahashy Y et al (1960) Structure of melatonin and 5 methoxy-indole 3-acetic acid from bovine pineal gland. J Biol Chem 235:1992–1997PubMedGoogle Scholar
  67. 67.
    Champney TH, Holtorf AP, Steger RW, Reiter RJ (1984) Concurrent determination of enzymatic activities and substrate concentrations in the melatonin synthetic pathway within the same rat pineal gland. J Neurosci Res 11:59–66PubMedCrossRefGoogle Scholar
  68. 68.
    Acuña-Castroviejo D, Rahim I, Acuña-Fernández C et al (2017) Melatonin, clockgenes and mitochondria in sepsis. Cell Mol Life Sci 74:3965–3987PubMedCrossRefGoogle Scholar
  69. 69.
    Jockers R, Delagrange P, Dubocovich ML et al (2016) Update on melatonin receptors: IUPHAR review. Br J Pharmacol 173:2702–2725PubMedPubMedCentralCrossRefGoogle Scholar
  70. 70.
    Becker-Andre M, Wiesenberg I, Schaeren-Wiemers N, André E, Missbach M, Saurat JH, Carlberg C (1994) Pineal gland hormone melatonin binds and activates an orphan of the nuclear receptor superfamily. J Biol Chem 269:28531–28534PubMedGoogle Scholar
  71. 71.
    Chuffa LG, Seiva FR, Fávaro WJ et al (2011) Melatonin reduces LH, 17 beta-estradiol and induces differential regulation of sex steroid receptors in reproductive tissues during rat ovulation. Reprod Biol Endocrinol 9:108PubMedCrossRefGoogle Scholar
  72. 72.
    Slominski RM, Reiter RJ, Schlabritz-Loutsevitch N, Ostrom RS, Slominski AT (2012) Melatonin membrane receptors in peripheral tissues: distribution and functions. Mol Cell Endocrinol 351:152–166PubMedPubMedCentralCrossRefGoogle Scholar
  73. 73.
    Chuffa LG, Seiva FR, Fávaro WJ et al (2013) Melatonin and ethanol intake exert opposite effects on circulating estradiol and progesterone and differentially regulate sex steroid receptors in the ovaries, oviducts, and uteri of adult rats. Reprod Toxicol 39:40–49PubMedCrossRefGoogle Scholar
  74. 74.
    Tamura H, Takasaki A, Taketani T et al (2014) Melatonin and female reproduction. J Obstet Gynaecol Res 40:1–11PubMedCrossRefGoogle Scholar
  75. 75.
    Reiter RJ, Tan DX, Manchester LC et al (2009) Melatonin and reproduction revisited. Biol Reprod 81:445–456PubMedCrossRefGoogle Scholar
  76. 76.
    Tamura H, Takasaki A, Miwa I et al (2008) Oxidative stress impairs oocyte quality and melatonin protects oocytes from free radical damage and improves fertilization rate. J Pineal Res 44:280–287PubMedCrossRefGoogle Scholar
  77. 77.
    Tamura H, Kawamoto M, Sato S et al (2017) Long-term melatonin treatment delays ovarian aging. J Pineal Res 62:e12381CrossRefGoogle Scholar
  78. 78.
    Song C, Peng W, Yin S et al (2016) Melatonin improves age-induced fertility decline and attenuates ovarian mitochondrial oxidative stress in mice. Sci Rep 6:35165PubMedPubMedCentralCrossRefGoogle Scholar
  79. 79.
    Ferreira CS, Carvalho KC, Maganhin CC et al (2016) Does melatonin influence the apoptosis in rat uterus of animals exposed to continuous light? Apoptosis 21:155–162PubMedCrossRefGoogle Scholar
  80. 80.
    Gobbo MG, Costa CF, Silva DG, de Almeida EA, Góes RM (2015) Effect of melatonin intake on oxidative stress biomarkers in male reproductive organs of rats under experimental diabetes. Oxid Med Cell Longev 2015:614579PubMedPubMedCentralCrossRefGoogle Scholar
  81. 81.
    Martín M, Macias M, Escames G, León J, Acuña-Castroviejo D (2000) Melatonin but not vitamins C and E maintains glutathione homeostasis in t-butyl hydroperoxide-induced mitochondrial oxidative stress. FASEB J 14:1677–1679PubMedCrossRefGoogle Scholar
  82. 82.
    Venegas C, García JA, Escames G et al (2012) Extrapineal melatonin: analysis of its subcellular distribution and daily fluctuations. J Pineal Res 52:217–227PubMedCrossRefGoogle Scholar
  83. 83.
    Acuña-Castroviejo D, Escames G, Venegas C et al (2014) Extrapineal melatonin: sources, regulation, and potential functions. Cell Mol Life Sci 71:2997–3025PubMedCrossRefGoogle Scholar
  84. 84.
    He C, Wang J, Zhang Z et al (2016) Mitochondria synthesize melatonin to ameliorate its function and improve mice oocyte’s quality under in vitro conditions. Int J Mol Sci 17:E939PubMedCrossRefGoogle Scholar
  85. 85.
    Suofu Y, Li W, Jean-Alphonse FG et al (2017) Dual role of mitochondria in producing melatonin and driving GPCR signaling to block cytochrome c release. Proc Natl Acad Sci USA 114:7997–8006CrossRefGoogle Scholar
  86. 86.
    Semak I, Naumova M, Korik E, Terekhovich V, Wortsman J, Slominski A (2005) A novel metabolic pathway of melatonin: oxidation by cytochrome c. Biochemistry 44:9300–9307PubMedCrossRefGoogle Scholar
  87. 87.
    Martín M, Macías M, León J, Escames G, Khaldy H, Acuña-Castroviejo D (2002) Melatonin increases the activity of the oxidative phosphorylation enzymes and the production of ATP in rat brain and liver mitochondria. Int J Biochem Cell Biol 34:348–357PubMedCrossRefGoogle Scholar
  88. 88.
    Leon J, Acuña-Castroviejo D, Sainz RM, Mayo JC, Tan DX, Reiter RJ (2004) Melatonin and mitochondrial function. Life Sci 75:765–790PubMedCrossRefGoogle Scholar
  89. 89.
    López A, García JA, Escames G, Venegas C, Ortiz F, López LC, Acuña-Castroviejo D (2009) Melatonin protects the mitochondria from oxidative damage reducing oxygen consumption, membrane potential, and superoxide anion production. J Pineal Res 46:188–198PubMedCrossRefGoogle Scholar
  90. 90.
    Acuña-Castroviejo D, Lopez LC, Escames G, López A, García JA, Reiter RJ (2011) Melatonin-mitochondria interplay in health and disease. Curr Top Med Chem 11:221–240PubMedCrossRefGoogle Scholar
  91. 91.
    Acuña-Castroviejo D, Escames G, Carazo A, Reiter RJ (2002) Melatonin, mitochondrial homeostasis and mitochondrial-related diseases. Curr Top Med Chem 2:133–151PubMedCrossRefGoogle Scholar
  92. 92.
    Jou MJ, Peng TI, Yu PZ et al (2007) Melatonin protects against common deletion of mitochondrial DNA-augmented mitochondrial oxidative stress and apoptosis. J Pineal Res 43:389–403PubMedCrossRefGoogle Scholar
  93. 93.
    Bonnefont-Rousselot D (2014) Obesity and oxidative stress: potential roles of melatonin as antioxidant and metabolic regulator. Endocr Metab Immune Disord Drug Targets 14:159–168PubMedCrossRefGoogle Scholar
  94. 94.
    Galano A, Tan DX, Reiter RJ (2018) Melatonin: a versatile protector against oxidative DNA damage. Molecules 23:E530PubMedCrossRefGoogle Scholar
  95. 95.
    Galano A, Reiter RJ (2018) Melatonin and its metabolites vs oxidative stress: from individual actions to collective protection. J Pineal Res 65:e12514PubMedCrossRefGoogle Scholar
  96. 96.
    Munoz-Casares FC, Padillo FJ, Briceno J et al (2006) Melatonin reduces apoptosis and necrosis induced by ischemia/reperfusion injury of the pancreas. J Pineal Res 40:195–203PubMedCrossRefGoogle Scholar
  97. 97.
    Paradies G, Petrosillo G, Paradies V, Reiter RJ, Ruggiero FM (2010) Melatonin, cardiolipin and mitochondrial bioenergetics in health and disease. J Pineal Res 48:297–310PubMedCrossRefGoogle Scholar
  98. 98.
    Mayo JC, Sainz RM, Gonzalez MP, Cepas V, Tan DX, Reiter RJ (2017) Melatonin and sirtuins: a “not-so unexpected” relationship. J Pineal Res 62:e12391CrossRefGoogle Scholar
  99. 99.
    Horbay R, Bilyy R (2016) Mitochondrial dynamics during cell cycling. Apoptosis 21:1327–1335PubMedCrossRefGoogle Scholar
  100. 100.
    Hardeland R, Madrid JA, Tan DX, Reiter RJ (2012) Melatonin, the circadian multioscillator system and health: the need for detailed analyses of peripheral melatonin signaling. J Pineal Res 52:139–166PubMedCrossRefGoogle Scholar
  101. 101.
    Swietoslawski J, Karasek M (1993) Day-night changes in the ultrastructure of pinealocytes in the Syrian hamster: a quantitative study. Endokrynol Pol 44:81–87PubMedGoogle Scholar
  102. 102.
    Pei H, Du J, Song X et al (2016) Melatonin prevents adverse myocardial infarction remodeling via Notch1/Mfn2 pathway. Free Radic Biol Med 97:408–417PubMedCrossRefGoogle Scholar
  103. 103.
    Randow F, Youle RJ (2014) Self and nonself: how autophagy targets mitochondria and bacteria. Cell Host Microbe 15:403–411PubMedPubMedCentralCrossRefGoogle Scholar
  104. 104.
    Kang JW, Hong JM, Lee SM (2016) Melatonin enhances mitophagy and mitochondrial biogenesis in rats with carbon tetrachloride-induced liver fibrosis. J Pineal Res 60:383–393PubMedCrossRefGoogle Scholar
  105. 105.
    Lin C, Chao H, Li Z et al (2016) Melatonin attenuates traumatic brain injury-induced inflammation: a possible role for mitophagy. J Pineal Res 61:177–186PubMedCrossRefGoogle Scholar
  106. 106.
    Jou MJ (2011) Melatonin preserves the transient mitochondrial permeability transition for protection during mitochondrial Ca2+ stress in astrocyte. J Pineal Res 50:427–435PubMedCrossRefGoogle Scholar
  107. 107.
    Akhmedov AT, Rybin V, Marin-Garcia J (2015) Mitochondrial oxidative metabolism and uncoupling proteins in the failing heart. Heart Fail Rev 20:227–249PubMedCrossRefGoogle Scholar
  108. 108.
    Vitale SG, Rossetti P, Corrado F et al (2016) How to achieve high-quality oocytes? The key role of Myo-Inositol and melatonin. Int J Endocrinol 2016:4987436PubMedPubMedCentralCrossRefGoogle Scholar
  109. 109.
    Tan DX, Manchester LC, Fuentes-Broto L, Paredes SD, Reiter RJ (2011) Significance and application of melatonin in the regulation of brown adipose tissue metabolism: relation to human obesity. Obes Rev 12:167–188PubMedCrossRefGoogle Scholar
  110. 110.
    Jimenez-Aranda A, Fernandez-Vazquez G, Campos D et al (2013) Melatonin induces browning of inguinal white adipose tissue in zucker diabetic fatty rats. J Pineal Res 55:416–423PubMedGoogle Scholar
  111. 111.
    Reiter RJ, Tan DX, Rosales-Corral S, Bing X (2018) Mitochondria: central organelles for melatonin’s antioxidant and anti-aging actions. Molecules 23:509CrossRefGoogle Scholar
  112. 112.
    Muller FL, Liu Y, Van Rammen H (2004) Complex III releases superoxide to both sides of the inner mitochondrial membrane. J Biol Chem 279:49064–49073PubMedCrossRefGoogle Scholar
  113. 113.
    Martín M, Macías M, Escames G, Reiter RJ, Agapito MT, Ortiz GG, Acuña-Castroviejo D (2000) Melatonin-induced increased activity of the respiratory chain complexes I and IV can prevent mitochondrial damage induced by ruthenium red in vivo. J Pineal Res 28:242–248PubMedCrossRefPubMedCentralGoogle Scholar
  114. 114.
    Reyes-Toso CF, Ricci CR, de Mignone IR et al (2003) In vitro effect of melatonin on oxygen consumption in liver mitochondria of rats. Neuro Endocrinol Lett 24:341–344PubMedGoogle Scholar
  115. 115.
    Pacini N, Borziani F (2016) Oncostatic-cytoprotective effect of melatonin and other bioactive molecules: a common target in mitochondrial respiration. Int J Mol Sci 17:341PubMedPubMedCentralCrossRefGoogle Scholar
  116. 116.
    Zhang H, Zhang HM, Wu LP et al (2011) Impaired mitochondrial complex III and melatonin responsive reactive oxygen species generation in kidney mitochondria of db/db mice. J Pineal Res 51:338–344PubMedPubMedCentralCrossRefGoogle Scholar
  117. 117.
    Fu JL, Zhang HM, Zhang H, Kamat A, Yeh CK, Zhang BX (2013) A melatonin-based fluorescence method for the measurement of mitochondrial complex III function in intact cells. J Pineal Res 55:364–370PubMedPubMedCentralGoogle Scholar
  118. 118.
    Bizzarri M, Proietti S, Cucina A, Reiter RJ (2013) Molecular mechanisms of the pro-apoptotic actions of melatonin in cancer: a review. Expert Opin Ther Targets 17:1483–1496PubMedCrossRefGoogle Scholar
  119. 119.
    Sánchez-Hidalgo M, Guerrero JM, Villegas I, Packham G, de la Lastra CA (2012) Melatonin, a natural programmed cell death inducer in cancer. Curr Med Chem 19:3805–3821PubMedCrossRefGoogle Scholar
  120. 120.
    Yun J, Mullarky E, Lu C et al (2015) Vitamin C selectively kills KRAS and BRAF mutant colorectal cancer cells by targeting GAPDH. Science 350:1391–1396PubMedPubMedCentralCrossRefGoogle Scholar
  121. 121.
    Oyewole AO, Birch-Machin MA (2015) Mitochondria-targeted antioxidants. FASEB J 29:4766–4771PubMedCrossRefGoogle Scholar
  122. 122.
    Lowes DA, Webster NR, Murphy MP, Galleyet HF (2013) Antioxidants that protect mitochondria reduce interleukin-6 and oxidative stress, improve mitochondrial function, and reduce biochemical markers of organ dysfunction in a rat model of acute sepsis. Br J Anaesth 110:472–480PubMedPubMedCentralCrossRefGoogle Scholar
  123. 123.
    Hevia D, Gonzalez-Menendez P, Quiros-Gonzalez I et al (2015) Melatonin uptake through glucose transporters: a new target for melatonin inhibition of cancer. J Pineal Res 58:234–250PubMedCrossRefGoogle Scholar
  124. 124.
    Huo X, Wang C, Yu Z et al (2017) Human transporters, PEPT1/2, facilitate melatonin transportation into mitochondria of cancer cells: an implication of the therapeutic potential. J Pineal Res 62:e12390CrossRefGoogle Scholar
  125. 125.
    Chuffa LG, Alves MS, Martinez M et al (2016) Apoptosis is triggered by melatonin in an in vivo model of ovarian carcinoma. Endocr Relat Cancer 23:65–76PubMedCrossRefGoogle Scholar
  126. 126.
    Prat J (2012) Ovarian carcinomas: five distinct diseases with different origins, genetic alterations, and clinicopathological features. Virchows Arch 60:237–249CrossRefGoogle Scholar
  127. 127.
    Karaca B, Atmaca H, Bozkurt E et al (2013) Combination of AT-101/cisplatin overcomes chemoresistance by inducing apoptosis and modulating epigenetics in human ovarian cancer cells. Mol Biol Rep 40:3925–3933PubMedCrossRefGoogle Scholar
  128. 128.
    Togashi K, Okada M, Yamamoto M et al (2018) A small-molecule kinase inhibitor, CEP-1347, inhibits survivin expression and sensitizes ovarian cancer stem cells to paclitaxel. Anticancer Res 38:4535–4542PubMedCrossRefGoogle Scholar
  129. 129.
    Ornelas A, McCullough CR, Lu Z et al (2016) Induction of autophagy by ARHI (DIRAS3) alters fundamental metabolic pathways in ovarian cancer models. BMC Cancer 16:824PubMedPubMedCentralCrossRefGoogle Scholar
  130. 130.
    Xie Q, Su J, Jiao B et al (2016) ABT737 reverses cisplatin resistance by regulating ER-mitochondria Ca2+ signal transduction in human ovarian cancer cells. Int J Oncol 49:2507–2519PubMedCrossRefGoogle Scholar
  131. 131.
    Matsuura K, Huang NJ, Cocce K, Zhang L, Kornbluth S (2017) Downregulation of the proapoptotic protein MOAP-1 by the UBR5 ubiquitin ligase and its role in ovarian cancer resistance to cisplatin. Oncogene 36:1698–1706PubMedCrossRefGoogle Scholar
  132. 132.
    Yang J, Zhao X, Tang M et al (2017) The role of ROS and subsequent DNA-damage response in PUMA-induced apoptosis of ovarian cancer cells. Oncotarget 8:23492–23506PubMedPubMedCentralGoogle Scholar
  133. 133.
    Petranka J, Baldwin W, Biermann J, Jayadev S, Barrett JC, Murphy E (1999) The oncostatic action of melatonin in an ovarian carcinoma cell line. J Pineal Res 26:129–136PubMedCrossRefGoogle Scholar
  134. 134.
    Vervliet T, Clerix E, Seitaj B, Ivanova H, Monaco G, Bultynck G (2017) Modulation of Ca(2+) signaling by anti-apoptotic B-Cell lymphoma 2 proteins at the endoplasmic reticulum-mitochondrial interface. Front Oncol 7:75PubMedPubMedCentralCrossRefGoogle Scholar
  135. 135.
    Akl H, Bultynck G (2013) Altered Ca2+ signaling in cancer cells: proto-oncogenes and tumor suppressors targeting IP3 receptors. Biochim Biophys Acta 1835:180–193PubMedGoogle Scholar
  136. 136.
    Giorgi C, Missiroli S, Patergnani S, Duszynski J, Wieckowski MR, Pinton P (2015) Mitochondria-associated membranes: composition, molecular mechanisms, and physiopathological implications. Antioxid Redox Signal 22:995–1019PubMedCrossRefGoogle Scholar
  137. 137.
    Hwang MS, Schwall CT, Pazarentzos E, Datler C, Alder NN, Grimm S (2014) Mitochondrial Ca2+ influx targets cardiolipin to disintegrate respiratory chain complex II for cell death induction. Cell Death Differ 21:1733–1745PubMedPubMedCentralCrossRefGoogle Scholar
  138. 138.
    Eckenrode EF, Yang J, Velmurugan GV, Foskett JK, White C (2010) Apoptosis protec-tion by Mcl-1 and Bcl-2 modulation of inositol 1,4,5-trisphosphate receptor-dependent Ca2+ signaling. J Biol Chem 285:13678–13684PubMedPubMedCentralCrossRefGoogle Scholar
  139. 139.
    Monaco G, Beckers M, Ivanova H, Missiaen L, Parys JB, De Smedt H, Bultynck G (2012) Profiling of the Bcl-2/Bcl-XL-binding sites on type 1 IP3 receptor. Biochem Biophys Res Commun 428:31–35PubMedCrossRefGoogle Scholar
  140. 140.
    Hanson CJ, Bootman MD, Distelhorst CW, Wojcikiewicz RJ, Roderick HL (2008) Bcl-2 suppresses Ca2+ release through inositol 1,4,5-trisphosphate receptors and inhibits Ca2+ uptake by mitochondria without affecting ER calcium store content. Cell Calcium 44:324–338PubMedCrossRefGoogle Scholar
  141. 141.
    Xu L, Xie Q, Qi L et al (2018) Bcl-2 overexpression reduces cisplatin cytotoxicity by decreasing ER-mitochondrial Ca2+ signaling in SKOV3 cells. Oncol Rep 39:985–992PubMedGoogle Scholar
  142. 142.
    Dai Y, Jin S, Li X, Wang D (2017) The involvement of Bcl-2 family proteins in AKT regulated cell survival in cisplatin resistant epithelial ovarian cancer. Oncotarget 8:354–1368Google Scholar
  143. 143.
    Chuffa LG, Lupi Júnior LA, Seiva FR et al (2016) Quantitative proteomic profiling reveals that diverse metabolic pathways are influenced by melatonin in an in vivo model of ovarian carcinoma. J Proteome Res 15:3872–3882PubMedCrossRefPubMedCentralGoogle Scholar
  144. 144.
    Chovancova B, Hudecova S, Lencesova L et al (2017) Melatonin-induced changes in cytosolic calcium might be responsible for apoptosis induction in tumour cells. Cell Physiol Biochem 44:763–777PubMedCrossRefGoogle Scholar
  145. 145.
    Kim JH, Jeong SJ, Kim B, Yun SM, Choi DY, Kim SH (2012) Melatonin synergistically enhances cisplatin-induced apoptosis via the dephosphorylation of ERK/p90 ribosomal S6 kinase/heat shock protein 27 in SK-OV-3cells. J Pineal Res 52:244–252PubMedCrossRefPubMedCentralGoogle Scholar
  146. 146.
    Collins A, Yuan L, Kiefer TL, Cheng Q, Lai L, Hill SM (2003) Overexpression of the mt1 melatonin receptor in mcf-7 human breast cancer cells inhibit mammary tumor formation in nude mice. Cancer Lett 189:49–57PubMedCrossRefGoogle Scholar
  147. 147.
    Nakamura E, Kozaki K, Tsuda H et al (2008) Frequent silencing of a putative tumor suppressor gene melatonin receptor 1 a (mtnr1a) in oral squamous-cell carcinoma. Cancer Sci 99:1390–1400PubMedCrossRefGoogle Scholar
  148. 148.
    Jablonska K, Pula B, Zemla A et al (2014) Expression of the mt1 melatonin receptor in ovarian cancer cells. Int J Mol Sci 15:23074–23089PubMedPubMedCentralCrossRefGoogle Scholar
  149. 149.
    Zemła A, Grzegorek I, Dzięgiel P, Jabłońska K (2017) Melatonin synergizes the chemotherapeutic effect of cisplatin in ovarian cancer cells independently of MT1 melatonin receptors. Vivo 31:801–809Google Scholar
  150. 150.
    Siegel RL, Miller KD, Jemal A (2018) Cancer statistics. CA Cancer J Clin 68:7–30PubMedCrossRefGoogle Scholar
  151. 151.
    Suarez AA, Felix AS, Cohn DE (2017) Bokhman Redux: endometrial cancer “types” in the 21st century. Gynecol Oncol 144:243–249PubMedCrossRefGoogle Scholar
  152. 152.
    Silverberg SG, Kurman RJ, Nogales F et al (2003) Epithelial tumours and related lesions. In: Tavassoli FA, Devilee P (eds) World Health Organization classification of tumours: pathology and genetics—tumours of the breast and female genital organs, vol 217. IARC Press, Lyon, p 232123Google Scholar
  153. 153.
    Doghri R, Chaabouni S, Houcine Y et al (2018) Evaluation of tumor-free distance and depth of myometrial invasion as prognostic factors in endometrial cancer. Mol Clin Oncol 9:87–91PubMedPubMedCentralGoogle Scholar
  154. 154.
    Matias-Guiu X, Davidson B (2014) Prognostic biomarkers in endometrial and ovarian carcinoma. Virchows Arch 464:315–331PubMedCrossRefGoogle Scholar
  155. 155.
    Klinge CM (2017) Estrogens regulate life and death in mitochondria. J Bioenerg Biomembr 49:307–324PubMedCrossRefGoogle Scholar
  156. 156.
    Cormio A, Cormio G, Musicco C, Sardanelli AM, Gasparre G, Gadaleta MN (2015) Mitochondrial changes in endometrial carcinoma: possible role in tumor diagnosis and prognosis (review). Oncol Rep 33:1011–1018PubMedCrossRefGoogle Scholar
  157. 157.
    Musicco C, Cormio G, Pesce V et al (2018) Mitochondrial dysfunctions in type I endometrial carcinoma: exploring their role in oncogenesis and tumor progression. Int J Mol Sci 19:E2076PubMedCrossRefPubMedCentralGoogle Scholar
  158. 158.
    Wang Y, Liu VW, Xue WC, Tsang PC, Cheung AN, Ngan HY (2005) The increase of mitochondrial DNA content in endometrial adenocarcinoma cells: a quantitative study using laser-captured microdissected tissues. Gynecol Oncol 98:104–110PubMedCrossRefPubMedCentralGoogle Scholar
  159. 159.
    Cormio A, Guerra F, Cormio G, Pesce V et al (2009) The PGC-1alpha–dependent pathway of mitochondrial biogenesis is upregulated in type I endometrial cancer. Biochem Biophys Res Commun 390:1182–1185PubMedCrossRefPubMedCentralGoogle Scholar
  160. 160.
    Guerra F, Kurelac I, Cormio A et al (2011) Placing mitochondrial DNA mutations within the progression model of type I endometrial carcinoma. Hum Mol Genet 20:2394–2405PubMedCrossRefGoogle Scholar
  161. 161.
    Murphy MP (2009) How mitochondria produce reactive oxygen species. Biochemistry J417:1–13Google Scholar
  162. 162.
    Papa S, De Rasmo D, Technikova-Dobrova Z et al (2012) Respiratory chain complex I, a main regulatory target of the cAMP/PKA pathway is defective in different human diseases. FEBS Lett 586:568–577PubMedCrossRefPubMedCentralGoogle Scholar
  163. 163.
    Cinar B, Collak FK, Lopez D et al (2011) MST1 is a multifunctional caspase-independent inhibitor of androgenic signaling. Cancer Res 71:4303–4313PubMedPubMedCentralCrossRefGoogle Scholar
  164. 164.
    Zhao Q, Ye M, Yang W et al (2018) Effect of Mst1 on endometriosis apoptosis and migration: role of Drp1-related mitochondrial fission and parkin-required mitophagy. Cell Physiol Biochem 45:1172–1190PubMedCrossRefGoogle Scholar
  165. 165.
    Attarha S, Andersson S, Mints M, Souchelnytskyi S (2014) Mammalian sterile-like1 kinase inhibits TGFβ and EGF-dependent regulation of invasiveness, migration and proliferation of HEC-1-endometrial cancer cells. Int J Oncol 45:853–860PubMedCrossRefGoogle Scholar
  166. 166.
    Grin W, Grünberger W (1998) A significant correlation between melatonin deficiency and endometrial cancer. Gynecol Obstet Investig 45:62–65CrossRefGoogle Scholar
  167. 167.
    Witek A, Jęda A, Baliś M et al (2015) Expression of melatonin receptors genes and genes associated with regulation of their activity in endometrial cancer. Ginekol Pol 86:248–255PubMedCrossRefGoogle Scholar
  168. 168.
    Osanai K, Kobayashi Y, Otsu M, Izawa T, Sakai K, Iwashita M (2017) Ramelteon, a selective MT1/MT2 receptor agonist, suppresses the proliferation and invasiveness of endometrial cancer cells. Hum Cell 30:209–215PubMedCrossRefGoogle Scholar
  169. 169.
    Watanabe M, Kobayashi Y, Takahashi N, Kiguchi K, Ishizuka B (2008) Expression of melatonin receptor (MT1) and interaction between melatonin and estrogen in endometrial cancer cell line. J Obstet Gynaecol Res 34:567–573PubMedCrossRefGoogle Scholar
  170. 170.
    Kobayashi Y, Itoh MT, Kondo H et al (2003) Melatonin binding sites in estrogen receptor-positive cells derived from human endometrial cancer. J Pineal Res 35:71–74PubMedGoogle Scholar
  171. 171.
    Ciortea R, Costin N, Braicu I et al (2011) Effect of melatonin on intra-abdominal fat in correlation with endometrial proliferation in ovariectomized rats. Anticancer Res 31:2637–2643PubMedGoogle Scholar
  172. 172.
    Bentivegna E, Gouy S, Maulard A, Chargari C, Leary A, Morice P (2016) Oncological outcomes after fertility-sparing surgery for cervical cancer: a systematic review. Lancet Oncol 17:240–253CrossRefGoogle Scholar
  173. 173.
    Lai JC, Chou YJ, Huang N et al (2013) Survival analysis of stage IIA1 and IIA2 cervical cancer patients. Taiwan J Obstet Gynecol 52:33–38PubMedCrossRefGoogle Scholar
  174. 174.
    Kuzuya K (2004) Chemoradiotherapy for uterine cancer: current status and perspectives. Int J Clin Oncol 9:458–470PubMedCrossRefGoogle Scholar
  175. 175.
    Kakimoto PA, Kowaltowski AJ (2016) Effects of high fat diets on rodent liver bioenergetics and oxidative imbalance. Redox Biol 8:216–225PubMedPubMedCentralCrossRefGoogle Scholar
  176. 176.
    Yan D, Zhu D, Zhao X, Su J (2018) SHP-2 restricts apoptosis induced by chemotherapeutic agents via Parkin-dependent autophagy in cervical cancer. Cancer Cell Int 18:8PubMedPubMedCentralCrossRefGoogle Scholar
  177. 177.
    Chen L, Liu L, Li Y, Gao J (2018) Melatonin increases human cervical cancer HeLa cells apoptosis induced by cisplatin via inhibition of JNK/Parkin/mitophagy axis. In Vitro Cell Dev Biol Anim 54:1–10PubMedCrossRefGoogle Scholar
  178. 178.
    Pariente R, Pariente JA, Rodríguez AB, Espino J (2016) Melatonin sensitizes human cervical cancer HeLa cells to cisplatin-induced cytotoxicity and apoptosis: effects on oxidative stress and DNA fragmentation. J Pineal Res 60:55–64PubMedCrossRefGoogle Scholar
  179. 179.
    Pariente R, Bejarano I, Espino J, Rodríguez AB, Pariente JA (2017) Participation of MT3 melatonin receptors in the synergistic effect of melatonin on cytotoxic and apoptotic actions evoked by chemotherapeutics. Cancer Chemother Pharmacol 80:985–998PubMedCrossRefGoogle Scholar
  180. 180.
    Galluzzi L, Vitale I, Michels J et al (2014) Systems biology of cisplatin resistance: past, present and future. Cell Death Dis 5:1257CrossRefGoogle Scholar
  181. 181.
    Karasek M, Kowalski AJ, Suzin J, Zylinska K, Swietoslawski J (2005) Serum melatonin circadian profiles in women suffering from cervical cancer. J Pineal Res 39:73–76PubMedCrossRefGoogle Scholar
  182. 182.
    Anisimov VN, Zabezhinski MA, Popovich IG et al (2000) Inhibitory effect of melatonin on 7, 12-dimethylbenz[a]anthracene-induced carcinogenesis of the uterine cervix and vagina in mice and mutagenesis in vitro. Cancer Lett 156:199–205PubMedCrossRefGoogle Scholar
  183. 183.
    Chen LD, Leal BZ, Reiter RJ et al (1995) Melatonin’s inhibitory effect on growth of ME-180 human cervical cancer cells is not related to intracellular glutathione concentrations. Cancer Lett 91:153–159PubMedCrossRefGoogle Scholar
  184. 184.
    Fourkala EO, Blyuss O, Field H et al (2016) Sex hormone measurements using mass spectrometry and sensitive extraction radioimmunoassay and risk of estrogen receptor negative and positive breast cancer: case control study in uk collaborative cancer trial of ovarian cancer screening (UKCTOCS). Steroids 110:62–69PubMedCrossRefGoogle Scholar
  185. 185.
    Omoto Y, Iwase H (2015) Clinical significance of estrogen receptor β in breast and prostate cancer from biological aspects. Cancer Sci 106:337–343PubMedPubMedCentralCrossRefGoogle Scholar
  186. 186.
    Veronesi U, Boyle P, Goldhirsch A, Orecchia R, Viale G (2005) Breast cancer. Lancet 365:1727–1741PubMedCrossRefGoogle Scholar
  187. 187.
    Collaborative Group on Hormonal Factors in Breast Cancer (2012) Menarche, menopause, and breast cancer risk: individual participant meta-analysis, including 118.964 women with breast cancer from 117 epidemiological studies. Lancet Oncol 13:1141–1151PubMedCentralCrossRefPubMedGoogle Scholar
  188. 188.
    Mediavilla MD, Sanchez-Barcelo EJ, Tan DX, Manchester L, Reiter RJ (2010) Basic mechanisms involved in the anti-cancer effects of melatonin. Curr Med Chem 17:4462–4481PubMedCrossRefGoogle Scholar
  189. 189.
    Sanchez-Barcelo EJ, Mediavilla MD, Alonso-Gonzalez C, Reiter RJ (2012) Melatonin uses in oncology: breast cancer prevention and reduction of the side effects of chemotherapy and radiation. Expert Opin Investig Drugs 21:819–831PubMedCrossRefGoogle Scholar
  190. 190.
    Hill SM, Belancio VP, Dauchy RT et al (2015) Melatonin: an inhibitor of breast cancer. Endocr Relat Cancer 22:183–204CrossRefGoogle Scholar
  191. 191.
    Grant SG, Melan MA, Latimer JJ, Witt-Enderby PA (2009) Melatonin and breast cancer: cellular mechanisms, clinical studies and future perspectives. Expert Rev Mol Med 11:1–15CrossRefGoogle Scholar
  192. 192.
    Hill SM, Blask DE, Xiang S et al (2011) Melatonin and associated signaling pathways that control normal breast epithelium and breast cancer. J Mammary Gland Biol Neoplasia 16:235–245PubMedCrossRefGoogle Scholar
  193. 193.
    Proietti S, Cucina A, Reiter R, Bizzarri M (2013) Molecular mechanisms of melatonin’s inhibitory actions on breast cancer. Cell Mol Life Sci 70:2139–2157PubMedCrossRefGoogle Scholar
  194. 194.
    Gunter TE, Gunter KK, Sheu SS, Gavin CE (1994) Mitochondrial calcium transport: physiological and pathological relevance. Am J Physiol 267:313–339CrossRefGoogle Scholar
  195. 195.
    Gunter TE, Buntinas L, Sparagna G, Eliseev R, Gunter K (2000) Mitochondrial calcium transport: mechanisms and functions. Cell Calcium 28:285–296PubMedCrossRefGoogle Scholar
  196. 196.
    Concolino A, Olivo E, Tamme L et al (2018) Proteomics analysis to assess the role of mitochondria in brca1-mediated breast tumorigenesis. Proteomes 6:E16PubMedCrossRefGoogle Scholar
  197. 197.
    Kim MY, Choi EO, Hwang Bo H et al (2018) Reactive oxygen species-dependent apoptosis induction by water extract of citrus unshiu peel in MDA-MB-231 human breast carcinoma cells. Nutr Res Pract 12:129–134PubMedPubMedCentralCrossRefGoogle Scholar
  198. 198.
    Oo PS, Yamaguchi Y, Sawaguchi A et al (2018) Estrogen regulates mitochondrial morphology through phosphorylation of dynamin-related protein 1 in mcf7 human breast cancer cells. Acta Histochem Cytochem 51:21–31PubMedPubMedCentralCrossRefGoogle Scholar
  199. 199.
    Vic P, Vignon F, Derocq D, Rochefort H (1982) Effect of estradiol on the ultrastructure of the MCF7 human breast cancer cells in culture. Cancer Res 42:667–673PubMedGoogle Scholar
  200. 200.
    Westermann B (2010) Mitochondrial fusion and fission in cell life and death. Nat Rev Mol Cell Biol 11:872–884PubMedCrossRefGoogle Scholar
  201. 201.
    Trotta AP, Chipuk JE (2017) Mitochondrial dynamics as regulators of cancer biology. Cell Mol Life Sci 74:1999–2017PubMedPubMedCentralCrossRefGoogle Scholar
  202. 202.
    Kashatus JA, Nascimento A, Myers LJ et al (2015) Erk2 phosphorylation of Drp1 promotes mitochondrial fission and MAPK-driven tumor growth. Mol Cell 57:537–551PubMedPubMedCentralCrossRefGoogle Scholar
  203. 203.
    Zhao J, Zhang J, Yu M et al (2013) Mitochondrial dynamics regulates migration and invasion of breast cancer cells. Oncogene 32:4814–4824CrossRefGoogle Scholar
  204. 204.
    Chuang JI, Pan IL, Hsieh CY et al (2016) Melatonin prevents the Drp1-dependent mitochondrial fission and oxidative insult in the cortical neurons after MPP treatment. J Pineal Res 61:230–240PubMedCrossRefGoogle Scholar
  205. 205.
    Xu S, Pi H, Zhang L et al (2016) Melatonin prevents abnormal mitochondrial dynamics resulting from the neurotoxicity of cadmium by blocking calcium-dependent translocation of Drp1 to the mitochondria. J Pineal Res 60:291–302PubMedCrossRefGoogle Scholar
  206. 206.
    Parameyong A, Charngkaew K, Govitrapong P et al (2013) Melatonin attenuates methamphetamine induced disturbances in mitochondrial dynamics and degeneration in neuroblastoma SH-SY5Y cells. J Pineal Res 55:313–323PubMedCrossRefGoogle Scholar
  207. 207.
    Zhou TJ, Zhang SL, He CY et al (2017) Downregulation of mitochondrial cyclooxygenase-2 inhibits the stemness of nasopharyngeal carcinoma by decreasing the activity of dynamin-related protein 1. Theranostics 7:1389–1406PubMedPubMedCentralCrossRefGoogle Scholar
  208. 208.
    Suwanjang W, Abramov AY, Charngkaew K, Govitrapong P, Chetsawang B (2016) Melatonin prevents cytosolic calcium overload, mitochondrial damage and cell death due to toxically high doses of dexamethasone-induced oxidative stress in human neuroblastoma SH-SY5Y cells. Neurochem Int 97:34–41PubMedCrossRefGoogle Scholar
  209. 209.
    Prieto-Domínguez N, Ordóñez R, Fernández A et al (2016) Melatonin-induced increase in sensitivity of human hepatocellular carcinoma cells to sorafenib is associated with reactive oxygen species production and mitophagy. J Pineal Res 61:396–407PubMedPubMedCentralCrossRefGoogle Scholar
  210. 210.
    Pedram A, Razandi M, Wallace DC, Levin ER (2006) Functional estrogen receptors in the mitochondria of breast cancer cells. Mol Biol Cell 17:2125–2137PubMedPubMedCentralCrossRefGoogle Scholar
  211. 211.
    Moselhy SS, Al Mslmani MA (2008) Chemopreventive effect of lycopene alone or with melatonin against the genesis of oxidative stress and mammary tumors induced by 7,12 dimethyl(a)benzanthracene in Sprague–Dawley female rats. Mol Cell Biochem 319:175–180PubMedCrossRefGoogle Scholar
  212. 212.
    Cucina A, Proietti S, D’Anselmi F, Coluccia P, Dinicola S, Frati L, Bizzarri M (2009) Evidence for a biphasic apoptotic pathway induced by melatonin in MCF-7 breast cancer cells. J Pineal Res 46:172–180PubMedCrossRefGoogle Scholar
  213. 213.
    Srinivasula SM, Ahmad M, Fernandes-Alnemri T et al (1998) Autoactivation of procaspase-9 by Apaf-1-mediated oligomerization. Mol Cell 1:949–957PubMedCrossRefGoogle Scholar
  214. 214.
    Soengas MS, Alarcon RM, Yoshida H, Giaccia AJ, Hakem R, Mak TW, Lowe SW (1999) Apaf-1 and caspase-9 in p53-dependent apoptosis and tumor inhibition. Science 284:156–159PubMedCrossRefGoogle Scholar
  215. 215.
    Moroni MC, Hickman ES, Lazzerini DE et al (2001) Apaf-1 is a transcriptional target for E2F and p53. Nat Cell Biol 3:552–558PubMedCrossRefGoogle Scholar
  216. 216.
    Riedl SJ (2005) Structure of the apoptotic protease-activating factor 1 bound to ADP. Nature 434:926–933PubMedCrossRefGoogle Scholar
  217. 217.
    Wang J, Xiao X, Zhang Y et al (2012) Simultaneous modulation of COX-2, p300, Akt, and Apaf-1 signaling by melatonin to inhibit proliferation and induce apoptosis in breast cancer cells. J Pineal Res 53:77–90PubMedCrossRefGoogle Scholar
  218. 218.
    Sabzichi M, Samadi N, Mohammadian J, Hamishehkar H, Akbarzadeh M, Molavi O (2016) Sustained release of melatonin: a novel approach in elevating efficacy of tamoxifen in breast cancer treatment. Colloids Surf B Biointerfaces 145:64–71PubMedCrossRefGoogle Scholar
  219. 219.
    Koşar PA, Nazıroğlu M, Övey İS, Çiğ B (2016) Synergic effects of doxorubicin and melatonin on apoptosis and mitochondrial oxidative stress in MCF-7 breast cancer cells: involvement of TRPV1 channels. J Membr Biol 249:129–140PubMedCrossRefGoogle Scholar
  220. 220.
    Mao L, Cheng Q, Guardiola-Lemaître B et al (2010) In vitro and in vivo antitumor activity of melatonin receptor agonists. J Pineal Res 49:210–221PubMedCrossRefGoogle Scholar
  221. 221.
    Yun SM, Woo SH, St Oh et al (2016) Melatonin enhances arsenic trioxide-induced cell death via sustained upregulation of Redd1 expression in breast cancer cells. Mol Cell Endocrinol 422:64–73PubMedCrossRefGoogle Scholar
  222. 222.
    Nooshinfar E, Bashash D, Safaroghli-Azar A, Bayati S, Rezaei-Tavirani M, Ghaffari SH, Akbari ME (2016) Melatonin promotes ATO-induced apoptosis in MCF-7 cells: proposing novel therapeutic potential for breast cancer. Biomed Pharmacother 83:456–465PubMedCrossRefGoogle Scholar
  223. 223.
    Woo SM, Min KJ, Kwon TK (2015) Melatonin-mediated Bim up-regulation and cyclooxygenase-2 (COX-2) down-regulation enhances tunicamycin-induced apoptosis in MDA-MB-231 cells. J Pineal Res 58:310–320PubMedCrossRefGoogle Scholar
  224. 224.
    Monteith GR, McAndrew D, Faddy HM, Roberts-Thomson SJ (2007) Calcium and cancer: targeting Ca2+ transport. Nat Rev Cancer 7:519–530PubMedCrossRefGoogle Scholar
  225. 225.
    Tajbakhsh A, Pasdar A, Rezaee M (2017) The current status and perspectives regarding the clinical implication of intracellular calcium in breast cancer. J Cell Physiol 233:5623–5641CrossRefGoogle Scholar
  226. 226.
    Xu HT, Yuan XB, Guan CB, Duan S, Wu CP, Feng L (2004) Calcium signaling in chemorepellant Slit2-dependent regulation of neuronal migration. Proc Natl Acad Sci USA 12:4296–4301CrossRefGoogle Scholar
  227. 227.
    Nita LI, Hershfinkel M, Sekler I (2015) Life after the birth of the mitochondrial Na+/Ca2+ exchanger, NCLX. Sci China Life Sci 58:59–65PubMedCrossRefGoogle Scholar
  228. 228.
    Barnes DM, Millis RR, Gillett CE, Ryder K, Skilton D, Fentiman IS, Rubens RD (2004) The interaction of oestrogen receptor status and pathological features with adjuvant treatment in relation to survival in patients with operable breast cancer: a retrospective study of 2660 patients. Endocr Relat Cancer 11:85–96PubMedCrossRefGoogle Scholar
  229. 229.
    Hoenderop JG, Nilius B, Bindels RJ (2005) Calcium absorption across epithelia. Physiol Ver 85:373–422Google Scholar
  230. 230.
    Watson CS, Alyea RA, Jeng YJ, Kochukov MY (2007) Nongenomic actions of low concentration estrogens and xenoestrogens on multiple tissues. Mol Cell Endocrinol 274:1–7PubMedPubMedCentralCrossRefGoogle Scholar
  231. 231.
    Busselberg D, Florea AM (2017) Targeting Intracellular calcium signaling ([Ca(2+)]i) to overcome acquired multidrug resistance of cancer cells: a mini-overview. Cancers (Basel) 9:48CrossRefGoogle Scholar
  232. 232.
    Cui C, Merritt R, Fu L, Zui P (2017) Targeting calcium signaling in cancer therapy. Acta Pharm Sin 7:3–17CrossRefGoogle Scholar
  233. 233.
    Brookes PS (2004) Mitochondrial nitric oxide synthase. Mitochondrion 3:187–204PubMedCrossRefGoogle Scholar
  234. 234.
    Csordas G, Golenar T, Seifert EL et al (2013) MICU1 controls both the threshold and cooperative activation of the mitochondrial Ca(2)(+) uniporter. Cell Metab 7:976–987CrossRefGoogle Scholar
  235. 235.
    Wallace DC (2012) Mitochondria and cancer. Nat Rev Cancer 12:685–698PubMedPubMedCentralCrossRefGoogle Scholar
  236. 236.
    Curry MC, Luk NA, Kenny PA, Roberts-Thomson SJ, Monteith GR (2012) Distinct regulation of cytoplasmic calcium signals and cell death pathways by different plasma membrane calcium ATPase isoforms in MDA-MB-231 breast cancer cells. J Biol Chem 287:28598–28608PubMedPubMedCentralCrossRefGoogle Scholar
  237. 237.
    VanHouten J, Sullivan C, Bazinet C et al (2010) PMCA2 regulates apoptosis during mammary gland involution and predicts outcome in breast cancer. Proc Natl Acad Sci USA 25:11405–11410CrossRefGoogle Scholar
  238. 238.
    Herschkowitz JI, Simin K, Weigman VJ et al (2007) Identification of conserved gene expression features between murine mammary carcinoma models and human breast tumors. Genome Biol 8:76CrossRefGoogle Scholar
  239. 239.
    Curry MC, Peters AA, Kenny PA, Roberts-Thomson SJ, Monteith GR (2013) Mitochondrial calcium uniporter silencing potentiates caspase-independent cell death in MDA-MB-231 breast cancer cells. Biochem Biophys Res Commun 434:695–700PubMedCrossRefGoogle Scholar
  240. 240.
    França EL, Honorio-França AC, Fernandes RT, Marins CM, Pereira CC, Varotti Fde P (2016) The effect of melatonin adsorbed to polyethylene glycol microspheres on the survival of MCF-7 cells. Neuro Immunomodulation 23:27–32Google Scholar
  241. 241.
    Reiter RJ, Tan DX, Osuna C, Gitto E (2000) Actions of melatonin in the reduction of oxidative stress: a review. J Biomed Sci 7:444–458PubMedCrossRefGoogle Scholar
  242. 242.
    Naziroglu M, Karaoğlu A, Aksoy AO (2004) Selenium and high dose vitamin E administration protects cisplatin-induced oxidative damage to renal, liver and lens tissues in rats. Toxicology 195:221–230PubMedCrossRefGoogle Scholar
  243. 243.
    Uguz AC, Cig B, Espino J et al (2012) Melatonin potentiates chemotherapy-induced cytotoxicity and apoptosis in rat pancreatic tumor cells. J Pineal Res 53:91–98PubMedCrossRefGoogle Scholar
  244. 244.
    Sag CM, Wagner S, Maier LS (2013) Role of oxidants on calcium and sodium movement in healthy and diseased cardiac myocytes. Free Radic Biol Med 63:338–349PubMedCrossRefGoogle Scholar
  245. 245.
    Bejarano I, Espino J, Barriga C, Reiter RJ, Pariente JA, Rodríguez AB (2011) Pro-oxidant effect of melatonin in tumour leucocytes: relation with its cytotoxic and pro-apoptotic effects. Basic Clin Pharmacol Toxicol 108:14–20PubMedCrossRefGoogle Scholar
  246. 246.
    Squecco R, Tani A, Zecchi-Orlandini S, Formigli L, Francini F (2015) Melatonin affects voltage-dependent calcium and potassium currents in MCF-7 cell line cultured either in growth or differentiation medium. Eur J Pharmacol 758:40–52PubMedCrossRefGoogle Scholar
  247. 247.
    Mahapatra S, Marcantoni A, Zuccotti A, Carabelli V, Carbone E (2012) Equal sensitivity of cav1.2 and cav1.3 channels to the opposing modulations of PKA and PKG in mouse chromaffin cells. J Physiol 590:5053–5073PubMedPubMedCentralCrossRefGoogle Scholar
  248. 248.
    Margheri M, Pacini N, Tani A et al (2012) Combined effects of melatonin and all-trans retinoic acid and somatostatin on breast cancer cell proliferation and death: molecular basis for the anticancer effect of these molecules. Eur J Pharmacol 681:34–43PubMedCrossRefGoogle Scholar
  249. 249.
    Warburg O, Wind F, Negelein E (1927) The metabolism of tumors in the body. J Gen Physiol 8:519–530PubMedPubMedCentralCrossRefGoogle Scholar
  250. 250.
    Warburg O (1956) On respiratory impairment in cancer cells. Science 124:269–270PubMedGoogle Scholar
  251. 251.
    Vaupel P, Mayer A, Höckel M (2004) Tumor hypoxia and malignant progression. Methods Enzymol 381:335–354PubMedCrossRefGoogle Scholar
  252. 252.
    Semenza GL (2010) HIF-1: upstream and downstream of cancer metabolism. Curr Opin Genet Dev 20:51–56PubMedCrossRefGoogle Scholar
  253. 253.
    Locasale JW, Grassian AR, Melman T et al (2011) Phosphoglycerate dehydrogenase diverts glycolytic flux and contributes to oncogenesis. Nat Genet 43:869–874PubMedPubMedCentralCrossRefGoogle Scholar
  254. 254.
    Keibler MA, Wasylenko TM, Kelleher JK, Iliopoulos O, Vander Heiden MG, Stephanopoulos G (2016) Metabolic requirements for cancer cell proliferation. Cancer Metab 4:16PubMedPubMedCentralCrossRefGoogle Scholar
  255. 255.
    Possemato R, Marks KM, Shaul YD et al (2011) Functional genomics reveal that the serine synthesis pathway is essential in breast cancer. Nature 476:346–350PubMedPubMedCentralCrossRefGoogle Scholar
  256. 256.
    Pollari S, Käkönen SM, Edgren H et al (2011) Enhanced serine production by bine metastatic breast cancer cells stimulates osteoclastogenesis. Breast Cancer Res Treat 125:421–430PubMedCrossRefGoogle Scholar
  257. 257.
    Goncalves Ndo N, Rodrigues RV, Jardim-Perassi BV, Moschetta MG, Lopes JR, Colombo J, Zuccari DA (2014) Molecular markers of angiogenesis and metastasis in lines of oral carcinoma after treatment with melatonin. Anticancer Agents Med Chem 14:1302–1311PubMedCrossRefGoogle Scholar
  258. 258.
    Sohn EJ, Won G, Lee J, Lee S, Kim SH (2015) Upregulation of miRNA3195 and miRNA374b mediates the anti-angiogenic properties of melatonin in hypoxic PC-3 prostate cancer cells. J Cancer 6:19–28PubMedPubMedCentralCrossRefGoogle Scholar
  259. 259.
    Blask DE, Dauchy RT, Dauchy EM et al (2014) Light exposure at night disrupts host/cancer circadian regulatory dynamics: impact on the warburg effect, lipid signaling and tumor growth prevention. PLoS One 9:102776CrossRefGoogle Scholar
  260. 260.
    Das R, Gregory PA, Hollier BG, Tilley WD, Selth LA (2014) Epithelial plasticity in prostate cancer: principles and clinical perspectives. Trends Mol Med 20:643–655PubMedCrossRefGoogle Scholar
  261. 261.
    Glass AS, Cary KC (2013) Risk-based prostate cancer screening: who and how? Curr Urol Rep 14:192–198PubMedCrossRefGoogle Scholar
  262. 262.
    Gathirua-Mwang WG, Zhang J (2014) Dietary factors and risk for advanced prostate cancer. Eur J Cancer Prev 23:96–109CrossRefGoogle Scholar
  263. 263.
    American Cancer Society. (2017) Information and resources about cancer: breast, colon, lung, prostate, skin. https://www.cancer.org/about-us.html. Accessed 26 June 2018
  264. 264.
    Xiao J, Howard L, Wan J (2017) Low circulating levels of the mitochondrial-peptide hormone SHLP2: novel biomarker for prostate cancer risk. Oncotarget 8:94900–94909PubMedPubMedCentralGoogle Scholar
  265. 265.
    Sainz RM, Mayo JC, Tan D, León J, Manchester L, Reiter RJ (2005) Melatonin reduces prostate cancer cell growth leading to neuroendocrine differentiation via a receptor and PKA independent mechanism. Prostate 63:29–43PubMedCrossRefGoogle Scholar
  266. 266.
    Tannock IF, Osoba D, Stockler MR et al (1996) Chemotherapy with mitoxantrone plus prednisone or prednisone alone for symptomatic hormone-resistant prostate cancer: a canadian randomized trial with palliative end points. J Clin Oncol 14:1756–1764PubMedCrossRefPubMedCentralGoogle Scholar
  267. 267.
    Petrylak DP, Tangen CM, Hussain MH et al (2004) Docetaxel and estramustine compared with mitoxantrone and prednisone for advanced refractory prostate cancer. N Engl J Med 351:1513–1520PubMedCrossRefGoogle Scholar
  268. 268.
    Tai SY, Huang SP, Bao BY, Wu MT (2016) Melatonin-sulfate/cortisol ratio and the presence of prostate cancer: a case–control study. Sci Rep 6:29606PubMedPubMedCentralCrossRefGoogle Scholar
  269. 269.
    Marelli MM, Limonta P, Maggi R, Motta M, Moretti RM (2000) Growth-inhibitory activity of melatonin on human androgen-independent DU 145 prostate cancer cells. Prostate 45:238–344PubMedCrossRefGoogle Scholar
  270. 270.
    Xi SC, Siu SW, Fong SW, Shiu SY (2001) Inhibition of androgen-sensitive LNCaP prostate cancer growth in vivo by melatonin: association of antiproliferative action of the pineal hormone with mt1 receptor protein expression. Prostate 46:52–61PubMedCrossRefGoogle Scholar
  271. 271.
    Shiu SY, Law IC, Lau KW, Tam PC, Yip AW, Ng WT (2003) Melatonin slowed the early biochemical progression of hormone-refractory prostate cancer in a patient whose prostate tumor tissue expressed MT1 receptor subtype. J Pineal Res 35:177–182PubMedCrossRefGoogle Scholar
  272. 272.
    Xi SC, Tam PC, Brown GM, Pang SF, Shiu SY (2000) Potential involvement of mt1 receptor and attenuated sex steroid-induced calcium influxin the direct anti-proliferative action of melatonin on androgen-responsive LNCaP human prostate cancer cells. J Pineal Res 29:172–183PubMedCrossRefGoogle Scholar
  273. 273.
    Tam CW, Mo CW, Yao KM, Shiu SY (2007) Signaling mechanisms of melatonin in antiproliferation of hormone-refractory 22Rv1 human prostate cancer cells: implications for prostate cancer chemoprevention. J Pineal Res 42:191–202PubMedCrossRefGoogle Scholar
  274. 274.
    Tam CW, Chan KW, Liu VW et al (2008) Melatonin as a negative mitogenic hormonal regulator of human prostate epithelial cell growth: potential mechanisms and clinical significance. J Pineal Res 45:403–412PubMedCrossRefGoogle Scholar
  275. 275.
    Shiu SY, Pang B, Tam CW, Yao KM (2010) Signal transduction of receptor-mediated antiproliferative action of melatonin on human prostate epithelial cells involves dual activation of galpha(s) and galpha(q) proteins. J Pineal Res 49:301–311PubMedCrossRefGoogle Scholar
  276. 276.
    Bazwinsky-Wutschke I, Bieseke L, Mühlbauer E, Peschke E (2014) Influence of melatonin receptor signalling on parameters involved in blood glucose regulation. J Pineal Res 56:82–96PubMedCrossRefGoogle Scholar
  277. 277.
    Lonergan PE, Tindall DJ (2011) Androgen receptor signaling in prostate cancer development and progression. J Carcinog 10:20PubMedPubMedCentralCrossRefGoogle Scholar
  278. 278.
    Lupowitz Z, Rimler A, Zisapel N (2001) Evaluation of signal transduction pathways mediating the nuclear exclusion of the androgen receptor by melatonin. Cell Mol Life Sci 58:2129–2135PubMedCrossRefPubMedCentralGoogle Scholar
  279. 279.
    Rimler A, Culig Z, Levy-Rimler G et al (2001) Melatonin elicits nuclear exclusion of the human androgen receptor and attenuates its activity. Prostate 49:145–154PubMedCrossRefGoogle Scholar
  280. 280.
    Tam CW, Shiu S (2011) Functional interplay between Melatonin receptor-mediated antiproliferative signaling and androgen receptor signaling in human prostate epithelial cells: potential implications for therapeutic strategies against prostate cancer. J Pineal Res 51:297–312PubMedCrossRefPubMedCentralGoogle Scholar
  281. 281.
    Joo SS, Yoo YM (2009) Melatonin induces apoptotic death in LNCaP cells via p38 and JNK pathways: therapeutic implications for prostate cancer. J Pineal Res 47:8–14PubMedCrossRefGoogle Scholar
  282. 282.
    Moretti RM, Marelli MM, Maggi R et al (2000) Antiproliferative action of melatonin on human prostate cancer LNCaP cells. Oncol Rep 7:347–351PubMedPubMedCentralGoogle Scholar
  283. 283.
    Rodriguez-Garcia A, Hevia D, Mayo JC et al (2017) Thioredoxin 1 modulates apoptosis induced by bioactive compounds in prostate cancer cells. Redox Biol 12:634–647PubMedPubMedCentralCrossRefGoogle Scholar
  284. 284.
    Calastretti A, Gatti G, Lucini V, Dugnani S, Canti G, Scaglione F, Bevilacqua A (2018) Melatonin analogue antiproliferative and cytotoxic effects on human prostate cancer cells. Int J Mol Sci 18:19Google Scholar
  285. 285.
    Pavlova NN, Thompson CB (2016) The emerging hallmarks of cancer metabolism. Cell Metab 23:27–47PubMedPubMedCentralCrossRefGoogle Scholar
  286. 286.
    Cutruzzolà F, Giardina G, Marani M et al (2017) Glucose metabolism in the progression of prostate cancer. Front Physiol 8:97PubMedPubMedCentralCrossRefGoogle Scholar
  287. 287.
    Schöder H, Larson SM (2004) Positron emission tomography for prostate, bladder, and renal cancer. Semin Nucl Med 34:274–292PubMedCrossRefGoogle Scholar
  288. 288.
    Hevia D, Gonzalez-Menendez P, Fernandez-Fernandez M et al (2017) Melatonin decreases glucose metabolism in prostate cancer cells: a 13c stable isotope-resolved metabolomic study. Int J Mol Sci 26:18Google Scholar
  289. 289.
    John RP, Nampoothiri KM, Pandey A (2007) Fermentative production of lactic acid from biomass: an overview on process developments and future perspectives. Appl Microbiol Biotechnol 74:524–534PubMedCrossRefGoogle Scholar
  290. 290.
    Rulli A, Carli L, Romani R, Baroni T, Giovannini E, Rosi G, Talesa V (2001) Expression of glyoxalase I and II in normal and breast cancer tissues. Breast Cancer Res 66:67–72CrossRefGoogle Scholar
  291. 291.
    de Bari L, Moro L, Passarella S (2013) Prostate cancer cells metabolize d-lactate inside mitochondria via a d-lactate dehydrogenase which is more active and highly expressed than in normal cells. FEBS Lett 587:467–473PubMedCrossRefGoogle Scholar
  292. 292.
    Sayed RKA, Fernández-Ortiz M, Diaz-Casado ME et al (2018) The protective effect of melatonin against age-associated sarcopenia-dependent tubular aggregates formation, lactate depletion and mitochondrial changes. J Gerontol A Biol Sci Med Sci 73:1330–1338PubMedCrossRefGoogle Scholar
  293. 293.
    Dauchy RT, Hoffman AE, Wren-Dail MA et al (2015) Daytime blue light enhances the nighttime circadian melatonin inhibition of human prostate cancer growth. Comp Med 65:473–485PubMedPubMedCentralGoogle Scholar
  294. 294.
    Rodriguez-Garcia A, Mayo JC, Hevia D, Quiros-Gonzalez I, Navarro M, Sainz RM (2013) Phenotypic changes caused by melatonin increased sensitivity of prostate cancer cells to cytokine-induced apoptosis. J Pineal Res 54:33–45PubMedCrossRefGoogle Scholar
  295. 295.
    Gilmore TD (2006) Introduction to NF-κB: players, pathways, perspectives. Oncogene 25:6680–6684PubMedCrossRefGoogle Scholar
  296. 296.
    Wei B, Liang J, Hu J et al (2017) TRAF2 is a valuable prognostic biomarker in patients with prostate cancer. Med Sci Monit 23:4192–4204PubMedPubMedCentralCrossRefGoogle Scholar
  297. 297.
    Aggarwal BB (2003) Signaling pathways of the TNF superfamily: a double-edged sword. Nat Rev Immunol 3:745–756PubMedCrossRefGoogle Scholar
  298. 298.
    Muri J, Heer S, Matsushita M et al (2018) The thioredoxin-1 system is essential for fueling DNA synthesis during T-cell metabolic reprogramming and proliferation. Nat Commun 9:1851PubMedPubMedCentralCrossRefGoogle Scholar
  299. 299.
    Reiter RJ, Tan DX, Fuentes-Broto L (2010) Melatonin: a multitasking molecule. Prog Brain Res 181:127–151PubMedCrossRefGoogle Scholar
  300. 300.
    Su SC, Hsieh MJ, Yang WE, Chung WH, Reiter RJ, Yang SF (2017) Cancer metastasis: mechanisms of inhibition by melatonin. J Pineal Res 62:e12370CrossRefGoogle Scholar
  301. 301.
    Reiter RJ, Rosales-Corral SA, Tan DX, Acuna-Castroviejo D, Qin L, Yang SF, Xu K (2017) Melatonin, a full service anti-cancer agent: inhibition of initiation, progression and metastasis. Int J Mol Sci 18:843PubMedCentralCrossRefPubMedGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Luiz Gustavo de Almeida Chuffa
    • 1
    Email author
  • Fábio Rodrigues Ferreira Seiva
    • 2
  • Maira Smaniotto Cucielo
    • 1
  • Henrique Spaulonci Silveira
    • 1
  • Russel J. Reiter
    • 3
  • Luiz Antonio Lupi
    • 1
  1. 1.Department of Anatomy, Institute of Biosciences of BotucatuUNESP, São Paulo State UniversityBotucatuBrazil
  2. 2.Department of Biology and Technology, UENP/CLMUniversidade Estadual do Norte do ParanáBandeirantesBrazil
  3. 3.Department of Cellular and Structural BiologyUTHealthSan AntonioUSA

Personalised recommendations