Mitochondrial dynamics and metastasis

  • Dario C. AltieriEmail author


Changes in cellular metabolism are now a recognized hallmark of cancer. Although this process is ripe with therapeutic potential in the clinic, its complexity and extraordinary plasticity have systematically defied dogmas and oversimplifications. Perhaps, best exemplifying this intricacy is the role of mitochondria in cancer, which in just a few years has gone from largely unnoticed to pivotal disease driver. The underlying mechanisms are only beginning to emerge. However, there is now clear evidence linking the dynamic nature of mitochondria to the machinery of tumor cell motility and metastatic spreading. These studies may open fresh therapeutic options for patients with disseminated cancer, currently an incurable and mostly lethal condition.


Mitochondria Cancer Dynamics Trafficking Tumor cell invasion Metastasis 



I thank the present and past members of my laboratory for their innovative contributions to the studies summarized in this contribution. This work was supported by National Institutes of Health (NIH) Grants R01 CA140043 and R35 CA220446.

Compliance with ethical standards

Conflict of interest

The author declares that no conflict of interest exists.


  1. 1.
    Chandel NS (2015) Evolution of mitochondria as signaling organelles. Cell Metab 22:204–206PubMedCrossRefPubMedCentralGoogle Scholar
  2. 2.
    Friedman JR, Nunnari J (2014) Mitochondrial form and function. Nature 505:335–343PubMedPubMedCentralCrossRefGoogle Scholar
  3. 3.
    Murley A, Nunnari J (2016) The emerging network of mitochondria–organelle contacts. Mol Cell 61:648–653PubMedPubMedCentralCrossRefGoogle Scholar
  4. 4.
    Pagliarini DJ, Rutter J (2013) Hallmarks of a new era in mitochondrial biochemistry. Genes Dev 27:2615–2627PubMedPubMedCentralCrossRefGoogle Scholar
  5. 5.
    Ward PS, Thompson CB (2012) Metabolic reprogramming: a cancer hallmark even warburg did not anticipate. Cancer Cell 21:297–308PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    Gottlieb E, Tomlinson IP (2005) Mitochondrial tumour suppressors: a genetic and biochemical update. Nat Rev Cancer 5:857–866PubMedCrossRefPubMedCentralGoogle Scholar
  7. 7.
    Anderson RG, Ghiraldeli LP, Pardee TS (2018) Mitochondria in cancer metabolism, an organelle whose time has come? Biochim Biophys Acta 1870:96–102Google Scholar
  8. 8.
    Moreno-Sanchez R, Marin-Hernandez A, Saavedra E, Pardo JP, Ralph SJ, Rodriguez-Enriquez S (2014) Who controls the ATP supply in cancer cells? Biochemistry lessons to understand cancer energy metabolism. Int J Biochem Cell Biol 50:10–23PubMedCrossRefGoogle Scholar
  9. 9.
    Zong WX, Rabinowitz JD, White E (2016) Mitochondria and cancer. Mol Cell 61:667–676PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    Vyas S, Zaganjor E, Haigis MC (2016) Mitochondria and cancer. Cell 166:555–566PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    Viale A, Pettazzoni P, Lyssiotis CA, Ying H, Sanchez N, Marchesini M, Carugo A, Green T, Seth S, Giuliani V, Kost-Alimova M, Muller F, Colla S, Nezi L, Genovese G, Deem AK, Kapoor A, Yao W, Brunetto E, Kang Y, Yuan M, Asara JM, Wang YA, Heffernan TP, Kimmelman AC, Wang H, Fleming JB, Cantley LC, DePinho RA, Draetta GF (2014) Oncogene ablation-resistant pancreatic cancer cells depend on mitochondrial function. Nature 514:628–632PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    Zhang G, Frederick DT, Wu L, Wei Z, Krepler C, Srinivasan S, Chae YC, Xu X, Choi H, Dimwamwa E, Ope O, Shannan B, Basu D, Zhang D, Guha M, Xiao M, Randell S, Sproesser K, Xu W, Liu J, Karakousis GC, Schuchter LM, Gangadhar TC, Amaravadi RK, Gu M, Xu C, Ghosh A, Xu W, Tian T, Zhang J, Zha S, Liu Q, Brafford P, Weeraratna A, Davies MA, Wargo JA, Avadhani NG, Lu Y, Mills GB, Altieri DC, Flaherty KT, Herlyn M (2016) Targeting mitochondrial biogenesis to overcome drug resistance to MAPK inhibitors. J Clin Invest 126:1834–1856PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    Cuyas E, Verdura S, Folguera-Blasco N, Bastidas-Velez C, Martin AG, Alarcon T, Menendez JA (2018) Mitostemness. Cell Cycle 17:918–926PubMedCrossRefGoogle Scholar
  14. 14.
    Sellers K, Fox MP, Bousamra M 2nd, Slone SP, Higashi RM, Miller DM, Wang Y, Yan J, Yuneva MO, Deshpande R, Lane AN, Fan TW (2015) Pyruvate carboxylase is critical for non-small-cell lung cancer proliferation. J Clin Invest 125:687–698PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Pienta KJ, Robertson BA, Coffey DS, Taichman RS (2013) The cancer diaspora: metastasis beyond the seed and soil hypothesis. Clin Cancer Res 19:5849–5855PubMedCrossRefGoogle Scholar
  16. 16.
    Steeg PS (2016) Targeting metastasis. Nat Rev Cancer 16:201–218PubMedCrossRefGoogle Scholar
  17. 17.
    McAllister SS, Weinberg RA (2014) The tumour-induced systemic environment as a critical regulator of cancer progression and metastasis. Nat Cell Biol 16:717–727PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    Weber GF (2016) Metabolism in cancer metastasis. Int J Cancer 138:2061–2066PubMedCrossRefGoogle Scholar
  19. 19.
    Archer SL (2013) Mitochondrial dynamics—mitochondrial fission and fusion in human diseases. N Engl J Med 369:2236–2251PubMedCrossRefGoogle Scholar
  20. 20.
    Trotta AP, Chipuk JE (2017) Mitochondrial dynamics as regulators of cancer biology. Cell Mol Life Sci 74:1999–2017PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Chen H, Chan DC (2017) Mitochondrial dynamics in regulating the unique phenotypes of cancer and stem cells. Cell Metab 26:39–48PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Eisner V, Picard M, Hajnoczky G (2018) Mitochondrial dynamics in adaptive and maladaptive cellular stress responses. Nat Cell Biol 20:755–765PubMedCrossRefGoogle Scholar
  23. 23.
    Pickles S, Vigie P, Youle RJ (2018) Mitophagy and quality control mechanisms in mitochondrial maintenance. Curr Biol 28:R170–R185PubMedCrossRefGoogle Scholar
  24. 24.
    Chan DC (2012) Fusion and fission: interlinked processes critical for mitochondrial health. Annu Rev Genet 46:265–287PubMedCrossRefGoogle Scholar
  25. 25.
    Lee JE, Westrate LM, Wu H, Page C, Voeltz GK (2016) Multiple dynamin family members collaborate to drive mitochondrial division. Nature 540:139–143PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Taguchi N, Ishihara N, Jofuku A, Oka T, Mihara K (2007) Mitotic phosphorylation of dynamin-related GTPase Drp1 participates in mitochondrial fission. J Biol Chem 282:11521–11529PubMedCrossRefGoogle Scholar
  27. 27.
    Cereghetti GM, Stangherlin A, Martins de Brito O, Chang CR, Blackstone C, Bernardi P, Scorrano L (2008) Dephosphorylation by calcineurin regulates translocation of Drp1 to mitochondria. Proc Natl Acad Sci USA 105:15803–15808PubMedCrossRefGoogle Scholar
  28. 28.
    Cribbs JT, Strack S (2007) Reversible phosphorylation of Drp1 by cyclic AMP-dependent protein kinase and calcineurin regulates mitochondrial fission and cell death. EMBO Rep 8:939–944PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Lee DS, Kim JE (2018) PDI-mediated S-nitrosylation of DRP1 facilitates DRP1-S616 phosphorylation and mitochondrial fission in CA1 neurons. Cell Death Dis 9:869PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    Kalia R, Wang RY, Yusuf A, Thomas PV, Agard DA, Shaw JM, Frost A (2018) Structural basis of mitochondrial receptor binding and constriction by DRP1. Nature 558:401–405PubMedCrossRefPubMedCentralGoogle Scholar
  31. 31.
    Youle RJ, Narendra DP (2011) Mechanisms of mitophagy. Nat Rev Mol Cell Biol 12:9–14PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Lazarou M, Sliter DA, Kane LA, Sarraf SA, Wang C, Burman JL, Sideris DP, Fogel AI, Youle RJ (2015) The ubiquitin kinase PINK1 recruits autophagy receptors to induce mitophagy. Nature 524:309–314PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Sheng ZH (2014) Mitochondrial trafficking and anchoring in neurons: new insight and implications. J Cell Biol 204:1087–1098PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Birsa N, Norkett R, Higgs N, Lopez-Domenech G, Kittler JT (2013) Mitochondrial trafficking in neurons and the role of the Miro family of GTPase proteins. Biochem Soc Trans 41:1525–1531PubMedCrossRefPubMedCentralGoogle Scholar
  35. 35.
    Saxton WM, Hollenbeck PJ (2012) The axonal transport of mitochondria. J Cell Sci 125:2095–2104PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    van Spronsen M, Mikhaylova M, Lipka J, Schlager MA, van den Heuvel DJ, Kuijpers M, Wulf PS, Keijzer N, Demmers J, Kapitein LC, Jaarsma D, Gerritsen HC, Akhmanova A, Hoogenraad CC (2013) TRAK/Milton motor-adaptor proteins steer mitochondrial trafficking to axons and dendrites. Neuron 77:485–502PubMedCrossRefGoogle Scholar
  37. 37.
    Melkov A, Abdu U (2018) Regulation of long-distance transport of mitochondria along microtubules. Cell Mol Life Sci 75:163–176PubMedCrossRefGoogle Scholar
  38. 38.
    Lima AR, Santos L, Correia M, Soares P, Sobrinho-Simoes M, Melo M, Maximo V (2018) Dynamin-related protein 1 at the crossroads of cancer. Genes (Basel). CrossRefGoogle Scholar
  39. 39.
    Kashatus JA, Nascimento A, Myers LJ, Sher A, Byrne FL, Hoehn KL, Counter CM, Kashatus DF (2015) Erk2 phosphorylation of Drp1 promotes mitochondrial fission and MAPK-driven tumor growth. Mol Cell 57:537–551PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    Serasinghe MN, Wieder SY, Renault TT, Elkholi R, Asciolla JJ, Yao JL, Jabado O, Hoehn K, Kageyama Y, Sesaki H, Chipuk JE (2015) Mitochondrial division is requisite to RAS-induced transformation and targeted by oncogenic MAPK pathway inhibitors. Mol Cell 57:521–536PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Qian W, Choi S, Gibson GA, Watkins SC, Bakkenist CJ, Van Houten B (2012) Mitochondrial hyperfusion induced by loss of the fission protein Drp1 causes ATM-dependent G2/M arrest and aneuploidy through DNA replication stress. J Cell Sci 125:5745–5757PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    Xie Q, Wu Q, Horbinski CM, Flavahan WA, Yang K, Zhou W, Dombrowski SM, Huang Z, Fang X, Shi Y, Ferguson AN, Kashatus DF, Bao S, Rich JN (2015) Mitochondrial control by DRP1 in brain tumor initiating cells. Nat Neurosci 18:501–510PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Gong Y, Zack TI, Morris LG, Lin K, Hukkelhoven E, Raheja R, Tan IL, Turcan S, Veeriah S, Meng S, Viale A, Schumacher SE, Palmedo P, Beroukhim R, Chan TA (2014) Pan-cancer genetic analysis identifies PARK2 as a master regulator of G1/S cyclins. Nat Genet 46:588–594PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    van der Ende M, Grefte S, Plas R, Meijerink J, Witkamp R, Keijer J, van Norren K (2018) Mitochondrial dynamics in cancer-induced cachexia. Biochim Biophys Acta 1870:137–150Google Scholar
  45. 45.
    Li J, Huang Q, Long X, Guo X, Sun X, Jin X, Li Z, Ren T, Yuan P, Huang X, Zhang H, Xing J (2017) Mitochondrial elongation-mediated glucose metabolism reprogramming is essential for tumour cell survival during energy stress. Oncogene 36:4901–4912PubMedCrossRefGoogle Scholar
  46. 46.
    Morita M, Prudent J, Basu K, Goyon V, Katsumura S, Hulea L, Pearl D, Siddiqui N, Strack S, McGuirk S, St-Pierre J, Larsson O, Topisirovic I, Vali H, McBride HM, Bergeron JJ, Sonenberg N (2017) mTOR controls mitochondrial dynamics and cell survival via MTFP1. Mol Cell 67(922–935):e925Google Scholar
  47. 47.
    Jezek J, Cooper KF, Strich R (2018) Reactive oxygen species and mitochondrial dynamics: the yin and yang of mitochondrial dysfunction and cancer progression. Antioxidants (Basel). CrossRefGoogle Scholar
  48. 48.
    Haynes CM, Ron D (2010) The mitochondrial UPR—protecting organelle protein homeostasis. J Cell Sci 123:3849–3855PubMedCrossRefGoogle Scholar
  49. 49.
    Haroon S, Vermulst M (2016) Linking mitochondrial dynamics to mitochondrial protein quality control. Curr Opin Genet Dev 38:68–74PubMedCrossRefGoogle Scholar
  50. 50.
    Sorrentino V, Romani M, Mouchiroud L, Beck JS, Zhang H, D’Amico D, Moullan N, Potenza F, Schmid AW, Rietsch S, Counts SE, Auwerx J (2017) Enhancing mitochondrial proteostasis reduces amyloid-beta proteotoxicity. Nature 552:187–193PubMedPubMedCentralGoogle Scholar
  51. 51.
    Altieri DC (2013) Hsp90 regulation of mitochondrial protein folding: from organelle integrity to cellular homeostasis. Cell Mol Life Sci 70:2463–2472PubMedCrossRefGoogle Scholar
  52. 52.
    Seo JH, Rivadeneira DB, Caino MC, Chae YC, Speicher DW, Tang HY, Vaira V, Bosari S, Palleschi A, Rampini P, Kossenkov AV, Languino LR, Altieri DC (2016) The mitochondrial unfoldase-peptidase complex ClpXP controls bioenergetics stress and metastasis. PLoS Biol 14:e1002507PubMedPubMedCentralCrossRefGoogle Scholar
  53. 53.
    Cole A, Wang Z, Coyaud E, Voisin V, Gronda M, Jitkova Y, Mattson R, Hurren R, Babovic S, Maclean N, Restall I, Wang X, Jeyaraju DV, Sukhai MA, Prabha S, Bashir S, Ramakrishnan A, Leung E, Qia YH, Zhang N, Combes KR, Ketela T, Lin F, Houry WA, Aman A, Al-Awar R, Zheng W, Wienholds E, Xu CJ, Dick J, Wang JC, Moffat J, Minden MD, Eaves CJ, Bader GD, Hao Z, Kornblau SM, Raught B, Schimmer AD (2015) Inhibition of the mitochondrial protease ClpP as a therapeutic strategy for human acute myeloid leukemia. Cancer Cell 27:864–876PubMedPubMedCentralCrossRefGoogle Scholar
  54. 54.
    Munch C, Harper JW (2016) Mitochondrial unfolded protein response controls matrix pre-RNA processing and translation. Nature 534:710–713PubMedPubMedCentralCrossRefGoogle Scholar
  55. 55.
    Siegelin MD, Dohi T, Raskett CM, Orlowski GM, Powers CM, Gilbert CA, Ross AH, Plescia J, Altieri DC (2011) Exploiting the mitochondrial unfolded protein response for cancer therapy in mice and human cells. J Clin Invest 121:1349–1360PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    Lisanti S, Tavecchio M, Chae YC, Liu Q, Brice AK, Thakur ML, Languino LR, Altieri DC (2014) Deletion of the mitochondrial chaperone TRAP-1 uncovers global reprogramming of metabolic networks. Cell Rep 8:671–677PubMedPubMedCentralCrossRefGoogle Scholar
  57. 57.
    Lisanti S, Garlick DS, Bryant KG, Tavecchio M, Mills GB, Lu Y, Kossenkov AV, Showe LC, Languino LR, Altieri DC (2016) Transgenic expression of the mitochondrial chaperone TNFR-associated protein 1 (TRAP1) accelerates prostate cancer development. J Biol Chem 291:25247–25254PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    Roussos ET, Condeelis JS, Patsialou A (2011) Chemotaxis in cancer. Nat Rev Cancer 11:573–587PubMedPubMedCentralCrossRefGoogle Scholar
  59. 59.
    Caino MC, Chae YC, Vaira V, Ferrero S, Nosotti M, Martin NM, Weeraratna A, O’Connell M, Jernigan D, Fatatis A, Languino LR, Bosari S, Altieri DC (2013) Metabolic stress regulates cytoskeletal dynamics and metastasis of cancer cells. J Clin Invest 123:2907–2920PubMedPubMedCentralCrossRefGoogle Scholar
  60. 60.
    Chae YC, Angelin A, Lisanti S, Kossenkov AV, Speicher KD, Wang H, Powers JF, Tischler AS, Pacak K, Fliedner S, Michalek RD, Karoly ED, Wallace DC, Languino LR, Speicher DW, Altieri DC (2013) Landscape of the mitochondrial Hsp90 metabolome in tumours. Nat Commun 4:2139PubMedPubMedCentralCrossRefGoogle Scholar
  61. 61.
    Rivadeneira DB, Caino MC, Seo JH, Angelin A, Wallace DC, Languino LR, Altieri DC (2015) Survivin promotes oxidative phosphorylation, subcellular mitochondrial repositioning, and tumor cell invasion. Sci Signal 8:ra80PubMedPubMedCentralCrossRefGoogle Scholar
  62. 62.
    Campello S, Lacalle RA, Bettella M, Manes S, Scorrano L, Viola A (2006) Orchestration of lymphocyte chemotaxis by mitochondrial dynamics. J Exp Med 203:2879–2886PubMedPubMedCentralCrossRefGoogle Scholar
  63. 63.
    Lee CW, Peng HB (2006) Mitochondrial clustering at the vertebrate neuromuscular junction during presynaptic differentiation. J Neurobiol 66:522–536PubMedCrossRefGoogle Scholar
  64. 64.
    Imamura H, Nhat KP, Togawa H, Saito K, Iino R, Kato-Yamada Y, Nagai T, Noji H (2009) Visualization of ATP levels inside single living cells with fluorescence resonance energy transfer-based genetically encoded indicators. Proc Natl Acad Sci USA 106:15651–15656PubMedCrossRefGoogle Scholar
  65. 65.
    Suzuki R, Hotta K, Oka K (2015) Spatiotemporal quantification of subcellular ATP levels in a single HeLa cell during changes in morphology. Sci Rep 5:16874PubMedPubMedCentralCrossRefGoogle Scholar
  66. 66.
    Ataullakhanov FI, Vitvitsky VM (2002) What determines the intracellular ATP concentration. Biosci Rep 22:501–511PubMedCrossRefGoogle Scholar
  67. 67.
    Zhao J, Zhang J, Yu M, Xie Y, Huang Y, Wolff DW, Abel PW, Tu Y (2013) Mitochondrial dynamics regulates migration and invasion of breast cancer cells. Oncogene 32:4814–4824PubMedCrossRefGoogle Scholar
  68. 68.
    Desai SP, Bhatia SN, Toner M, Irimia D (2013) Mitochondrial localization and the persistent migration of epithelial cancer cells. Biophys J 104:2077–2088PubMedPubMedCentralCrossRefGoogle Scholar
  69. 69.
    Cunniff B, McKenzie AJ, Heintz NH, Howe AK (2016) AMPK activity regulates trafficking of mitochondria to the leading edge during cell migration and matrix invasion. Mol Biol Cell 27:2662–2674PubMedPubMedCentralCrossRefGoogle Scholar
  70. 70.
    Quail DF, Joyce JA (2013) Microenvironmental regulation of tumor progression and metastasis. Nat Med 19:1423–1437PubMedPubMedCentralCrossRefGoogle Scholar
  71. 71.
    Caino MC, Ghosh JC, Chae YC, Vaira V, Rivadeneira DB, Faversani A, Rampini P, Kossenkov AV, Aird KM, Zhang R, Webster MR, Weeraratna AT, Bosari S, Languino LR, Altieri DC (2015) PI3K therapy reprograms mitochondrial trafficking to fuel tumor cell invasion. Proc Natl Acad Sci USA 112:8638–8643PubMedCrossRefPubMedCentralGoogle Scholar
  72. 72.
    Ghosh JC, Siegelin MD, Vaira V, Faversani A, Tavecchio M, Chae YC, Lisanti S, Rampini P, Giroda M, Caino MC, Seo JH, Kossenkov AV, Michalek RD, Schultz DC, Bosari S, Languino LR, Altieri DC (2015) Adaptive mitochondrial reprogramming and resistance to PI3K therapy. J Natl Cancer Inst. CrossRefPubMedPubMedCentralGoogle Scholar
  73. 73.
    Fruman DA, Rommel C (2014) PI3K and cancer: lessons, challenges and opportunities. Nat Rev Drug Discov 13:140–156PubMedPubMedCentralCrossRefGoogle Scholar
  74. 74.
    Mills KM, Brocardo MG, Henderson BR (2016) APC binds the Miro/Milton motor complex to stimulate transport of mitochondria to the plasma membrane. Mol Biol Cell 27:466–482PubMedPubMedCentralCrossRefGoogle Scholar
  75. 75.
    Ohno N, Chiang H, Mahad DJ, Kidd GJ, Liu L, Ransohoff RM, Sheng ZH, Komuro H, Trapp BD (2014) Mitochondrial immobilization mediated by syntaphilin facilitates survival of demyelinated axons. Proc Natl Acad Sci USA 111:9953–9958PubMedCrossRefPubMedCentralGoogle Scholar
  76. 76.
    Kang JS, Tian JH, Pan PY, Zald P, Li C, Deng C, Sheng ZH (2008) Docking of axonal mitochondria by syntaphilin controls their mobility and affects short-term facilitation. Cell 132:137–148PubMedPubMedCentralCrossRefGoogle Scholar
  77. 77.
    Caino MC, Seo JH, Aguinaldo A, Wait E, Bryant KG, Kossenkov AV, Hayden JE, Vaira V, Morotti A, Ferrero S, Bosari S, Gabrilovich DI, Languino LR, Cohen AR, Altieri DC (2016) A neuronal network of mitochondrial dynamics regulates metastasis. Nat Commun 7:13730PubMedPubMedCentralCrossRefGoogle Scholar
  78. 78.
    Caino MC, Seo JH, Wang Y, Rivadeneira DB, Gabrilovich DI, Kim ET, Weeraratna AT, Languino LR, Altieri DC (2017) Syntaphilin controls a mitochondrial rheostat for proliferation-motility decisions in cancer. J Clin Invest 127:3755–3769PubMedPubMedCentralCrossRefGoogle Scholar
  79. 79.
    Hatzikirou H, Basanta D, Simon M, Schaller K, Deutsch A (2012) ‘Go or grow’: the key to the emergence of invasion in tumour progression? Math Med Biol 29:49–65PubMedPubMedCentralCrossRefGoogle Scholar
  80. 80.
    Kemper K, de Goeje PL, Peeper DS, van Amerongen R (2014) Phenotype switching: tumor cell plasticity as a resistance mechanism and target for therapy. Cancer Res 74:5937–5941PubMedCrossRefGoogle Scholar
  81. 81.
    Gatenby RA, Gillies RJ (2004) Why do cancers have high aerobic glycolysis? Nat Rev Cancer 4:891–899PubMedCrossRefGoogle Scholar
  82. 82.
    Gao CF, Xie Q, Su YL, Koeman J, Khoo SK, Gustafson M, Knudsen BS, Hay R, Shinomiya N, Vande Woude GF (2005) Proliferation and invasion: plasticity in tumor cells. Proc Natl Acad Sci USA 102:10528–10533PubMedCrossRefGoogle Scholar
  83. 83.
    Friedl P, Alexander S (2011) Cancer invasion and the microenvironment: plasticity and reciprocity. Cell 147:992–1009PubMedCrossRefGoogle Scholar
  84. 84.
    Sabharwal SS, Schumacker PT (2014) Mitochondrial ROS in cancer: initiators, amplifiers or an Achilles’ heel? Nat Rev Cancer 14:709–721PubMedPubMedCentralCrossRefGoogle Scholar
  85. 85.
    Radisky DC, Levy DD, Littlepage LE, Liu H, Nelson CM, Fata JE, Leake D, Godden EL, Albertson DG, Nieto MA, Werb Z, Bissell MJ (2005) Rac1b and reactive oxygen species mediate MMP-3-induced EMT and genomic instability. Nature 436:123–127PubMedPubMedCentralCrossRefGoogle Scholar
  86. 86.
    Weinberg F, Hamanaka R, Wheaton WW, Weinberg S, Joseph J, Lopez M, Kalyanaraman B, Mutlu GM, Budinger GR, Chandel NS (2010) Mitochondrial metabolism and ROS generation are essential for Kras-mediated tumorigenicity. Proc Natl Acad Sci USA 107:8788–8793PubMedCrossRefGoogle Scholar
  87. 87.
    Qu Y, Wang J, Ray PS, Guo H, Huang J, Shin-Sim M, Bukoye BA, Liu B, Lee AV, Lin X, Huang P, Martens JW, Giuliano AE, Zhang N, Cheng NH, Cui X (2011) Thioredoxin-like 2 regulates human cancer cell growth and metastasis via redox homeostasis and NF-kappaB signaling. J Clin Invest 121:212–225PubMedCrossRefGoogle Scholar
  88. 88.
    Porporato PE, Payen VL, Perez-Escuredo J, De Saedeleer CJ, Danhier P, Copetti T, Dhup S, Tardy M, Vazeille T, Bouzin C, Feron O, Michiels C, Gallez B, Sonveaux P (2014) A mitochondrial switch promotes tumor metastasis. Cell Rep 8:754–766PubMedCrossRefGoogle Scholar
  89. 89.
    Chattaragada MS, Riganti C, Sassoe M, Principe M, Santamorena MM, Roux C, Curcio C, Evangelista A, Allavena P, Salvia R, Rusev B, Scarpa A, Cappello P, Novelli F (2018) FAM49B, a novel regulator of mitochondrial function and integrity that suppresses tumor metastasis. Oncogene 37:697–709PubMedCrossRefGoogle Scholar
  90. 90.
    Seo JH, Agarwal E, Bryant KG, Caino MC, Kim ET, Kossenkov AV, Tang HY, Languino LR, Gabrilovich DI, Cohen AR, Speicher DW, Altieri DC (2018) Syntaphilin ubiquitination regulates mitochondrial dynamics and tumor cell movements. Cancer Res 78:4215–4228PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Prostate Cancer Discovery and Development Program and Immunology, Microenvironment and Metastasis ProgramThe Wistar InstitutePhiladelphiaUSA

Personalised recommendations