Advertisement

Cellular and Molecular Life Sciences

, Volume 76, Issue 3, pp 441–451 | Cite as

Regulatory network of miRNA on its target: coordination between transcriptional and post-transcriptional regulation of gene expression

  • Mengfan Pu
  • Jing Chen
  • Zhouteng Tao
  • Lingling Miao
  • Xinming Qi
  • Yizheng Wang
  • Jin RenEmail author
Review

Abstract

MicroRNAs (miRNAs) are a class of endogenous small noncoding RNAs that participate in a majority of biological processes via regulating target gene expression. The post-transcriptional repression through miRNA seed region binding to 3′ UTR of target mRNA is considered as the canonical mode of miRNA-mediated gene regulation. However, emerging evidence suggests that other regulatory modes exist beyond the canonical mechanism. In particular, the function of intranuclear miRNA in gene transcriptional regulation is gradually revealed, with evidence showing their contribution to gene silencing or activating. Therefore, miRNA-mediated regulation of gene transcription not only expands our understanding of the molecular mechanism underlying miRNA regulatory function, but also provides new evidence to explain its ability in the sophisticated regulation of many bioprocesses. In this review, mechanisms of miRNA-mediated gene transcriptional and post-transcriptional regulation are summarized, and the synergistic effects among these actions which form a regulatory network of a miRNA on its target are particularly elaborated. With these discussions, we aim to emphasize the importance of miRNA regulatory network on target gene regulation and further highlight the potential application of the network mode in the achievement of a more effective and stable modulation of the target gene expression.

Keywords

miRNA target recognition miRNA non-seed sequence function miRNA cellular distribution miRNA-related nucleic acid drugs 

Abbreviations

AGO

Argonaute proteins

ASO

Antisense oligonucleotides

CYP2E1

Cytochrome P450 (CYP) 2E1

DGCR8

DiGeorge syndrome chromosomal [or critical] region 8

DOX

Doxorubicin

HCV

Hepatitis C virus

IPO8

Importin 8

miRISC

MicroRNA-induced silencing complex

miRNA

MicroRNA

nt

Nucleotides

NPC

Nuclear pore complex

snoRNA

Small nucleolar RNA

SMARCE1

SWI/SNF-related matrix-associated actin-dependent regulator of chromatin subfamily E member 1

PTGS

Post-transcriptional gene silencing

pre-miRNAs

Precursor miRNAs

P-body

Processing body

Pol II

Polymerase II

RNAi

RNA silencing

TRBP

Transactivation-responsive RNA-binding protein

TGS

Transcriptional gene silencing

TGA

Transcriptional gene activating

trnc6a

Trinucleotide repeat-containing gene 6A

UTR

Untranslated region

XPO5

Exportin-5

Notes

Funding

No funding was received.

Compliance with ethical standards

Conflict of interest

The authors have declared that no competing interest exists.

References

  1. 1.
    Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116(2):281–297Google Scholar
  2. 2.
    Lee Y, Kim M, Han J, Yeom KH, Lee S, Baek SH, Kim VN (2004) MicroRNA genes are transcribed by RNA polymerase II. EMBO J 23(20):4051–4060.  https://doi.org/10.1038/sj.emboj.7600385 Google Scholar
  3. 3.
    Lee Y, Ahn C, Han J, Choi H, Kim J, Yim J, Lee J, Provost P, Radmark O, Kim S, Kim VN (2003) The nuclear RNase III Drosha initiates microRNA processing. Nature 425(6956):415–419.  https://doi.org/10.1038/nature01957 Google Scholar
  4. 4.
    Carmell MA, Hannon GJ (2004) RNase III enzymes and the initiation of gene silencing. Nat Struct Mol Biol 11(3):214–218.  https://doi.org/10.1038/nsmb729 Google Scholar
  5. 5.
    Gregory RI, Yan KP, Amuthan G, Chendrimada T, Doratotaj B, Cooch N, Shiekhattar R (2004) The microprocessor complex mediates the genesis of microRNAs. Nature 432(7014):235–240.  https://doi.org/10.1038/nature03120 Google Scholar
  6. 6.
    Yi R, Qin Y, Macara IG, Cullen BR (2003) Exportin-5 mediates the nuclear export of pre-microRNAs and short hairpin RNAs. Genes Dev 17(24):3011–3016.  https://doi.org/10.1101/gad.1158803 Google Scholar
  7. 7.
    Lund E, Guttinger S, Calado A, Dahlberg JE, Kutay U (2004) Nuclear export of microRNA precursors. Science 303(5654):95–98.  https://doi.org/10.1126/science.1090599 Google Scholar
  8. 8.
    Katahira J, Yoneda Y (2011) Nucleocytoplasmic transport of microRNAs and related small RNAs. Traffic 12(11):1468–1474.  https://doi.org/10.1111/j.1600-0854.2011.01211.x Google Scholar
  9. 9.
    Bernstein E, Caudy AA, Hammond SM, Hannon GJ (2001) Role for a bidentate ribonuclease in the initiation step of RNA interference. Nature 409(6818):363–366.  https://doi.org/10.1038/35053110 Google Scholar
  10. 10.
    Khvorova A, Reynolds A, Jayasena SD (2003) Functional siRNAs and miRNAs exhibit strand bias. Cell 115(2):209–216Google Scholar
  11. 11.
    Chendrimada TP, Gregory RI, Kumaraswamy E, Norman J, Cooch N, Nishikura K, Shiekhattar R (2005) TRBP recruits the Dicer complex to Ago2 for microRNA processing and gene silencing. Nature 436(7051):740–744.  https://doi.org/10.1038/nature03868 Google Scholar
  12. 12.
    Ameres SL, Zamore PD (2013) Diversifying microRNA sequence and function. Nat Rev Mol Cell Biol 14(8):475–488.  https://doi.org/10.1038/nrm3611 Google Scholar
  13. 13.
    Lewis BP, Shih IH, Jones-Rhoades MW, Bartel DP, Burge CB (2003) Prediction of mammalian microRNA targets. Cell 115(7):787–798Google Scholar
  14. 14.
    Bartel DP (2009) MicroRNAs: target recognition and regulatory functions. Cell 136(2):215–233.  https://doi.org/10.1016/j.cell.2009.01.002 Google Scholar
  15. 15.
    van den Berg A, Mols J, Han J (2008) RISC-target interaction: cleavage and translational suppression. Biochim Biophys Acta 1779(11):668–677.  https://doi.org/10.1016/j.bbagrm.2008.07.005 Google Scholar
  16. 16.
    Kim DH, Saetrom P, Snove O Jr, Rossi JJ (2008) MicroRNA-directed transcriptional gene silencing in mammalian cells. Proc Natl Acad Sci USA 105(42):16230–16235.  https://doi.org/10.1073/pnas.0808830105 Google Scholar
  17. 17.
    Tan Y, Zhang B, Wu T, Skogerbo G, Zhu X, Guo X, He S, Chen R (2009) Transcriptional inhibiton of Hoxd4 expression by miRNA-10a in human breast cancer cells. BMC Mol Biol 10:12.  https://doi.org/10.1186/1471-2199-10-12 Google Scholar
  18. 18.
    Younger ST, Corey DR (2011) Transcriptional gene silencing in mammalian cells by miRNA mimics that target gene promoters. Nucleic Acids Res 39(13):5682–5691.  https://doi.org/10.1093/nar/gkr155 Google Scholar
  19. 19.
    Adilakshmi T, Sudol I, Tapinos N (2012) Combinatorial action of miRNAs regulates transcriptional and post-transcriptional gene silencing following in vivo PNS injury. PLoS One 7(7):e39674.  https://doi.org/10.1371/journal.pone.0039674 Google Scholar
  20. 20.
    Benhamed M, Herbig U, Ye T, Dejean A, Bischof O (2012) Senescence is an endogenous trigger for microRNA-directed transcriptional gene silencing in human cells. Nat Cell Biol 14(3):266–275.  https://doi.org/10.1038/ncb2443 Google Scholar
  21. 21.
    Zardo G, Ciolfi A, Vian L, Starnes LM, Billi M, Racanicchi S, Maresca C, Fazi F, Travaglini L, Noguera N, Mancini M, Nanni M, Cimino G, Lo-Coco F, Grignani F, Nervi C (2012) Polycombs and microRNA-223 regulate human granulopoiesis by transcriptional control of target gene expression. Blood 119(17):4034–4046.  https://doi.org/10.1182/blood-2011-08-371344 Google Scholar
  22. 22.
    Roberts TC (2014) The MicroRNA biology of the mammalian nucleus. Mol Ther Nucleic Acids 3:e188.  https://doi.org/10.1038/mtna.2014.40 Google Scholar
  23. 23.
    Miao L, Yao H, Li C, Pu M, Yao X, Yang H, Qi X, Ren J, Wang Y (2016) A dual inhibition: microRNA-552 suppresses both transcription and translation of cytochrome P450 2E1. Biochim Biophys Acta 1859(4):650–662.  https://doi.org/10.1016/j.bbagrm.2016.02.016 Google Scholar
  24. 24.
    Friedman RC, Farh KK, Burge CB, Bartel DP (2009) Most mammalian mRNAs are conserved targets of microRNAs. Genome Res 19(1):92–105.  https://doi.org/10.1101/gr.082701.108 Google Scholar
  25. 25.
    Seok H, Ham J, Jang ES, Chi SW (2016) MicroRNA target recognition: insights from transcriptome-wide non-canonical interactions. Mol Cells 39(5):375–381.  https://doi.org/10.14348/molcells.2016.0013 Google Scholar
  26. 26.
    Pu M, Li C, Qi X, Chen J, Wang Y, Gao L, Miao L, Ren J (2017) MiR-1254 suppresses HO-1 expression through seed region-dependent silencing and non-seed interaction with TFAP2A transcript to attenuate NSCLC growth. PLoS Genet 13(7):e1006896.  https://doi.org/10.1371/journal.pgen.1006896 Google Scholar
  27. 27.
    Grimson A, Farh KK, Johnston WK, Garrett-Engele P, Lim LP, Bartel DP (2007) MicroRNA targeting specificity in mammals: determinants beyond seed pairing. Mol Cell 27(1):91–105.  https://doi.org/10.1016/j.molcel.2007.06.017 Google Scholar
  28. 28.
    Gibbings DJ, Ciaudo C, Erhardt M, Voinnet O (2009) Multivesicular bodies associate with components of miRNA effector complexes and modulate miRNA activity. Nat Cell Biol 11(9):1143–1149.  https://doi.org/10.1038/ncb1929 Google Scholar
  29. 29.
    Sripada L, Tomar D, Prajapati P, Singh R, Singh AK, Singh R (2012) Systematic analysis of small RNAs associated with human mitochondria by deep sequencing: detailed analysis of mitochondrial associated miRNA. PLoS One 7(9):e44873.  https://doi.org/10.1371/journal.pone.0044873 Google Scholar
  30. 30.
    Zhang X, Zuo X, Yang B, Li Z, Xue Y, Zhou Y, Huang J, Zhao X, Zhou J, Yan Y, Zhang H, Guo P, Sun H, Guo L, Zhang Y, Fu XD (2014) MicroRNA directly enhances mitochondrial translation during muscle differentiation. Cell 158(3):607–619.  https://doi.org/10.1016/j.cell.2014.05.047 Google Scholar
  31. 31.
    Leung AKL (2015) The whereabouts of microRNA actions: cytoplasm and beyond. Trends Cell Biol 25(10):601–610.  https://doi.org/10.1016/j.tcb.2015.07.005 Google Scholar
  32. 32.
    Meister G, Landthaler M, Patkaniowska A, Dorsett Y, Teng G, Tuschl T (2004) Human Argonaute2 mediates RNA cleavage targeted by miRNAs and siRNAs. Mol Cell 15(2):185–197.  https://doi.org/10.1016/j.molcel.2004.07.007 Google Scholar
  33. 33.
    Hwang HW, Wentzel EA, Mendell JT (2007) A hexanucleotide element directs microRNA nuclear import. Science 315(5808):97–100.  https://doi.org/10.1126/science.1136235 Google Scholar
  34. 34.
    Gagnon KT, Li L, Chu Y, Janowski BA, Corey DR (2014) RNAi factors are present and active in human cell nuclei. Cell Rep 6(1):211–221.  https://doi.org/10.1016/j.celrep.2013.12.013 Google Scholar
  35. 35.
    Daneholt B (1997) A look at messenger RNP moving through the nuclear pore. Cell 88(5):585–588Google Scholar
  36. 36.
    Wei Y, Li L, Wang D, Zhang CY, Zen K (2014) Importin 8 regulates the transport of mature microRNAs into the cell nucleus. J Biol Chem 289(15):10270–10275.  https://doi.org/10.1074/jbc.C113.541417 Google Scholar
  37. 37.
    Jeffries CD, Fried HM, Perkins DO (2011) Nuclear and cytoplasmic localization of neural stem cell microRNAs. RNA 17(4):675–686.  https://doi.org/10.1261/rna.2006511 Google Scholar
  38. 38.
    Brameier M, Herwig A, Reinhardt R, Walter L, Gruber J (2011) Human box C/D snoRNAs with miRNA like functions: expanding the range of regulatory RNAs. Nucleic Acids Res 39(2):675–686.  https://doi.org/10.1093/nar/gkq776 Google Scholar
  39. 39.
    Politz JC, Hogan EM, Pederson T (2009) MicroRNAs with a nucleolar location. RNA 15(9):1705–1715.  https://doi.org/10.1261/rna.1470409 Google Scholar
  40. 40.
    Pitchiaya S, Heinicke LA, Park JI, Cameron EL, Walter NG (2017) Resolving subcellular miRNA trafficking and turnover at single-molecule resolution. Cell Rep 19(3):630–642.  https://doi.org/10.1016/j.celrep.2017.03.075 Google Scholar
  41. 41.
    Xiao M, Li J, Li W, Wang Y, Wu F, Xi Y, Zhang L, Ding C, Luo H, Li Y, Peng L, Zhao L, Peng S, Xiao Y, Dong S, Cao J, Yu W (2017) MicroRNAs activate gene transcription epigenetically as an enhancer trigger. RNA Biol 14(10):1326–1334.  https://doi.org/10.1080/15476286.2015.1112487 Google Scholar
  42. 42.
    Gonzalez S, Pisano DG, Serrano M (2008) Mechanistic principles of chromatin remodeling guided by siRNAs and miRNAs. Cell Cycle 7(16):2601–2608.  https://doi.org/10.4161/cc.7.16.6541 Google Scholar
  43. 43.
    Younger ST, Corey DR (2011) Transcriptional regulation by miRNA mimics that target sequences downstream of gene termini. Mol BioSyst 7(8):2383–2388.  https://doi.org/10.1039/c1mb05090g Google Scholar
  44. 44.
    Catalanotto C, Cogoni C, Zardo G (2016) MicroRNA in control of gene expression: an overview of nuclear functions. Int J Mol Sci 17(10):1712.  https://doi.org/10.3390/ijms17101712 Google Scholar
  45. 45.
    Leucci E, Patella F, Waage J, Holmstrom K, Lindow M, Porse B, Kauppinen S, Lund AH (2013) microRNA-9 targets the long non-coding RNA MALAT1 for degradation in the nucleus. Sci Rep 3:2535.  https://doi.org/10.1038/srep02535 Google Scholar
  46. 46.
    Tang R, Li L, Zhu D, Hou D, Cao T, Gu H, Zhang J, Chen J, Zhang CY, Zen K (2012) Mouse miRNA-709 directly regulates miRNA-15a/16-1 biogenesis at the posttranscriptional level in the nucleus: evidence for a microRNA hierarchy system. Cell Res 22(3):504–515.  https://doi.org/10.1038/cr.2011.137 Google Scholar
  47. 47.
    Place RF, Li LC, Pookot D, Noonan EJ, Dahiya R (2008) MicroRNA-373 induces expression of genes with complementary promoter sequences. Proc Natl Acad Sci USA 105(5):1608–1613.  https://doi.org/10.1073/pnas.0707594105 Google Scholar
  48. 48.
    Huang V, Place RF, Portnoy V, Wang J, Qi Z, Jia Z, Yu A, Shuman M, Yu J, Li LC (2012) Upregulation of Cyclin B1 by miRNA and its implications in cancer. Nucleic Acids Res 40(4):1695–1707.  https://doi.org/10.1093/nar/gkr934 Google Scholar
  49. 49.
    Williams T, Fried M (1986) A mouse locus at which transcription from both DNA strands produces mRNAs complementary at their 3′ ends. Nature 322(6076):275–279.  https://doi.org/10.1038/322275a0 Google Scholar
  50. 50.
    Katayama S, Tomaru Y, Kasukawa T, Waki K, Nakanishi M, Nakamura M, Nishida H, Yap CC, Suzuki M, Kawai J, Suzuki H, Carninci P, Hayashizaki Y, Wells C, Frith M, Ravasi T, Pang KC, Hallinan J, Mattick J, Hume DA, Lipovich L, Batalov S, Engstrom PG, Mizuno Y, Faghihi MA, Sandelin A, Chalk AM, Mottagui-Tabar S, Liang Z, Lenhard B, Wahlestedt C, Group RGER, Genome Science G, Consortium F (2005) Antisense transcription in the mammalian transcriptome. Science 309(5740):1564–1566.  https://doi.org/10.1126/science.1112009 Google Scholar
  51. 51.
    Carninci P, Kasukawa T, Katayama S, Gough J, Frith MC, Maeda N, Oyama R, Ravasi T, Lenhard B, Wells C, Kodzius R, Shimokawa K, Bajic VB, Brenner SE, Batalov S, Forrest AR, Zavolan M, Davis MJ, Wilming LG, Aidinis V, Allen JE, Ambesi-Impiombato A, Apweiler R, Aturaliya RN, Bailey TL, Bansal M, Baxter L, Beisel KW, Bersano T, Bono H, Chalk AM, Chiu KP, Choudhary V, Christoffels A, Clutterbuck DR, Crowe ML, Dalla E, Dalrymple BP, de Bono B, Della Gatta G, di Bernardo D, Down T, Engstrom P, Fagiolini M, Faulkner G, Fletcher CF, Fukushima T, Furuno M, Futaki S, Gariboldi M, Georgii-Hemming P, Gingeras TR, Gojobori T, Green RE, Gustincich S, Harbers M, Hayashi Y, Hensch TK, Hirokawa N, Hill D, Huminiecki L, Iacono M, Ikeo K, Iwama A, Ishikawa T, Jakt M, Kanapin A, Katoh M, Kawasawa Y, Kelso J, Kitamura H, Kitano H, Kollias G, Krishnan SP, Kruger A, Kummerfeld SK, Kurochkin IV, Lareau LF, Lazarevic D, Lipovich L, Liu J, Liuni S, McWilliam S, Madan Babu M, Madera M, Marchionni L, Matsuda H, Matsuzawa S, Miki H, Mignone F, Miyake S, Morris K, Mottagui-Tabar S, Mulder N, Nakano N, Nakauchi H, Ng P, Nilsson R, Nishiguchi S, Nishikawa S, Nori F, Ohara O, Okazaki Y, Orlando V, Pang KC, Pavan WJ, Pavesi G, Pesole G, Petrovsky N, Piazza S, Reed J, Reid JF, Ring BZ, Ringwald M, Rost B, Ruan Y, Salzberg SL, Sandelin A, Schneider C, Schonbach C, Sekiguchi K, Semple CA, Seno S, Sessa L, Sheng Y, Shibata Y, Shimada H, Shimada K, Silva D, Sinclair B, Sperling S, Stupka E, Sugiura K, Sultana R, Takenaka Y, Taki K, Tammoja K, Tan SL, Tang S, Taylor MS, Tegner J, Teichmann SA, Ueda HR, van Nimwegen E, Verardo R, Wei CL, Yagi K, Yamanishi H, Zabarovsky E, Zhu S, Zimmer A, Hide W, Bult C, Grimmond SM, Teasdale RD, Liu ET, Brusic V, Quackenbush J, Wahlestedt C, Mattick JS, Hume DA, Kai C, Sasaki D, Tomaru Y, Fukuda S, Kanamori-Katayama M, Suzuki M, Aoki J, Arakawa T, Iida J, Imamura K, Itoh M, Kato T, Kawaji H, Kawagashira N, Kawashima T, Kojima M, Kondo S, Konno H, Nakano K, Ninomiya N, Nishio T, Okada M, Plessy C, Shibata K, Shiraki T, Suzuki S, Tagami M, Waki K, Watahiki A, Okamura-Oho Y, Suzuki H, Kawai J, Hayashizaki Y, Consortium F, Group RGER, Genome Science G (2005) The transcriptional landscape of the mammalian genome. Science 309(5740):1559–1563.  https://doi.org/10.1126/science.1112014 Google Scholar
  52. 52.
    Schwartz JC, Younger ST, Nguyen NB, Hardy DB, Monia BP, Corey DR, Janowski BA (2008) Antisense transcripts are targets for activating small RNAs. Nat Struct Mol Biol 15(8):842–848.  https://doi.org/10.1038/nsmb.1444 Google Scholar
  53. 53.
    Morris KV, Santoso S, Turner AM, Pastori C, Hawkins PG (2008) Bidirectional transcription directs both transcriptional gene activation and suppression in human cells. PLoS Genet 4(11):e1000258.  https://doi.org/10.1371/journal.pgen.1000258 Google Scholar
  54. 54.
    Modarresi F, Faghihi MA, Lopez-Toledano MA, Fatemi RP, Magistri M, Brothers SP, van der Brug MP, Wahlestedt C (2012) Inhibition of natural antisense transcripts in vivo results in gene-specific transcriptional upregulation. Nat Biotechnol 30(5):453–459.  https://doi.org/10.1038/nbt.2158 Google Scholar
  55. 55.
    Matsui M, Chu Y, Zhang H, Gagnon KT, Shaikh S, Kuchimanchi S, Manoharan M, Corey DR, Janowski BA (2013) Promoter RNA links transcriptional regulation of inflammatory pathway genes. Nucleic Acids Res 41(22):10086–10109.  https://doi.org/10.1093/nar/gkt777 Google Scholar
  56. 56.
    Liu M, Roth A, Yu M, Morris R, Bersani F, Rivera MN, Lu J, Shioda T, Vasudevan S, Ramaswamy S, Maheswaran S, Diederichs S, Haber DA (2013) The IGF2 intronic miR-483 selectively enhances transcription from IGF2 fetal promoters and enhances tumorigenesis. Genes Dev 27(23):2543–2548.  https://doi.org/10.1101/gad.224170.113 Google Scholar
  57. 57.
    Huang S, Wu S, Ding J, Lin J, Wei L, Gu J, He X (2010) MicroRNA-181a modulates gene expression of zinc finger family members by directly targeting their coding regions. Nucleic Acids Res 38(20):7211–7218.  https://doi.org/10.1093/nar/gkq564 Google Scholar
  58. 58.
    Melton C, Judson RL, Blelloch R (2010) Opposing microRNA families regulate self-renewal in mouse embryonic stem cells. Nature 463(7281):621–626.  https://doi.org/10.1038/nature08725 Google Scholar
  59. 59.
    Qin W, Shi Y, Zhao B, Yao C, Jin L, Ma J, Jin Y (2010) miR-24 regulates apoptosis by targeting the open reading frame (ORF) region of FAF1 in cancer cells. PLoS One 5(2):e9429.  https://doi.org/10.1371/journal.pone.0009429 Google Scholar
  60. 60.
    He XH, Zhu W, Yuan P, Jiang S, Li D, Zhang HW, Liu MF (2016) miR-155 downregulates ErbB2 and suppresses ErbB2-induced malignant transformation of breast epithelial cells. Oncogene 35(46):6015–6025.  https://doi.org/10.1038/onc.2016.132 Google Scholar
  61. 61.
    Panda AC, Sahu I, Kulkarni SD, Martindale JL, Abdelmohsen K, Vindu A, Joseph J, Gorospe M, Seshadri V (2014) miR-196b-mediated translation regulation of mouse insulin2 via the 5′UTR. PLoS One 9(7):e101084.  https://doi.org/10.1371/journal.pone.0101084 Google Scholar
  62. 62.
    Wang S, Pan Y, Zhang R, Xu T, Wu W, Zhang R, Wang C, Huang H, Calin CA, Yang H, Claret FX (2016) Hsa-miR-24-3p increases nasopharyngeal carcinoma radiosensitivity by targeting both the 3′ UTR and 5′ UTR of Jab1/CSN5. Oncogene 35(47):6096–6108.  https://doi.org/10.1038/onc.2016.147 Google Scholar
  63. 63.
    Grey F, Tirabassi R, Meyers H, Wu G, McWeeney S, Hook L, Nelson JA (2010) A viral microRNA down-regulates multiple cell cycle genes through mRNA 5′ UTRs. PLoS Pathog 6(6):e1000967.  https://doi.org/10.1371/journal.ppat.1000967 Google Scholar
  64. 64.
    Shimakami T, Yamane D, Jangra RK, Kempf BJ, Spaniel C, Barton DJ, Lemon SM (2012) Stabilization of hepatitis C virus RNA by an Ago2-miR-122 complex. Proc Natl Acad Sci USA 109(3):941–946.  https://doi.org/10.1073/pnas.1112263109 Google Scholar
  65. 65.
    Orom UA, Nielsen FC, Lund AH (2008) MicroRNA-10a binds the 5′ UTR of ribosomal protein mRNAs and enhances their translation. Mol Cell 30(4):460–471.  https://doi.org/10.1016/j.molcel.2008.05.001 Google Scholar
  66. 66.
    Ackerman WE, Buhimschi IA, Brubaker D, Maxwell S, Rood KM, Chance MR, Jing H, Mesiano S, Buhimschi CS (2018) Integrated microRNA and mRNA network analysis of the human myometrial transcriptome in the transition from quiescence to labor. Biol Reprod 98(6):834–845.  https://doi.org/10.1093/biolre/ioy040 Google Scholar
  67. 67.
    M’Baya-Moutoula E, Louvet L, Molinie R, Guerrera IC, Cerutti C, Fourdinier O, Nourry V, Gutierrez L, Morliere P, Mesnard F, Massy ZA, Metzinger-Le Meuth V, Metzinger L (2018) A multi-omics analysis of the regulatory changes induced by miR-223 in a monocyte/macrophage cell line. Biochim Biophys Acta 1864(8):2664–2678.  https://doi.org/10.1016/j.bbadis.2018.05.010 Google Scholar
  68. 68.
    Vella MC, Choi EY, Lin SY, Reinert K, Slack FJ (2004) The C. elegans microRNA let-7 binds to imperfect let-7 complementary sites from the lin-41 3′ UTR. Genes Dev 18(2):132–137.  https://doi.org/10.1101/gad.1165404 Google Scholar
  69. 69.
    Yekta S, Shih IH, Bartel DP (2004) MicroRNA-directed cleavage of HOXB8 mRNA. Science 304(5670):594–596.  https://doi.org/10.1126/science.1097434 Google Scholar
  70. 70.
    Brennecke J, Stark A, Russell RB, Cohen SM (2005) Principles of microRNA-target recognition. PLoS Biol 3(3):e85.  https://doi.org/10.1371/journal.pbio.0030085 Google Scholar
  71. 71.
    Chi SW, Zang JB, Mele A, Darnell RB (2009) Argonaute HITS-CLIP decodes microRNA-mRNA interaction maps. Nature 460(7254):479–486.  https://doi.org/10.1038/nature08170 Google Scholar
  72. 72.
    Chi SW, Hannon GJ, Darnell RB (2012) An alternative mode of microRNA target recognition. Nat Struct Mol Biol 19(3):321–327.  https://doi.org/10.1038/nsmb.2230 Google Scholar
  73. 73.
    Wang C, Chen Q, Li S, Li S, Zhao Z, Gao H, Wang X, Li B, Zhang W, Yuan Y, Ming L, He H, Tao B, Zhong J (2017) Dual inhibition of PCDH9 expression by miR-215-5p up-regulation in gliomas. Oncotarget 8(6):10287–10297.  https://doi.org/10.18632/oncotarget.14396 Google Scholar
  74. 74.
    Bracken CP, Scott HS, Goodall GJ (2016) A network-biology perspective of microRNA function and dysfunction in cancer. Nat Rev Genet 17(12):719–732.  https://doi.org/10.1038/nrg.2016.134 Google Scholar
  75. 75.
    Zhao Y, Qi X, Chen J, Wei W, Yu C, Yan H, Pu M, Li Y, Miao L, Li C, Ren J (2017) The miR-491-3p/Sp3/ABCB1 axis attenuates multidrug resistance of hepatocellular carcinoma. Cancer Lett 408:102–111.  https://doi.org/10.1016/j.canlet.2017.08.027 Google Scholar
  76. 76.
    Sokolova V, Fiorino A, Zoni E, Crippa E, Reid JF, Gariboldi M, Pierotti MA (2015) The effects of miR-20a on p21: two mechanisms blocking growth arrest in TGF-beta-responsive colon carcinoma. J Cell Physiol 230(12):3105–3114.  https://doi.org/10.1002/jcp.25051 Google Scholar
  77. 77.
    Zhao Y, Chen J, Wei W, Qi X, Li C, Ren J (2018) The dual-inhibitory effect of miR-338-5p on the multidrug resistance and cell growth of hepatocellular carcinoma. Signal Transduct Target Ther 3:3.  https://doi.org/10.1038/s41392-017-0003-4 Google Scholar
  78. 78.
    Lee I, Ajay SS, Yook JI, Kim HS, Hong SH, Kim NH, Dhanasekaran SM, Chinnaiyan AM, Athey BD (2009) New class of microRNA targets containing simultaneous 5′-UTR and 3′-UTR interaction sites. Genome Res 19(7):1175–1183.  https://doi.org/10.1101/gr.089367.108 Google Scholar
  79. 79.
    Lin CW, Chang YL, Chang YC, Lin JC, Chen CC, Pan SH, Wu CT, Chen HY, Yang SC, Hong TM, Yang PC (2013) MicroRNA-135b promotes lung cancer metastasis by regulating multiple targets in the Hippo pathway and LZTS1. Nat Commun 4:1877.  https://doi.org/10.1038/ncomms2876 Google Scholar
  80. 80.
    Zongaro S, Hukema R, D’Antoni S, Davidovic L, Barbry P, Catania MV, Willemsen R, Mari B, Bardoni B (2013) The 3′ UTR of FMR1 mRNA is a target of miR-101, miR-129-5p and miR-221: implications for the molecular pathology of FXTAS at the synapse. Hum Mol Genet 22(10):1971–1982.  https://doi.org/10.1093/hmg/ddt044 Google Scholar
  81. 81.
    Lai X, Wolkenhauer O, Vera J (2016) Understanding microRNA-mediated gene regulatory networks through mathematical modelling. Nucleic Acids Res 44(13):6019–6035.  https://doi.org/10.1093/nar/gkw550 Google Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Mengfan Pu
    • 1
    • 2
  • Jing Chen
    • 1
  • Zhouteng Tao
    • 1
  • Lingling Miao
    • 1
  • Xinming Qi
    • 1
  • Yizheng Wang
    • 3
  • Jin Ren
    • 1
    Email author
  1. 1.Center for Drug Safety Evaluation and Research, State Key Laboratory of Drug ResearchShanghai Institute of Materia Medica, Chinese Academy of SciencesShanghaiChina
  2. 2.School of Life Science and TechnologyShanghaiTech UniversityShanghaiChina
  3. 3.The Brain Science CenterBeijing Institute of Basic Medical SciencesBeijingChina

Personalised recommendations