Advertisement

Cellular and Molecular Life Sciences

, Volume 76, Issue 3, pp 405–419 | Cite as

Pathological processes activated by herpes simplex virus-1 (HSV-1) infection in the cornea

  • Lulia Koujah
  • Rahul K. Suryawanshi
  • Deepak ShuklaEmail author
Review

Abstract

Herpes simplex virus type-1 (HSV-1) is a ubiquitous pathogen that infects a large majority of the human population worldwide. It is also a leading cause of infection-related blindness in the developed world. HSV-1 infection of the cornea begins with viral entry into resident cells via a multistep process that involves interaction of viral glycoproteins and host cell surface receptors. Once inside, HSV-1 infection induces a chronic immune-inflammatory response resulting in corneal scarring, thinning and neovascularization. This leads to development of various ocular diseases such as herpes stromal keratitis, resulting in visual impairment and eventual blindness. HSV-1 can also invade the central nervous system and lead to encephalitis, a relatively common cause of sporadic fetal encephalitis worldwide. In this review, we discuss the pathological processes activated by corneal HSV-1 infection and existing antiviral therapies as well as novel therapeutic options currently under development.

keywords

Herpes simplex virus Immune response Anti-viral therapy Pathological process Ocular herpes 

References

  1. 1.
    Agelidis AM, Hadigal SR, Jaishankar D, Shukla D (2017) Viral activation of heparanase drives pathogenesis of herpes simplex virus-1. Cell Rep 20:439–450Google Scholar
  2. 2.
    Ahmad R, El Bassam S, Cordeiro P, Menezes J (2008) Requirement of TLR2-mediated signaling for the induction of IL-15 gene expression in human monocytic cells by HSV-1. Blood 112:2360–2368.  https://doi.org/10.1182/blood-2008-02-137711 Google Scholar
  3. 3.
    Akhtar J, Tiwari V, Oh MJ, Kovacs M, Jani A, Kovacs SK, Valyi-Nagy T, Shukla D (2008) HVEM and nectin-1 are the major mediators of herpes simplex virus 1 (HSV-1) entry into human conjunctival epithelium. Invest Ophthalmol Vis Sci 49:4026–4035.  https://doi.org/10.1167/iovs.08-1807 Google Scholar
  4. 4.
    Akira S, Takeda K (2004) Toll-like receptor signalling. Nat Rev Immunol 4:499–511Google Scholar
  5. 5.
    Akira S, Takeda K, Kaisho T (2001) Toll-like receptors: critical proteins linking innate and acquired immunity. Nat Immunol 2:675–680.  https://doi.org/10.1038/90609 Google Scholar
  6. 6.
    Amano S, Rohan R, Kuroki M, Tolentino M, Adamis AP (1998) Requirement for vascular endothelial growth factor in wound- and inflammation-related corneal neovascularization. Invest Ophthalmol Vis Sci 39:18–22Google Scholar
  7. 7.
    Andersen LL, Mork N, Reinert LS, Kofod-Olsen E, Narita R, Jorgensen SE, Skipper KA, Honing K, Gad HH, Ostergaard L, Orntoft TF, Hornung V, Paludan SR, Mikkelsen JG, Fujita T, Christiansen M, Hartmann R, Mogensen TH (2015) Functional IRF3 deficiency in a patient with herpes simplex encephalitis. J Exp Med 212:1371–1379.  https://doi.org/10.1084/jem.20142274 Google Scholar
  8. 8.
    Antoine T, Park PJ, Shukla D (2013) Glycoprotein targeted therapeutics: a new era of anti-herpes simplex virus-1 therapeutics. Rev Med Virol 23:194–208.  https://doi.org/10.1002/rmv.1740 Google Scholar
  9. 9.
    Azar DT (2006) Corneal angiogenic privilege: angiogenic and antiangiogenic factors in corneal avascularity, vasculogenesis, and wound healing (an american ophthalmological society thesis). Trans Am Ophthalmol Soc 104:264–302Google Scholar
  10. 10.
    Azher TN, Yin X, Stuart PM (2017) Understanding the role of chemokines and cytokines in experimental models of herpes simplex keratitis. J Immunol Res.  https://doi.org/10.1155/2017/7261980 Google Scholar
  11. 11.
    Basil MC, Levy BD (2015) Specialized pro-resolving mediators: endogenous regulators of infection and inflammation. Nat Rev Immunol 16:51–67.  https://doi.org/10.1038/nri.2015.4 Google Scholar
  12. 12.
    Bauer D, Alt M, Dirks M, Buch A, Heilingloh CS, Dittmer U, Giebel B, Görgens A, Palapys V, Kasper M, Eis-Hübinger AM, Sodeik B, Heiligenhaus A, Roggendorf M, Krawczyk A (2017) A Therapeutic Antiviral Antibody Inhibits the Anterograde Directed Neuron-to-Cell Spread of Herpes Simplex Virus and Protects against Ocular Disease. 8:2115.  https://doi.org/10.3389/fmicb.2017.02115 Google Scholar
  13. 13.
    Bergers G, Brekken R, McMahon G, Vu TH, Itoh T, Tamaki K, Tanzawa K, Thorpe P, Itohara S, Werb Z, Hanahan D (2000) Matrix metalloproteinase-9 triggers the angiogenic switch during carcinogenesis. Nat Cell Biol 2:737–744.  https://doi.org/10.1038/35036374 Google Scholar
  14. 14.
    Bhattacharjee PS, Neumann DM, Foster TP, Clement C, Singh G, Thompson HW, Kaufman HE, Hill JM (2008) Effective treatment of ocular HSK with a human apolipoprotein E mimetic peptide in a mouse eye model. Invest Ophthalmol Vis Sci 49:4263–4268.  https://doi.org/10.1167/iovs.08-2077 Google Scholar
  15. 15.
    Binetruy-Tournaire R, Demangel C, Malavaud B, Vassy R, Rouyre S, Kraemer M, Plouet J, Derbin C, Perret G, Mazie JC (2000) Identification of a peptide blocking vascular endothelial growth factor (VEGF)-mediated angiogenesis. EMBO J 19:1525–1533Google Scholar
  16. 16.
    Biswas PS, Rouse BT (2005) Early events in HSV keratitis—setting the stage for a blinding disease. Microbes Infect 7:799–810.  https://doi.org/10.1016/j.micinf.2005.03.003 Google Scholar
  17. 17.
    Boivin N, Menasria R, Piret J, Boivin G (2012) Modulation of TLR9 response in a mouse model of herpes simplex virus encephalitis. Antiviral Res 96:414–421.  https://doi.org/10.1016/j.antiviral.2012.09.022 Google Scholar
  18. 18.
    Bradshaw MJ, Venkatesan A (2016) Herpes simplex virus-1 encephalitis in adults: pathophysiology. Diag Manag 13:493–508.  https://doi.org/10.1007/s13311-016-0433-7 Google Scholar
  19. 19.
    Brandt CR, Akkarawongsa R, Altmann S, Jose G, Kolb AW, Waring AJ, Lehrer RI (2007) Evaluation of a theta-defensin in a Murine model of herpes simplex virus type 1 keratitis. Invest Ophthalmol Vis Sci 48:5118–5124Google Scholar
  20. 20.
    Buela K-G, Hendricks RL (2015) Cornea-infiltrating and lymph node dendritic cells contribute to CD4 + T cell expansion after herpes simplex virus-1 ocular infection. J Immunol 194:379–387.  https://doi.org/10.4049/jimmunol.1402326 Google Scholar
  21. 21.
    Carfi A, Willis SH, Whitbeck JC, Krummenacher C, Cohen GH, Eisenberg RJ, Wiley DC (2001) Herpes simplex virus glycoprotein D bound to the human receptor HveA. Mol Cell 8:169–179Google Scholar
  22. 22.
    Carmeliet P (2000) Mechanisms of angiogenesis and arteriogenesis. Nat Med 6:389–395.  https://doi.org/10.1038/74651 Google Scholar
  23. 23.
    Cathcart HM, Zheng M, Covar JJ, Liu Y, Podolsky R, Atherton SS (2011) Interferon-gamma, macrophages, and virus spread after HSV-1 injection. Invest Ophthalmol Vis Sci 52:3984–3993.  https://doi.org/10.1167/iovs.10-6449 Google Scholar
  24. 24.
    Chang JH, Gabison EE, Kato T, Azar DT (2001) Corneal neovascularization. Curr Opin Ophthalmol 12:242–249Google Scholar
  25. 25.
    Chen Y, Chen Y, Huang L, Yu J (2012) Evaluation of heparanase and matrix metalloproteinase-9 in patients with cutaneous malignant melanoma. J Dermatol 39:339–343.  https://doi.org/10.1111/j.1346-8138.2011.01441.x Google Scholar
  26. 26.
    Clement C, Tiwari V, Scanlan PM, Valyi-Nagy T, Yue BY, Shukla D (2006) A novel role for phagocytosis-like uptake in herpes simplex virus entry. J Cell Biol 174:1009–1021Google Scholar
  27. 27.
    Conrady CD, Drevets DA, Carr DJJ (2010) Herpes simplex type I (HSV-1) infection of the nervous system: is an immune response a good thing? J Neuroimmunol 220:1–9.  https://doi.org/10.1016/j.jneuroim.2009.09.013 Google Scholar
  28. 28.
    Cursiefen C, Chen L, Borges LP, Jackson D, Cao J, Radziejewski C, D’Amore PA, Dana MR, Wiegand SJ, Streilein JW (2004) VEGF-A stimulates lymphangiogenesis and hemangiogenesis in inflammatory neovascularization via macrophage recruitment. J Clin Invest 113:1040–1050.  https://doi.org/10.1172/JCI20465 Google Scholar
  29. 29.
    Delrieu I, Arnaud E, Ferjoux G, Bayard F, Faye JC (1998) Overexpression of the FGF-2 24-kDa isoform up-regulates IL-6 transcription in NIH-3T3 cells. FEBS Lett 436:17–22.  https://doi.org/10.1016/S0014-5793(98)01086-2 Google Scholar
  30. 30.
    Eliceiri BP, Paul R, Schwartzberg PL, Hood JD, Leng J, Cheresh DA (1999) Selective requirement for Src kinases during VEGF-induced angiogenesis and vascular permeability. Mol Cell 4:915–924Google Scholar
  31. 31.
    Elion GB (1982) Mechanism of action and selectivity of acyclovir. Am J Med 73:7–13.  https://doi.org/10.1016/0002-9343(82)90055-9 Google Scholar
  32. 32.
    Englund JA, Zimmerman ME, Swierkosz EM, Goodman JL, Scholl DR, Balfour HH Jr (1990) Herpes simplex virus resistant to acyclovir. A study in a tertiary care center. Ann Intern Med 112:416–422Google Scholar
  33. 33.
    Farooq AV, Valyi-Nagy T, Shukla D (2010) Mediators and mechanisms of herpes simplex virus entry into ocular cells. Curr Eye Res 35:445–450.  https://doi.org/10.3109/02713681003734841 Google Scholar
  34. 34.
    Field AK, Biron KK (1994) “The end of innocence” revisited: resistance of herpesviruses to antiviral drugs. Clin Microbiol Rev 7:1–13Google Scholar
  35. 35.
    Frank GM, Buela K-G, Maker DM, Harvey SAK, Hendricks RL (2012) Early responding dendritic cells direct the local NK response to control herpes simplex virus 1 infection within the cornea. J Immunol 188:1350–1359.  https://doi.org/10.4049/jimmunol.1101968 Google Scholar
  36. 36.
    Fuster MM, Wang L (2010) Endothelial heparan sulfate in angiogenesis. Prog Mol Biol Transl Sci.  https://doi.org/10.1016/s1877-1173(10)93009-3 Google Scholar
  37. 37.
    Gangappa S, Deshpande SP, Rouse BT (2000) Bystander activation of CD4 + T cells accounts for herpetic ocular lesions. Invest Ophthalmol Vis Sci 41:453–459Google Scholar
  38. 38.
    Gebhardt BM, Varnell ED, Kaufman HE (2005) Inhibition of cyclooxygenase 2 synthesis suppresses Herpes simplex virus type 1 reactivation. J Ocul Pharmacol Ther 21:114–120.  https://doi.org/10.1089/jop.2005.21.114 Google Scholar
  39. 39.
    Gimenez F, Mulik S, Veiga-Parga T, Bhela S, Rouse BT (2015) Robo 4 counteracts angiogenesis in herpetic stromal keratitis. Plos One 10:e0141925.  https://doi.org/10.1371/journal.pone.0141925 Google Scholar
  40. 40.
    Griffith TS, Brunner T, Fletcher SM, Green DR, Ferguson TA (1995) Fas ligand-induced apoptosis as a mechanism of immune privilege. Science 270:1189–1192Google Scholar
  41. 41.
    Guo Y, Audry M, Ciancanelli M, Alsina L, Azevedo J, Herman M, Anguiano E, Sancho-Shimizu V, Lorenzo L, Pauwels E, Philippe PB, Perez de Diego R, Cardon A, Vogt G, Picard C, Andrianirina ZZ, Rozenberg F, Lebon P, Plancoulaine S, Tardieu M, Valerie D, Jouanguy E, Chaussabel D, Geissmann F, Abel L, Casanova JL, Zhang SY (2011) Herpes simplex virus encephalitis in a patient with complete TLR3 deficiency: TLR3 is otherwise redundant in protective immunity. J Exp Med 208:2083–2098.  https://doi.org/10.1084/jem.20101568 Google Scholar
  42. 42.
    Gurung HR, Carr MM, Bryant K, Chucair-Elliott AJ, Carr DJJ (2018) Fibroblast growth factor-2 drives and maintains progressive corneal neovascularization following HSV-1 infection. Mucosal Immunol 11:172–185.  https://doi.org/10.1038/mi.2017.26 Google Scholar
  43. 43.
    Hacker H, Vabulas RM, Takeuchi O, Hoshino K, Akira S, Wagner H (2000) Immune cell activation by bacterial CpG-DNA through myeloid differentiation marker 88 and tumor necrosis factor receptor-associated factor (TRAF)6. J Exp Med 192:595–600.  https://doi.org/10.1084/jem.192.4.595 Google Scholar
  44. 44.
    Hadigal SR, Agelidis AM, Karasneh GA, Antoine TE, Yakoub AM, Ramani VC, Djalilian AR, Sanderson RD, Shukla D (2015) Heparanase is a host enzyme required for herpes simplex virus-1 release from cells. Nat Commun 6:6985.  https://doi.org/10.1038/ncomms7985 Google Scholar
  45. 45.
    Hill JM, Bhattacharjee PS, Neumann DM (2007) Apolipoprotein E alleles can contribute to the pathogenesis of numerous clinical conditions including HSV-1 corneal disease. Exp Eye Res 84:801–811Google Scholar
  46. 46.
    Hochrein H, Schlatter B, O’Keeffe M, Wagner C, Schmitz F, Schiemann M, Bauer S, Suter M, Wagner H (2004) Herpes simplex virus type-1 induces IFN-a production via Toll-like receptor 9-dependent and -independent pathways. Proc Natl Acad Sci U S A 101:11416–11421.  https://doi.org/10.1073/pnas.0403555101 Google Scholar
  47. 47.
    Isner JM, Asahara T (1999) Angiogenesis and vasculogenesis as therapeutic strategies for postnatal neovascularization. J Clin Invest 103:1231–1236Google Scholar
  48. 48.
    Jaishankar D, Buhrman JS, Valyi-Nagy T, Gemeinhart RA, Shukla D (2016) Extended release of an anti-heparan sulfate peptide from a contact lens suppresses corneal herpes simplex virus-1 infection. Invest Ophthalmol Vis Sci 57:169–180.  https://doi.org/10.1167/iovs.15-18365 Google Scholar
  49. 49.
    Jaishankar D, Yakoub AM, Yadavalli T, Agelidis A, Thakkar N, Hadigal S, Ames J, Shukla D (2018) An off-target effect of BX795 blocks herpes simplex virus type 1 infection of the eye. Sci Transl Med.  https://doi.org/10.1126/scitranslmed.aan5861 Google Scholar
  50. 50.
    Jayamanne DG, Vize C, Ellerton CR, Morgan SJ, Gillie RF (1997) Severe reversible ocular anterior segment ischaemia following topical trifluorothymidine (F3T) treatment for herpes simplex keratouveitis. Eye (Lond) 11(Pt 5):757–759.  https://doi.org/10.1038/eye.1997.193 Google Scholar
  51. 51.
    Jiang YC, Feng H, Lin YC, Guo XR (2016) New strategies against drug resistance to herpes simplex virus. Int J Oral Sci 8:1–6.  https://doi.org/10.1038/ijos.2016.3 Google Scholar
  52. 52.
    Kaufman HE, Varnell ED, Gebhardt BM, Thompson HW, Atwal E, Rubsamen-Waigmann H, Kleymann G (2008) Efficacy of a helicase-primase inhibitor in animal models of ocular herpes simplex virus type 1 infection. J Ocul Pharmacol Ther 24:34–42.  https://doi.org/10.1089/jop.2007.0084 Google Scholar
  53. 53.
    Krawczyk A, Arndt MAE, Grosse-Hovest L, Weichert W, Giebel B, Dittmer U, Hengel H, Jäger D, Schneweis KE, Eis-Hübinger AM, Roggendorf M, Krauss J (2013) Overcoming drug-resistant herpes simplex virus (HSV) infection by a humanized antibody. Proc Natl Acad Sci USA 110:6760Google Scholar
  54. 54.
    Kreuger J, Phillipson M (2016) Targeting vascular and leukocyte communication in angiogenesis, inflammation and fibrosis. Nat Rev Drug Discov 15:125–142.  https://doi.org/10.1038/nrd.2015.2 Google Scholar
  55. 55.
    Krug A, Luker GD, Barchet W, Leib DA, Akira S, Colonna M (2004) Herpes simplex virus type 1 activates murine natural interferon-producing cells through toll-like receptor 9. Nat Commun 103:1433–1437.  https://doi.org/10.1182/blood-2003-08-2674 Google Scholar
  56. 56.
    Kurt-Jones EA, Chan M, Zhou S, Wang J, Reed G, Bronson R, Arnold MM, Knipe DM, Finberg RW (2004) Herpes simplex virus 1 interaction with Toll-like receptor 2 contributes to lethal encephalitis. Proc Natl Acad Sci USA 101:1315–1320.  https://doi.org/10.1073/pnas.0308057100 Google Scholar
  57. 57.
    Kvanta A, Sarman S, Fagerholm P, Seregard S, Steen B (2000) Expression of matrix metalloproteinase-2 (MMP-2) and vascular endothelial growth factor (VEGF) in inflammation-associated corneal neovascularization. Exp Eye Res 70:419–428.  https://doi.org/10.1006/exer.1999.0790 Google Scholar
  58. 58.
    Lee S, Zheng M, Kim B, Rouse BT (2002) Role of matrix metalloproteinase-9 in angiogenesis caused by ocular infection with herpes simplex virus. J Clin Invest 110:1105–1111.  https://doi.org/10.1172/JCI200215755 Google Scholar
  59. 59.
    Liang X, Yuan L, Hu J, Yu H, Li T, Lin S, Tang S (2012) Phosphomannopentaose sulfate (PI-88) suppresses angiogenesis by downregulating heparanase and vascular endothelial growth factor in an oxygen-induced retinal neovascularization animal model. Mol Vis 18:1649–1657Google Scholar
  60. 60.
    Liang Y, Vogel JL, Narayanan A, Peng H, Kristie TM (2009) Inhibition of the histone demethylase LSD1 blocks alpha-herpesvirus lytic replication and reactivation from latency. Nat Med 15:1312–1317.  https://doi.org/10.1038/nm.2051 Google Scholar
  61. 61.
    Liesegang TJ (2001) Herpes simplex virus epidemiology and ocular importance. Cornea 20:1–13.  https://doi.org/10.1097/00003226-200101000-00001 Google Scholar
  62. 62.
    Liu J, Crepin M, Liu J-, Barritault D, Ledoux D (2002) FGF-2 and TPA induce matrix metalloproteinase-9 secretion in MCF-7 cells through PKC activation of the Ras/ERK pathway. Biochem Biophys Res Commun 293:1174–1182.  https://doi.org/10.1016/S0006-291X(02)00350-9 Google Scholar
  63. 63.
    Liu T, Khanna KM, Chen X, Fink DJ, Hendricks RL (2000) Cd8(+) T cells can block herpes simplex virus Type 1 (HSV-1) reactivation from latency in sensory neurons. J Exp Med 191:1459–1466Google Scholar
  64. 64.
    Liu X, Fitzgerald K, Kurt-Jones E, Finberg R, Knipe DM (2008) Herpesvirus tegument protein activates NF-κB signaling through the TRAF6 adaptor protein. Proc Natl Acad Sci USA 105:11335–11339.  https://doi.org/10.1073/pnas.0801617105 Google Scholar
  65. 65.
    Lundberg P, Ramakrishna C, Brown J, Tyszka JM, Hamamura M, Hinton DR, Kovats S, Nalcioglu O, Weinberg K, Openshaw H, Cantin EM (2008) The immune response to herpes simplex virus type 1 infection in susceptible mice is a major cause of central nervous system pathology resulting in fatal encephalitis. J Virol 82:7078–7088.  https://doi.org/10.1128/JVI.00619-08 Google Scholar
  66. 66.
    Maddula S, Davis DK, Maddula S, Burrow MK, Ambati BK (2011) Horizons in therapy for corneal. Angiogenesis 118:591–599.  https://doi.org/10.1016/j.ophtha.2011.01.041 Google Scholar
  67. 67.
    Maggs DJ, Chang E, Nasisse MP, Mitchell WJ (1998) Persistence of herpes simplex virus type 1 DNA in chronic conjunctival and eyelid lesions of mice. J Virol 72:9166–9172Google Scholar
  68. 68.
    Mansur DS, Kroon EG, Nogueira ML, Arantes RME, Rodrigues SCO, Akira S, Gazzinelli RT, Campos MA (2005) Lethal encephalitis in myeloid differentiation factor 88-deficient mice infected with herpes simplex virus 1. Am J Pathol 166:1419–1426Google Scholar
  69. 69.
    Masola V, Gambaro G, Tibaldi E, Brunati AM, Gastaldello A, D’Angelo A, Onisto M, Lupo A (2012) Heparanase and syndecan-1 interplay orchestrates fibroblast growth factor-2-induced epithelial-mesenchymal transition in renal tubular cells. J Biol Chem 287:1478–1488.  https://doi.org/10.1074/jbc.M111.279836 Google Scholar
  70. 70.
    Maudgal PC, Van Damme B, Missotten L (1983) Corneal epithelial dysplasia after trifluridine use. Graefes Arch Clin Exp Ophthalmol 220:6–12Google Scholar
  71. 71.
    Medzhitov R, Janeway CA Jr (2002) Decoding the patterns of self and nonself by the innate immune system. Science 296:298–300.  https://doi.org/10.1126/science.1068883 Google Scholar
  72. 72.
    Menachery VD, Pasieka TJ, Leib DA (2010) Interferon regulatory factor 3-dependent pathways are critical for control of herpes simplex virus type 1 central nervous system infection. J Virol 84:9685–9694.  https://doi.org/10.1128/JVI.00706-10 Google Scholar
  73. 73.
    Modi S, Van L, Gewirtzman A, Mendoza N, Bartlett B, Tremaine AM, Tyring S (2008) Single-day treatment for orolabial and genital herpes: a brief review of pathogenesis and pharmacology. Ther Clin Risk Manag 4:409–417Google Scholar
  74. 74.
    Morris JE, Zobell S, Yin XT, Zakeri H, Summers BC, Leib DA, Stuart PM (2012) Mice with mutations in Fas and Fas ligand demonstrate increased herpetic stromal keratitis following corneal infection with HSV-1. J Immunol 188:793–799.  https://doi.org/10.4049/jimmunol.1102251 Google Scholar
  75. 75.
    Mulik S, Xu J, Reddy PBJ, Rajasagi NK, Gimenez F, Sharma S, Lu PY, Rouse BT (2012) Role of miR-132 in angiogenesis after ocular infection with herpes simplex virus. Am J Pathol 181:525–534.  https://doi.org/10.1016/j.ajpath.2012.04.014 Google Scholar
  76. 76.
    Oh MJ, Akhtar J, Desai P, Shukla D (2010) A role for heparan sulfate in viral surfing. Biochem Biophys Res Commun 391:176–181.  https://doi.org/10.1016/j.bbrc.2009.11.027 Google Scholar
  77. 77.
    Paludan SR, Bowie AG, Horan KA, Fitzgerald KA (2011) Recognition of herpesviruses by the innate immune system. Nat Rev Immunol 11:143–154.  https://doi.org/10.1038/nri2937 Google Scholar
  78. 78.
    Park PJ, Antoine TE, Farooq AV, Valyi-Nagy T, Shukla D (2013) An investigative peptide-acyclovir combination to control herpes simplex virus type 1 ocular infection. Invest Ophthalmol Vis Sci 54:6373–6381.  https://doi.org/10.1167/iovs.13-12832 Google Scholar
  79. 79.
    Perng GC, Jones C (2010) Towards an understanding of the herpes simplex virus type 1 latency-reactivation cycle. Interdiscip Perspect Infect Dis 2010:262415.  https://doi.org/10.1155/2010/262415 Google Scholar
  80. 80.
    Pope LE, Marcelletti JF, Katz LR, Lin JY, Katz DH, Parish ML, Spear PG (1998) The anti-herpes simplex virus activity of n-docosanol includes inhibition of the viral entry process. Antiviral Res 40:85–94Google Scholar
  81. 81.
    Purushothaman A, Chen L, Yang Y, Sanderson RD (2008) Heparanase stimulation of protease expression implicates it as a master regulator of the aggressive tumor phenotype in myeloma. J Biol Chem 283:32628–32636.  https://doi.org/10.1074/jbc.M806266200 Google Scholar
  82. 82.
    Rajasagi NK, Bhela S, Varanasi SK, Rouse BT (2017) Frontline Science: aspirin-triggered resolvin D1 controls herpes simplex virus-induced corneal immunopathology. J Leukoc Biol 102:1159–1171.  https://doi.org/10.1189/jlb.3HI1216-511RR Google Scholar
  83. 83.
    Rajasagi NK, Reddy PB, Mulik S, Gjorstrup P, Rouse BT (2013) Neuroprotectin D1 reduces the severity of herpes simplex virus-induced corneal immunopathology. Invest Ophthalmol Vis Sci 54:6269–6279.  https://doi.org/10.1167/iovs.13-12152 Google Scholar
  84. 84.
    Rajasagi NK, Reddy PB, Suryawanshi A, Mulik S, Gjorstrup P, Rouse BT (2011) Controlling herpes simplex virus-induced ocular inflammatory lesions with the lipid-derived mediator resolvin E1. J Immunol 186:1735–1746.  https://doi.org/10.4049/jimmunol.1003456 Google Scholar
  85. 85.
    Rajasagi NK, Suryawanshi A, Sehrawat S, Reddy PB, Mulik S, Hirashima M, Rouse BT (2012) Galectin-1 reduces the severity of herpes simplex virus-induced ocular immunopathological lesions. J Immunol 188:4631–4643.  https://doi.org/10.4049/jimmunol.1103063 Google Scholar
  86. 86.
    Ramani VC, Yang Y, Ren Y, Nan L, Sanderson RD (2011) Heparanase plays a dual role in driving hepatocyte growth factor (HGF) signaling by enhancing HGF expression and activity. J Biol Chem 286:6490–6499.  https://doi.org/10.1074/jbc.M110.183277 Google Scholar
  87. 87.
    Rogge M, Yin X, Godfrey L, Lakireddy P, Potter CA, Del Rosso CR, Stuart PM (2015) Therapeutic use of soluble fas ligand ameliorates acute and recurrent herpetic stromal keratitis in mice. Invest Ophthalmol Vis Sci 56:6377–6386.  https://doi.org/10.1167/iovs.15-16588 Google Scholar
  88. 88.
    Roizman B, Knipe DM, Whitley RJ (2007) Herpes simplex viruses. Clin Infect Dis 1:2503–2602Google Scholar
  89. 89.
    Sarangi PP, Kim B, Kurt-Jones E, Rouse BT (2007) Innate recognition network driving herpes simplex virus-induced corneal immunopathology: role of the toll pathway in early inflammatory events in stromal keratitis. J Virol 81:11128–11138.  https://doi.org/10.1128/JVI.01008-07 Google Scholar
  90. 90.
    Sauter MM, Gauger JJL, Brandt CR (2014) Oligonucleotides designed to inhibit TLR9 block herpes simplex virus type 1 infection at multiple steps. Antiviral Res.  https://doi.org/10.1016/j.antiviral.2014.06.015 Google Scholar
  91. 91.
    Scheppke L, Aguilar E, Gariano RF, Jacobson R, Hood J, Doukas J, Cao J, Noronha G, Yee S, Weis S, Martin MB, Soll R, Cheresh DA, Friedlander M (2008) Retinal vascular permeability suppression by topical application of a novel VEGFR2/Src kinase inhibitor in mice and rabbits. J Clin Invest 118:2337–2346.  https://doi.org/10.1172/JCI33361 Google Scholar
  92. 92.
    Seghezzi G, Patel S, Ren CJ, Gualandris A, Pintucci G, Robbins ES, Shapiro RL, Galloway AC, Rifkin DB, Mignatti P (1998) Fibroblast growth factor-2 (FGF-2) induces vascular endothelial growth factor (VEGF) expression in the endothelial cells of forming capillaries: an autocrine mechanism contributing to angiogenesis. J Cell Biol 141:1659–1673.  https://doi.org/10.1083/jcb.141.7.1659 Google Scholar
  93. 93.
    Serhan CN (2014) Novel pro-resolving lipid mediators in inflammation are leads for resolution physiology. Nature 510:92–101.  https://doi.org/10.1038/nature13479 Google Scholar
  94. 94.
    Sharma S, Mulik S, Kumar N, Suryawanshi A, Rouse BT (2011) An anti-inflammatory role of VEGFR2/Src kinase inhibitor in herpes simplex virus 1-induced immunopathology. J Virol 85:5995–6007.  https://doi.org/10.1128/JVI.00034-11 Google Scholar
  95. 95.
    Shukla D, Spear PG (2001) Herpesviruses and heparan sulfate: an intimate relationship in aid of viral entry. J Clin Invest 108:503–510.  https://doi.org/10.1172/JCI13799 Google Scholar
  96. 96.
    Smith JS, Robinson NJ (2002) Age-specific prevalence of infection with herpes simplex virus types 2 and 1: a global review. J Infect Dis 186(Suppl 1):3Google Scholar
  97. 97.
    St Vincent MR, Colpitts CC, Ustinov AV, Muqadas M, Joyce MA, Barsby NL, Epand RF, Epand RM, Khramyshev SA, Valueva OA, Korshun VA, Tyrrell DL, Schang LM (2010) Rigid amphipathic fusion inhibitors, small molecule antiviral compounds against enveloped viruses. Proc Natl Acad Sci USA 107:17339–17344.  https://doi.org/10.1073/pnas.1010026107 Google Scholar
  98. 98.
    Stuart PM, Griffith TS, Usui N, Pepose J, Yu X, Ferguson TA (1997) CD95 ligand (FasL)-induced apoptosis is necessary for corneal allograft survival. J Clin Invest 99:396–402Google Scholar
  99. 99.
    Stuart PM, Pan F, Plambeck S, Ferguson TA (2003) FasL-Fas interactions regulate neovascularization in the cornea. Invest Ophthalmol Vis Sci 44:93–98Google Scholar
  100. 100.
    Stumpf TH, Shimeld C, Easty DL, Hill TJ (2001) Cytokine production in a murine model of recurrent herpetic stromal keratitis. Invest Ophthalmol Vis Sci 42:372–378Google Scholar
  101. 101.
    Stumpf TH, Case R, Shimeld C, Easty DL, Hill TJ (2002) Primary herpes simplex virus type 1 infection of the eye triggers similar immune responses in the cornea and the skin of the eyelids. J Gen Virol 83:1579–1590.  https://doi.org/10.1099/0022-1317-83-7-1579 Google Scholar
  102. 102.
    Su AR, Qiu M, Li YL, Xu WT, Song SW, Wang XH, Song HY, Zheng N, Wu ZW (2017) BX-795 inhibits HSV-1 and HSV-2 replication by blocking the JNK/p38 pathways without interfering with PDK1 activity in host cells. Acta Pharmacol Sin 38:402–414.  https://doi.org/10.1038/aps.2016.160 Google Scholar
  103. 103.
    Suryawanshi A, Mulik S, Sharma S, Reddy PBJ, Sehrawat S, Rouse BT (2011) Ocular neovascularization caused by herpes simplex virus type 1 infection results from breakdown of binding between vascular endothelial growth factor A and its soluble receptor. J Immunol 186:3653–3665.  https://doi.org/10.4049/jimmunol.1003239 Google Scholar
  104. 104.
    Takeda K, Akira S (2004) TLR signaling pathways. Semin Immunol 16:3–9.  https://doi.org/10.1016/j.smim.2003.10.003 Google Scholar
  105. 105.
    Tammela T, Alitalo K (2010) Lymphangiogenesis: molecular mechanisms and future promise. Cell 140:460–476.  https://doi.org/10.1016/j.cell.2010.01.045 Google Scholar
  106. 106.
    Tang D, Piao Y, Zhao S, Mu X, Li S, Ma W, Song Y, Wang J, Zhao W, Zhang Q (2014) Expression and correlation of matrix metalloproteinase-9 and heparanase in patients with breast cancer. Med Oncol.  https://doi.org/10.1007/s12032-014-0026-4 Google Scholar
  107. 107.
    Thomas J, Gangappa S, Kanangat S, Rouse BT (1997) On the essential involvement of neutrophils in the immunopathologic disease: herpetic stromal keratitis. J Immunol 158:1383–1391Google Scholar
  108. 108.
    Tiwari V, Clement C, Xu D, Valyi-Nagy T, Yue BY, Liu J, Shukla D (2006) Role for 3-O-sulfated heparan sulfate as the receptor for herpes simplex virus type 1 entry into primary human corneal fibroblasts. J Virol 80:8970–8980Google Scholar
  109. 109.
    Tiwari V, Liu J, Valyi-Nagy T, Shukla D (2011) Anti-heparan sulfate peptides that block herpes simplex virus infection in vivo. J Biol Chem 286:25406–25415.  https://doi.org/10.1074/jbc.M110.201103 Google Scholar
  110. 110.
    Tiwari V, Oh MJ, Kovacs M, Shukla SY, Valyi-Nagy T, Shukla D (2008) Role for nectin-1 in herpes simplex virus 1 entry and spread in human retinal pigment epithelial cells. FEBS J 275:5272–5285.  https://doi.org/10.1111/j.1742-4658.2008.06655.x Google Scholar
  111. 111.
    Toma HS, Murina AT, Areaux RG Jr, Neumann DM, Bhattacharjee PS, Foster TP, Kaufman HE, Hill JM (2008) Ocular HSV-1 latency, reactivation and recurrent disease. Semin Ophthalmol 23:249–273.  https://doi.org/10.1080/08820530802111085 Google Scholar
  112. 112.
    Tsatsos M, MacGregor C, Athanasiadis I, Moschos MM, Hossain P, Anderson D (2016) Herpes simplex virus keratitis: an update of the pathogenesis and current treatment with oral and topical antiviral agents. Clin Exp Ophthalmol 44:824–837.  https://doi.org/10.1111/ceo.12785 Google Scholar
  113. 113.
    van Velzen M, van de Vijver DA, van Loenen FB, Osterhaus AD, Remeijer L, Verjans GM (2013) Acyclovir prophylaxis predisposes to antiviral-resistant recurrent herpetic keratitis. J Infect Dis 208:1359–1365.  https://doi.org/10.1093/infdis/jit350 Google Scholar
  114. 114.
    Whitley RJ, Lakeman F (1995) Herpes simplex virus infections of the central nervous system: therapeutic and diagnostic considerations. Clin Infect Dis 20:414–420.  https://doi.org/10.1093/clinids/20.2.414 Google Scholar
  115. 115.
    Wuest T, Zheng M, Efstathiou S, Halford WP, Carr DJJ (2011) The herpes simplex virus-1 transactivator infected cell protein-4 drives VEGF-A dependent Neovascularization. PLoS Pathog.  https://doi.org/10.1371/journal.ppat.1002278 Google Scholar
  116. 116.
    Yadavalli T, Agelidis A, Jaishankar D, Mangano K, Thakkar N, Penmetcha K, Shukla D (2017) Targeting herpes simplex virus-1 gD by a DNA aptamer can be an effective new strategy to curb viral infection. Mol Ther Nucleic Acids 9:365–378.  https://doi.org/10.1016/j.omtn.2017.10.009 Google Scholar
  117. 117.
    Yasin B, Wang W, Pang M, Cheshenko N, Hong T, Waring AJ, Herold BC, Wagar EA, Lehrer RI (2004) Theta defensins protect cells from infection by herpes simplex virus by inhibiting viral adhesion and entry. J Virol 78:5147–5156Google Scholar
  118. 118.
    Yildiz C, Ozsurekci Y, Gucer S, Cengiz AB, Topaloglu R (2013) Acute kidney injury due to acyclovir. CEN Case Rep 2:38–40.  https://doi.org/10.1007/s13730-012-0035-0 Google Scholar
  119. 119.
    Yoon KC, Heo H, Kang IS, Lee MC, Kim KK, Park SH, Cho KO (2008) Effect of topical cyclosporin A on herpetic stromal keratitis in a mouse model. Cornea 27:454–460.  https://doi.org/10.1097/ICO.0b013e318160602d Google Scholar
  120. 120.
    Zhang S, Jouanguy E, Ugolini S, Smahi A, Elain G, Romero P, Segal D, Sancho-Shimizu V, Lorenzo L, Puel A, Picard C, Chapgier A, Plancoulaine S, Titeux M, Cognet C, Von Bernuth H, Ku C, Casrouge A, Zhang X, Barreiro L, Leonard J, Hamilton C, Lebon P, Hron B, Valle L, Quintana-Murci L, Hovnanian A, Rozenberg F, Vivier E, Geissmann F, Tardieu M, Abel L, Casanova J (2007) TLR3 deficiency in patients with herpes simplex encephalitis. Science 317:1522–1527.  https://doi.org/10.1126/science.1139522 Google Scholar
  121. 121.
    Zheng M, Deshpande S, Lee S, Ferrara N, Rouse BT (2001) Contribution of vascular endothelial growth factor in the neovascularization process during the pathogenesis of herpetic stromal keratitis. J Virol 75:9828–9835.  https://doi.org/10.1128/JVI.75.20.9828-9835.2001 Google Scholar
  122. 122.
    Zheng M, Schwarz MA, Lee S, Kumaraguru U, Rouse BT (2001) Control of stromal keratitis by inhibition of neovascularization. Am J Pathol 159:1021–1029Google Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Department of Ophthalmology and Visual SciencesUniversity of Illinois at ChicagoChicagoUSA
  2. 2.Department of Microbiology and ImmunologyUniversity of Illinois at ChicagoChicagoUSA

Personalised recommendations