Cellular and Molecular Life Sciences

, Volume 76, Issue 2, pp 245–257 | Cite as

Disassembly of dying cells in diverse organisms

  • Rochelle TixeiraEmail author
  • Ivan K. H. PoonEmail author


Programmed cell death (PCD) is a conserved phenomenon in multicellular organisms required to maintain homeostasis. Among the regulated cell death pathways, apoptosis is a well-described form of PCD in mammalian cells. One of the characteristic features of apoptosis is the change in cellular morphology, often leading to the fragmentation of the cell into smaller membrane-bound vesicles through a process called apoptotic cell disassembly. Interestingly, some of these morphological changes and cell disassembly are also noted in cells of other organisms including plants, fungi and protists while undergoing ‘apoptosis-like PCD’. This review will describe morphologic features leading to apoptotic cell disassembly, as well as its regulation and function in mammalian cells. The occurrence of cell disassembly during cell death in other organisms namely zebrafish, fly and worm, as well as in other eukaryotic cells will also be discussed.


Apoptotic bodies Extracellular vesicles Apoptosis Apoptosis-like PCD Blebbing Membrane protrusions 



We would like to thank the Poon Laboratory for discussion. This work was supported by Grants from the National Health & Medical Research Council of Australia (GNT1125033 and GNT1140187) to I.K.H.P.


  1. 1.
    Clarke PGH, Clarke S (2012) Nineteenth century research on cell death. Exp Oncol 34(3):139–145Google Scholar
  2. 2.
    Kerr JF, Wyllie AH, Currie AR (1972) Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br J Cancer 26(4):239–257Google Scholar
  3. 3.
    Atkin-Smith GK, Poon IKH (2017) Disassembly of the dying: mechanisms and functions. Trends Cell Biol 27(2):151–162Google Scholar
  4. 4.
    Atkin-Smith GK, Tixeira R, Paone S, Mathivanan S, Collins C, Liem M et al (2015) A novel mechanism of generating extracellular vesicles during apoptosis via a beads-on-a-string membrane structure. Nat Commun 6(1):7439Google Scholar
  5. 5.
    Tixeira R, Caruso S, Paone S, Baxter AA, Atkin-Smith GK, Hulett MD et al (2017) Defining the morphologic features and products of cell disassembly during apoptosis. Apoptosis 22(3):475–477Google Scholar
  6. 6.
    Poon IKH, Chiu Y-H, Armstrong AJ, Kinchen JM, Juncadella IJ, Bayliss DA et al (2014) Unexpected link between an antibiotic, pannexin channels and apoptosis. Nature 507(7492):329–334Google Scholar
  7. 7.
    Moss DK, Betin VM, Malesinski SD, Lane JD (2006) A novel role for microtubules in apoptotic chromatin dynamics and cellular fragmentation. J Cell Sci 119(11):2362–2374Google Scholar
  8. 8.
    Ohyama H, Yamada T, Ohkawa A, Watanabe I (1985) Radiation-induced formation of apoptotic bodies in rat thymus. Radiat Res 101(1):123Google Scholar
  9. 9.
    Jiang L, Paone S, Caruso S, Atkin-Smith GK, Phan TK, Hulett MD et al (2017) Determining the contents and cell origins of apoptotic bodies by flow cytometry. Sci Rep 7(1):14444Google Scholar
  10. 10.
    Berda-Haddad Y, Robert S, Salers P, Zekraoui L, Farnarier C, Dinarello CA et al (2011) Sterile inflammation of endothelial cell-derived apoptotic bodies is mediated by interleukin-1. Proc Natl Acad Sci 108(51):20684–20689Google Scholar
  11. 11.
    Mesa KR, Rompolas P, Zito G, Myung P, Sun TY, Brown S et al (2015) Niche-induced cell death and epithelial phagocytosis regulate hair follicle stem cell pool. Nature 522(7554):94–97Google Scholar
  12. 12.
    Mayer CT, Gazumyan A, Kara EE, Gitlin AD, Golijanin J, Viant C et al (2017) The microanatomic segregation of selection by apoptosis in the germinal center. Science 358(6360):eaao2602Google Scholar
  13. 13.
    Sebbagh M, Renvoizé C, Hamelin J, Riché N, Bertoglio J, Bréard J (2001) Caspase-3-mediated cleavage of ROCK I induces MLC phosphorylation and apoptotic membrane blebbing. Nat Cell Biol 3:346Google Scholar
  14. 14.
    Coleman ML, Sahai EA, Yeo M, Bosch M, Dewar A, Olson MF (2001) Membrane blebbing during apoptosis results from caspase-mediated activation of ROCK I. Nat Cell Biol 3(4):339–345Google Scholar
  15. 15.
    Amano M, Ito M, Kimura K, Fukata Y, Chihara K, Nakano T et al (1996) Phosphorylation and activation of myosin by Rho-associated kinase (Rho-kinase). J Biol Chem 271(34):20246–20249Google Scholar
  16. 16.
    Croft DR, Coleman ML, Li S, Robertson D, Sullivan T, Stewart CL et al (2005) Actin-myosin-based contraction is responsible for apoptotic nuclear disintegration. J Cell Biol 168(2):245–255Google Scholar
  17. 17.
    Rudel T, Bokoch GM (1997) Membrane and morphological changes in apoptotic cells regulated by caspase-mediated activation of PAK2. Science 276(5318):1571–1574Google Scholar
  18. 18.
    Lee N, MacDonald H, Reinhard C, Halenbeck R, Roulston A, Shi T et al (1997) Activation of hPAK65 by caspase cleavage induces some of the morphological and biochemical changes of apoptosis. Proc Natl Acad Sci 94(25):13642–13647Google Scholar
  19. 19.
    Tomiyoshi G, Horita Y, Nishita M, Ohashi K, Mizuno K (2004) Caspase-mediated cleavage and activation of LIM-kinase 1 and its role in apoptotic membrane blebbing. Genes Cells 9(6):591–600Google Scholar
  20. 20.
    Bratosin D, Estaquier J, Petit F, Arnoult D, Quatannens B, Tissier J-P et al (2001) Programmed cell death in mature erythrocytes: a model for investigating death effector pathways operating in the absence of mitochondria. Cell Death Differ 8(12):1143–1156Google Scholar
  21. 21.
    Lang E, Qadri SM, Lang F (2012) Killing me softly—suicidal erythrocyte death. Int J Biochem Cell Biol 44(8):1236–1243Google Scholar
  22. 22.
    Lang F, Gulbins E, Lang PA, Zappulla D, Föller M (2010) Ceramide in suicidal death of erythrocytes. Cell Physiol Biochem 26(1):21–28Google Scholar
  23. 23.
    Qadri SM, Bissinger R, Solh Z, Oldenborg P-A (2017) Eryptosis in health and disease: a paradigm shift towards understanding the (patho)physiological implications of programmed cell death of erythrocytes. Blood Rev 31(6):349–361Google Scholar
  24. 24.
    Lang F, Qadri SM (2012) Mechanisms and significance of eryptosis, the suicidal death of erythrocytes. Blood Purif 33(1–3):125–130Google Scholar
  25. 25.
    Mandal D, Moitra PK, Saha S, Basu J (2002) Caspase 3 regulates phosphatidylserine externalization and phagocytosis of oxidatively stressed erythrocytes. FEBS Lett 513(2–3):184–188Google Scholar
  26. 26.
    Mills JC, Lee VM, Pittman RN (1998) Activation of a PP2A-like phosphatase and dephosphorylation of tau protein characterize onset of the execution phase of apoptosis. J Cell Sci 111:625–636Google Scholar
  27. 27.
    Sánchez-Alcázar JA, Rodríguez-Hernández Á, Cordero MD, Fernández-Ayala DJM, Brea-Calvo G, Garcia K et al (2007) The apoptotic microtubule network preserves plasma membrane integrity during the execution phase of apoptosis. Apoptosis 12(7):1195–1208Google Scholar
  28. 28.
    Oropesa-Ávila M, de la Cruz-Ojeda P, Porcuna J, Villanueva-Paz M, Fernández-Vega A, de la Mata M et al (2017) Two coffins and a funeral: early or late caspase activation determines two types of apoptosis induced by DNA damaging agents. Apoptosis 22(3):421–436Google Scholar
  29. 29.
    Oropesa-Ávila M, Fernández-Vega A, de la Mata M, Maraver JG, Cordero MD, Cotán D et al (2013) Apoptotic microtubules delimit an active caspase free area in the cellular cortex during the execution phase of apoptosis. Cell Death Dis 4(3):e527Google Scholar
  30. 30.
    Elliott MR, Chekeni FB, Trampont PC, Lazarowski ER, Kadl A, Walk SF et al (2009) Nucleotides released by apoptotic cells act as a find-me signal to promote phagocytic clearance. Nature 461(7261):282–286Google Scholar
  31. 31.
    Chekeni FB, Elliott MR, Sandilos JK, Walk SF, Kinchen JM, Lazarowski ER et al (2010) Pannexin 1 channels mediate “find-me” signal release and membrane permeability during apoptosis. Nature 467(7317):863–867Google Scholar
  32. 32.
    Rogers C, Fernandes-Alnemri T, Mayes L, Alnemri D, Cingolani G, Alnemri ES (2017) Cleavage of DFNA5 by caspase-3 during apoptosis mediates progression to secondary necrotic/pyroptotic cell death. Nat Commun 8:14128Google Scholar
  33. 33.
    Wang Y, Gao W, Shi X, Ding J, Liu W, He H et al (2017) Chemotherapy drugs induce pyroptosis through caspase-3 cleavage of a gasdermin. Nature 547(7661):99–103Google Scholar
  34. 34.
    Muñoz LE, Lauber K, Schiller M, Manfredi AA, Herrmann M (2010) The role of defective clearance of apoptotic cells in systemic autoimmunity. Nat Rev Rheumatol 6(5):280–289Google Scholar
  35. 35.
    Shao W-H, Cohen PL (2011) Disturbances of apoptotic cell clearance in systemic lupus erythematosus. Arthritis Res Ther 13(1):202Google Scholar
  36. 36.
    Nagata S (2018) Apoptosis and clearance of apoptotic cells. Annu Rev Immunol 36(1):489–517Google Scholar
  37. 37.
    Poon IKH, Lucas CD, Rossi AG, Ravichandran KS (2014) Apoptotic cell clearance: basic biology and therapeutic potential. Nat Rev Immunol 14(3):166–180Google Scholar
  38. 38.
    Potter PK, Cortes-Hernandez J, Quartier P, Botto M, Walport MJ (2003) Lupus-prone mice have an abnormal response to thioglycolate and an impaired clearance of apoptotic cells. J Immunol 170(6):3223–3232Google Scholar
  39. 39.
    Baumann I, Kolowos W, Voll RE, Manger B, Gaipl U, Neuhuber WL et al (2002) Impaired uptake of apoptotic cells into tingible body macrophages in germinal centers of patients with systemic lupus erythematosus. Arthritis Rheum 46(1):191–201Google Scholar
  40. 40.
    Casciola-Rosen LA, Anhalt G, Rosen A (1994) Autoantigens targeted in systemic lupus erythematosus are clustered in two populations of surface structures on apoptotic keratinocytes. J Exp Med 179(4):1317–1330Google Scholar
  41. 41.
    Williams RC, Malone CC, Meyers C, Decker P, Muller S (2001) Detection of nucleosome particles in serum and plasma from patients with systemic lupus erythematosus using monoclonal antibody 4H7. J Rheumatol 28(1):81–94Google Scholar
  42. 42.
    Lee CS, Penberthy KK, Wheeler KM, Juncadella IJ, Vandenabeele P, Lysiak JJ et al (2016) Boosting apoptotic cell clearance by colonic epithelial cells attenuates inflammation in vivo. Immunity 44(4):807–820Google Scholar
  43. 43.
    Björkerud S, Björkerud B (1996) Apoptosis is abundant in human atherosclerotic lesions, especially in inflammatory cells (macrophages and T cells), and may contribute to the accumulation of gruel and plaque instability. Am J Pathol 149(2):367–380Google Scholar
  44. 44.
    Shah PK, Falk E, Badimon JJ, Fernandez-Ortiz A, Mailhac A, Villareal-Levy G et al (1995) Human monocyte-derived macrophages induce collagen breakdown in fibrous caps of atherosclerotic plaques. Potential role of matrix-degrading metalloproteinases and implications for plaque rupture. Circulation 92(6):1565–1569Google Scholar
  45. 45.
    Lane JD, Allan VJ, Woodman PG, Rodriguez-Boulan E, Kreibich G (2005) Active relocation of chromatin and endoplasmic reticulum into blebs in late apoptotic cells. J Cell Sci 118(Pt 17):4059–4071Google Scholar
  46. 46.
    Ogden CA, deCathelineau A, Hoffmann PR, Bratton D, Ghebrehiwet B, Fadok VA et al (2001) C1q and mannose binding lectin engagement of cell surface calreticulin and CD91 initiates macropinocytosis and uptake of apoptotic cells. J Exp Med 194(6):781–795Google Scholar
  47. 47.
    Korb LC, Ahearn JM (1997) C1q binds directly and specifically to surface blebs of apoptotic human keratinocytes: complement deficiency and systemic lupus erythematosus revisited. J Immunol 158(10):4525–4528Google Scholar
  48. 48.
    Witasp E, Uthaisang W, Elenström-Magnusson C, Hanayama R, Tanaka M, Nagata S et al (2007) Bridge over troubled water: milk fat globule epidermal growth factor 8 promotes human monocyte-derived macrophage clearance of non-blebbing phosphatidylserine-positive target cells. Cell Death Differ 14(5):1063Google Scholar
  49. 49.
    Orlando KA, Stone NL, Pittman RN (2006) Rho kinase regulates fragmentation and phagocytosis of apoptotic cells. Exp Cell Res 312(1):5–15Google Scholar
  50. 50.
    Lynch C, Panagopoulou M, Gregory CD (2017) Extracellular vesicles arising from apoptotic cells in tumors: roles in cancer pathogenesis and potential clinical applications. Front Immunol 8:1174Google Scholar
  51. 51.
    Holmgren L, Szeles A, Rajnavölgyi E, Folkman J, Klein G, Ernberg I et al (1999) Horizontal transfer of DNA by the uptake of apoptotic bodies. Blood 93(11):3956–3963Google Scholar
  52. 52.
    Bergsmedh A, Szeles A, Henriksson M, Bratt A, Folkman MJ, Spetz AL et al (2001) Horizontal transfer of oncogenes by uptake of apoptotic bodies. Proc Natl Acad Sci USA 98(11):6407–6411Google Scholar
  53. 53.
    Ainola M, Porola P, Takakubo Y, Przybyla B, Kouri VP, Tolvanen TA et al (2018) Activation of plasmacytoid dendritic cells by apoptotic particles—mechanism for the loss of immunological tolerance in Sjögren’s syndrome. Clin Exp Immunol 191(3):301–310Google Scholar
  54. 54.
    Pyati UJ, Look AT, Hammerschmidt M (2007) Zebrafish as a powerful vertebrate model system for in vivo studies of cell death. Semin Cancer Biol 17(2):154–165Google Scholar
  55. 55.
    Dai Y-J, Jia Y-F, Chen N, Bian W-P, Li Q-K, Ma Y-B et al (2014) Zebrafish as a model system to study toxicology. Environ Toxicol Chem 33(1):11–17Google Scholar
  56. 56.
    Norton W, Bally-Cuif L (2010) Adult zebrafish as a model organism for behavioural genetics. BMC Neurosci 11(1):90Google Scholar
  57. 57.
    Dooley K, Zon LI (2000) Zebrafish: a model system for the study of human disease. Curr Opin Genet Dev 10(3):252–256Google Scholar
  58. 58.
    Bakkers J (2011) Zebrafish as a model to study cardiac development and human cardiac disease. Cardiovasc Res 91(2):279–288Google Scholar
  59. 59.
    Eimon PM, Ashkenazi A (2010) The zebrafish as a model organism for the study of apoptosis. Apoptosis 15(3):331–349Google Scholar
  60. 60.
    Hsieh Y-C, Chang M-S, Chen J-Y, Jong-Young Yen J, Lu I-C, Chou C-M et al (2003) Cloning of zebrafish BAD, a BH3-only proapoptotic protein, whose overexpression leads to apoptosis in COS-1 cells and zebrafish embryos. Biochem Biophys Res Commun 304(4):667–675Google Scholar
  61. 61.
    Jette CA, Flanagan AM, Ryan J, Pyati UJ, Carbonneau S, Stewart RA et al (2008) BIM and other BCL-2 family proteins exhibit cross-species conservation of function between zebrafish and mammals. Cell Death Differ 15(6):1063–1072Google Scholar
  62. 62.
    Negron JF, Lockshin RA (2004) Activation of apoptosis and caspase-3 in zebrafish early gastrulae. Dev Dyn 231(1):161–170Google Scholar
  63. 63.
    Alexander Valencia C, Bailey C, Liu R (2007) Novel zebrafish caspase-3 substrates. Biochem Biophys Res Commun 361(2):311–316Google Scholar
  64. 64.
    Yabu T, Kishi S, Okazaki T, Yamashita M (2001) Characterization of zebrafish caspase-3 and induction of apoptosis through ceramide generation in fish fathead minnow tailbud cells and zebrafish embryo. Biochem J 360(Pt 1):39–47Google Scholar
  65. 65.
    Ikegami R, Hunter P, Yager TD (1999) Developmental activation of the capability to undergo checkpoint-induced apoptosis in the early zebrafish embryo. Dev Biol 209(2):409–433Google Scholar
  66. 66.
    Zhang Y, Xu B, Chen Q, Yan Y, Du J, Du X (2018) Apoptosis of endothelial cells contributes to brain vessel pruning of zebrafish during development. Front Mol Neurosci 11:222Google Scholar
  67. 67.
    van Ham TJ, Mapes J, Kokel D, Peterson RT (2010) Live imaging of apoptotic cells in zebrafish. FASEB J 24(11):4336–4342Google Scholar
  68. 68.
    Morsch M, Radford R, Lee A, Don EK, Badrock AP, Hall TE et al (2015) In vivo characterization of microglial engulfment of dying neurons in the zebrafish spinal cord. Front Cell Neurosci 9:321Google Scholar
  69. 69.
    van Ham TJ, Kokel D, Peterson RT (2012) Apoptotic cells are cleared by directional migration and elmo1—dependent macrophage engulfment. Curr Biol 22(9):830–836Google Scholar
  70. 70.
    Kurtenbach S, Prochnow N, Kurtenbach S, Klooster J, Zoidl C, Dermietzel R et al (2013) Pannexin1 channel proteins in the zebrafish retina have shared and unique properties. PLoS One 8(10):e77722Google Scholar
  71. 71.
    Denton D, Aung-Htut MT, Kumar S (2013) Developmentally programmed cell death in Drosophila. Biochim Biophys Acta Mol Cell Res 1833(12):3499–3506Google Scholar
  72. 72.
    Degterev A, Boyce M, Yuan J (2003) A decade of caspases. Oncogene 22(53):8543–8567Google Scholar
  73. 73.
    White K, Grether ME, Abrams JM, Young L, Farrell K, Steller H (1994) Genetic control of programmed cell death in Drosophila. Science 264(5159):677–683Google Scholar
  74. 74.
    Fraser AG, Evan GI (1997) Identification of a Drosophila melanogaster ICE/CED-3-related protease, drICE. EMBO J 16(10):2805–2813Google Scholar
  75. 75.
    Fuchs Y, Steller H (2011) Programmed cell death in animal development and disease. Cell 147(4):742–758Google Scholar
  76. 76.
    Dorstyn L, Colussi PA, Quinn LM, Richardson H, Kumar S (1999) DRONC, an ecdysone-inducible Drosophila caspase. Proc Natl Acad Sci USA 96(8):4307–4312Google Scholar
  77. 77.
    Rodriguez A, Oliver H, Zou H, Chen P, Wang X, Abrams JM (1999) Dark is a Drosophila homologue of Apaf-1/CED-4 and functions in an evolutionarily conserved death pathway. Nat Cell Biol 1(5):272–279Google Scholar
  78. 78.
    Zhang H, Huang Q, Ke N, Matsuyama S, Hammock B, Godzik A et al (2000) Drosophila pro-apoptotic Bcl-2/Bax homologue reveals evolutionary conservation of cell death mechanisms. J Biol Chem 275(35):27303–27306Google Scholar
  79. 79.
    Monier B, Suzanne M (2015) The morphogenetic role of apoptosis. Curr Top Dev Biol 114:335–362Google Scholar
  80. 80.
    Abrams JM, White K, Fessler LI, Steller H (1993) Programmed cell death during Drosophila embryogenesis. Development 117(1):29–43Google Scholar
  81. 81.
    Tepass U, Fessler LI, Aziz A, Hartenstein V (1994) Embryonic origin of hemocytes and their relationship to cell death in Drosophila. Development 120(7):1829–1837Google Scholar
  82. 82.
    Staveley BE, Ruel L, Jin J, Stambolic V, Mastronardi FG, Heitzler P et al (1998) Genetic analysis of protein kinase B (AKT) in Drosophila. Curr Biol 8(10):599–603Google Scholar
  83. 83.
    Domsch K, Papagiannouli F, Lohmann I (2015) The HOX—apoptosis regulatory interplay in development and disease. Curr Top Dev Biol 114:121–158Google Scholar
  84. 84.
    Monier B, Gettings M, Gay G, Mangeat T, Schott S, Guarner A et al (2015) Apico-basal forces exerted by apoptotic cells drive epithelium folding. Nature 518(7538):245–248Google Scholar
  85. 85.
    Schott S, Ambrosini A, Barbaste A, Benassayag C, Gracia M, Proag A et al (2017) A fluorescent toolkit for spatiotemporal tracking of apoptotic cells in living Drosophila tissues. Development 144(20):3840–3846Google Scholar
  86. 86.
    Aldaz S, Escudero LM, Freeman M (2010) Live imaging of Drosophila imaginal disc development. Proc Natl Acad Sci USA 107(32):14217–14222Google Scholar
  87. 87.
    Nezis IP, Stravopodis DJ, Papassideri I, Robert-Nicoud M, Margaritis LH (2000) Stage-specific apoptotic patterns during Drosophila oogenesis. Eur J Cell Biol 79(9):610–620Google Scholar
  88. 88.
    Foley K, Cooley L (1998) Apoptosis in late stage Drosophila nurse cells does not require genes within the H99 deficiency. Development 125(6):1075–1082Google Scholar
  89. 89.
    Mills JC, Stone NL, Erhardt J, Pittman RN (1998) Apoptotic membrane blebbing is regulated by myosin light chain phosphorylation. J Cell Biol 140(3):627–636Google Scholar
  90. 90.
    Sherrard K, Robin F, Lemaire P, Munro E (2010) Sequential activation of apical and basolateral contractility drives ascidian endoderm invagination. Curr Biol 20(17):1499–1510Google Scholar
  91. 91.
    Han C, Song Y, Xiao H, Wang D, Franc NC, Jan LY et al (2014) Epidermal cells are the primary phagocytes in the fragmentation and clearance of degenerating dendrites in Drosophila. Neuron 81(3):544–560Google Scholar
  92. 92.
    Murano I, Barbatelli G, Parisani V, Latini C, Muzzonigro G, Castellucci M et al (2008) Dead adipocytes, detected as crown-like structures, are prevalent in visceral fat depots of genetically obese mice. J Lipid Res 49(7):1562–1568Google Scholar
  93. 93.
    Arvanitis M, Li D-D, Lee K, Mylonakis E (2013) Apoptosis in C. elegans: lessons for cancer and immunity. Front Cell Infect Microbiol 3:67Google Scholar
  94. 94.
    Lettre G, Hengartner MO (2006) Developmental apoptosis in C. elegans: a complex CEDnario. Nat Rev Mol Cell Biol. 7(2):97–108Google Scholar
  95. 95.
    Sulston JE, Horvitz HR (1977) Post-embryonic cell lineages of the nematode, Caenorhabditis elegans. Dev Biol 56(1):110–156Google Scholar
  96. 96.
    Sulston JE, Schierenberg E, White JG, Thomson JN (1983) The embryonic cell lineage of the nematode Caenorhabditis elegans. Dev Biol 100(1):64–119Google Scholar
  97. 97.
    Kimble J, Hirsh D (1979) The postembryonic cell lineages of the hermaphrodite and male gonads in Caenorhabditis elegans. Dev Biol 70(2):396–417Google Scholar
  98. 98.
    Hedgecock EM, Sulston JE, Thomson JN (1983) Mutations affecting programmed cell deaths in the nematode Caenorhabditis elegans. Science 220(4603):1277–1279Google Scholar
  99. 99.
    Robertson AMG, Thomson JN (1982) Morphology of programmed cell death in the ventral nerve cord of Caenorhabditis elegans larvae. Development 67(1):89–100Google Scholar
  100. 100.
    Ellis RE, Jacobson DM, Horvitz HR (1991) Genes required for the engulfment of cell corpses during programmed cell death in Caenorhabditis elegans. Genetics 129(1):79–94Google Scholar
  101. 101.
    Hoeppner DJ, Hengartner MO, Schnabel R (2001) Engulfment genes cooperate with ced-3 to promote cell death in Caenorhabditis elegans. Nature 412(6843):202–206Google Scholar
  102. 102.
    Reddien PW, Cameron S, Horvitz HR (2001) Phagocytosis promotes programmed cell death in C. elegans. Nature 412(6843):198–202Google Scholar
  103. 103.
    Dickman M, Williams B, Li Y, de Figueiredo P, Wolpert T (2017) Reassessing apoptosis in plants. Nat Plants 3(10):773–779Google Scholar
  104. 104.
    Carmona-Gutierrez D, Fröhlich K-U, Kroemer G, Madeo F (2010) Metacaspases are caspases. Doubt no more. Cell Death Differ 17(3):377–378Google Scholar
  105. 105.
    Enoksson M, Salvesen GS (2010) Metacaspases are not caspases—always doubt. Cell Death Differ 17(8):1221Google Scholar
  106. 106.
    Chen S, Dickman MB (2004) Bcl-2 family members localize to tobacco chloroplasts and inhibit programmed cell death induced by chloroplast-targeted herbicides. J Exp Bot 55(408):2617–2623Google Scholar
  107. 107.
    Lacomme C, Santa Cruz S (1999) Bax-induced cell death in tobacco is similar to the hypersensitive response. Proc Natl Acad Sci USA 96(14):7956–7961Google Scholar
  108. 108.
    Reape TJ, McCabe PF (2010) Apoptotic-like regulation of programmed cell death in plants. Apoptosis 15(3):249–256Google Scholar
  109. 109.
    Kader J-C, Delseny M (2011) The botanical dance of death: programmed cell death in plants. In: Kacprzyk J, Daly CT, McCabe PF (eds) Advances in botanical research, vol 60. Elsevier, London, Waltham, San Diego, Amsterdam, pp 169–261Google Scholar
  110. 110.
    Li W, Kabbage M, Dickman MB (2010) Transgenic expression of an insect inhibitor of apoptosis gene, SfIAP, confers abiotic and biotic stress tolerance and delays tomato fruit ripening. Physiol Mol Plant Pathol 74(5–6):363–375Google Scholar
  111. 111.
    McCabe PF, Levine A, Meijer P-J, Tapon NA, Pennell RI (1997) A programmed cell death pathway activated in carrot cells cultured at low cell density. Plant J 12(2):267–280Google Scholar
  112. 112.
    Li W, Dickman MB (2004) Abiotic stress induces apoptotic-like features in tobacco that is inhibited by expression of human Bcl-2. Biotechnol Lett 26(2):87–95Google Scholar
  113. 113.
    Balk J, Chew SK, Leaver CJ, McCabe PF (2003) The intermembrane space of plant mitochondria contains a DNase activity that may be involved in programmed cell death. Plant J 34(5):573–583Google Scholar
  114. 114.
    Balk J, Leaver CJ (2001) The PET1-CMS mitochondrial mutation in sunflower is associated with premature programmed cell death and cytochrome c release. Plant Cell 13(8):1803–1818Google Scholar
  115. 115.
    Reape TJ, McCabe PF (2008) Apoptotic-like programmed cell death in plants. New Phytol 180(1):13–26Google Scholar
  116. 116.
    O’Brien IE, Reutelingsperger CP, Holdaway KM (1997) Annexin-V and TUNEL use in monitoring the progression of apoptosis in plants. Cytometry 29(1):28–33Google Scholar
  117. 117.
    Min K, Son H, Lee J, Choi GJ, Kim J-C, Lee Y-W (2012) Peroxisome function is required for virulence and survival of Fusarium graminearum. Mol Plant Microbe Interact 25(12):1617–1627Google Scholar
  118. 118.
    Vanyushin B, Bakeeva L, Zamyatnina V, Aleksandrushkina N (2004) Apoptosis in plants: specific features of plant apoptotic cells and effect of various factors and agents. Int Rev Cytol 233:135–179Google Scholar
  119. 119.
    Polverari A, Buonaurio R, Guiderdone S, Pezzotti M, Marte M (2000) Ultrastructural observations and DNA degradation analysis of pepper leaves undergoing a hypersensitive reaction to Xanthomonas campestris pv. vesicatoria. Eur J Plant Pathol 106(5):423–431Google Scholar
  120. 120.
    Cai Q, Qiao L, Wang M, He B, Lin F-M, Palmquist J et al (2018) Plants send small RNAs in extracellular vesicles to fungal pathogen to silence virulence genes. Science 360(6393):1126–1129Google Scholar
  121. 121.
    Gonçalves AP, Heller J, Daskalov A, Videira A, Glass NL (2017) Regulated forms of cell death in fungi. Front Microbiol 8:1837Google Scholar
  122. 122.
    Ramsdale M (2008) Programmed cell death in pathogenic fungi. Biochim Biophys Acta Mol Cell Res 1783(7):1369–1380Google Scholar
  123. 123.
    Madeo F, Herker E, Maldener C, Wissing S, Lächelt S, Herlan M et al (2002) A caspase-related protease regulates apoptosis in yeast. Mol Cell 9(4):911–917Google Scholar
  124. 124.
    Carmona-Gutierrez D, Eisenberg T, Büttner S, Meisinger C, Kroemer G, Madeo F (2010) Apoptosis in yeast: triggers, pathways, subroutines. Cell Death Differ 17(5):763–773Google Scholar
  125. 125.
    Madeo F, Engelhardt S, Herker E, Lehmann N, Maldener C, Proksch A et al (2002) Apoptosis in yeast: a new model system with applications in cell biology and medicine. Curr Genet 41(4):208–216Google Scholar
  126. 126.
    McGary KL, Park TJ, Woods JO, Cha HJ, Wallingford JB, Marcotte EM (2010) Systematic discovery of nonobvious human disease models through orthologous phenotypes. Proc Natl Acad Sci USA 107(14):6544–6549Google Scholar
  127. 127.
    Simon J, Bedalov A (2004) Yeast as a model system for anticancer drug discovery. Nat Rev Cancer 4(June):1–8Google Scholar
  128. 128.
    Yamaki M, Umehara T, Chimura T, Horikoshi M (2001) Cell death with predominant apoptotic features in Saccharomyces cerevisiae mediated by deletion of the histone chaperone ASF1/CIA1. Genes Cells 6(12):1043–1054Google Scholar
  129. 129.
    Madeo F, Fröhlich E, Fröhlich KU (1997) A yeast mutant showing diagnostic markers of early and late apoptosis. J Cell Biol 139(3):729–734Google Scholar
  130. 130.
    Váchová L, Palková Z (2005) Physiological regulation of yeast cell death in multicellular colonies is triggered by ammonia. J Cell Biol 169(5):711–717Google Scholar
  131. 131.
    Fabrizio P, Battistella L, Vardavas R, Gattazzo C, Liou L-L, Diaspro A et al (2004) Superoxide is a mediator of an altruistic aging program in Saccharomyces cerevisiae. J Cell Biol 166(7):1055–1067Google Scholar
  132. 132.
    Kaczanowski S, Sajid M, Reece SE (2011) Evolution of apoptosis-like programmed cell death in unicellular protozoan parasites. Parasites Vectors 4(1):44Google Scholar
  133. 133.
    Lüder CG, Campos-Salinas J, Gonzalez-Rey E, van Zandbergen G (2010) Impact of protozoan cell death on parasite-host interactions and pathogenesis. Parasites Vectors 3(1):116Google Scholar
  134. 134.
    Proto WR, Coombs GH, Mottram JC (2013) Cell death in parasitic protozoa: regulated or incidental? Nat Rev Microbiol 11(1):58–66Google Scholar
  135. 135.
    Ameisen JC, Idziorek T, Billaut-Mulot O, Loyens M, Tissier JP, Potentier A et al (1995) Apoptosis in a unicellular eukaryote (Trypanosoma cruzi): implications for the evolutionary origin and role of programmed cell death in the control of cell proliferation, differentiation and survival. Cell Death Differ 2(4):285–300Google Scholar
  136. 136.
    Mamani-Matsuda M, Rambert J, Malvy D, Lejoly-Boisseau H, Daulouède S, Thiolat D et al (2004) Quercetin induces apoptosis of Trypanosoma brucei gambiense and decreases the proinflammatory response of human macrophages. Antimicrob Agents Chemother 48(3):924–929Google Scholar
  137. 137.
    Duszenko M, Figarella K, Macleod ET, Welburn SC (2006) Death of a trypanosome: a selfish altruism. Trends Parasitol 22(11):536–542Google Scholar
  138. 138.
    Piacenza L, Peluffo G, Radi R (2001) l-Arginine-dependent suppression of apoptosis in Trypanosoma cruzi: contribution of the nitric oxide and polyamine pathways. Proc Natl Acad Sci 98(13):7301–7306Google Scholar
  139. 139.
    Irigoín F, Inada NM, Fernandes MP, Piacenza L, Gadelha FR, Vercesi AE et al (2009) Mitochondrial calcium overload triggers complement-dependent superoxide-mediated programmed cell death in Trypanosoma cruzi. Biochem J 418(3):595–604Google Scholar
  140. 140.
    Welburn SC, Dale C, Ellis D, Beecroft R, Pearson TW (1996) Apoptosis in procyclic Trypanosoma brucei rhodesiense in vitro. Cell Death Differ 3(2):229–236Google Scholar
  141. 141.
    Das M, Mukherjee SB, Shaha C (2001) Hydrogen peroxide induces apoptosis-like death in Leishmania donovani promastigotes. J Cell Sci 114:2461–2469Google Scholar
  142. 142.
    Paris C, Loiseau PM, Bories C, Bréard J (2004) Miltefosine induces apoptosis-like death in Leishmania donovani promastigotes. Antimicrob Agents Chemother 48(3):852–859Google Scholar
  143. 143.
    Shadab M, Jha B, Asad M, Deepthi M, Kamran M, Ali N (2017) Apoptosis-like cell death in Leishmania donovani treated with KalsomeTM10, a new liposomal amphotericin B. PLoS One 12(2):e0171306Google Scholar
  144. 144.
    Gannavaram S, Debrabant A (2012) Programmed cell death in Leishmania: biochemical evidence and role in parasite infectivity. Front Cell Infect Microbiol 2:95Google Scholar
  145. 145.
    Arambage SC, Grant KM, Pardo I, Ranford-Cartwright L, Hurd H (2009) Malaria ookinetes exhibit multiple markers for apoptosis-like programmed cell death in vitro. Parasites Vectors 2(1):32Google Scholar
  146. 146.
    Meslin B, Barnadas C, Boni V, Latour C, Monbrison FD, Kaiser K et al (2007) Features of apoptosis in Plasmodium falciparum erythrocytic stage through a putative role of PfMCA1 metacaspase-like protein. J Infect Dis 195(12):1852–1859Google Scholar
  147. 147.
    Al-Olayan EM, Williams GT, Hurd H (2002) Apoptosis in the malaria protozoan, Plasmodium berghei: a possible mechanism for limiting intensity of infection in the mosquito. Int J Parasitol 32(9):1133–1143Google Scholar
  148. 148.
    Ni Nyoman AD, Lüder CGK (2013) Apoptosis-like cell death pathways in the unicellular parasite Toxoplasma gondii following treatment with apoptosis inducers and chemotherapeutic agents: a proof-of-concept study. Apoptosis 18(6):664–680Google Scholar
  149. 149.
    Peng B-W, Lin J, Lin J-Y, Jiang M-S, Zhang T (2003) Exogenous nitric oxide induces apoptosis in Toxoplasma gondii tachyzoites via a calcium signal transduction pathway. Parasitology 126(6):541–550Google Scholar
  150. 150.
    Jensen JB, Boland MT, Akood M (1982) Induction of crisis forms in cultured Plasmodium falciparum with human immune serum from Sudan. Science 216(4551):1230Google Scholar
  151. 151.
    Deponte M, Becker K (2004) Plasmodium falciparum—do killers commit suicide? Trends Parasitol 20(4):165–169Google Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Department of Biochemistry and Genetics, La Trobe Institute for Molecular ScienceLa Trobe UniversityMelbourneAustralia

Personalised recommendations