Advertisement

Cellular and Molecular Life Sciences

, Volume 75, Issue 24, pp 4539–4555 | Cite as

Transcriptional effects of actin-binding compounds: the cytoplasm sets the tone

  • Florian A. Gegenfurtner
  • Themistoklis Zisis
  • Nader Al Danaf
  • Waldemar Schrimpf
  • Zane Kliesmete
  • Christoph Ziegenhain
  • Wolfgang Enard
  • Uli Kazmaier
  • Don C. Lamb
  • Angelika M. Vollmar
  • Stefan ZahlerEmail author
Original Article

Abstract

Actin has emerged as a versatile regulator of gene transcription. Cytoplasmatic actin regulates mechanosensitive-signaling pathways such as MRTF–SRF and Hippo-YAP/TAZ. In the nucleus, both polymerized and monomeric actin directly interfere with transcription-associated molecular machineries. Natural actin-binding compounds are frequently used tools to study actin-related processes in cell biology. However, their influence on transcriptional regulation and intranuclear actin polymerization is poorly understood to date. Here, we analyze the effects of two representative actin-binding compounds, Miuraenamide A (polymerizing properties) and Latrunculin B (depolymerizing properties), on transcriptional regulation in primary cells. We find that actin stabilizing and destabilizing compounds inversely shift nuclear actin levels without a direct influence on polymerization state and intranuclear aspects of transcriptional regulation. Furthermore, we identify Miuraenamide A as a potent inducer of G-actin-dependent SRF target gene expression. In contrast, the F-actin-regulated Hippo-YAP/TAZ axis remains largely unaffected by compound-induced actin aggregation. This is due to the inability of AMOTp130 to bind to the amorphous actin aggregates resulting from treatment with miuraenamide. We conclude that actin-binding compounds predominantly regulate transcription via their influence on cytoplasmatic G-actin levels, while transcriptional processes relying on intranuclear actin polymerization or functional F-actin networks are not targeted by these compounds at tolerable doses.

Keywords

Latrunculin Miuraenamide MRTF-A Nuclear actin Transcription YAP 

Notes

Acknowledgements

The authors thank the labs of Prof. Robert Grosse and Prof. Bin Zhao for the sharing of plasmids and fruitful scientific discussions. We, furthermore, thank Jana Peliskova for excellent technical assistance and Dr. Lisa Karmann for providing synthetic samples of Miuraenamide A. This work was funded by the Deutsche Forschungsgemeinschaft (DFG), SFB 1032, projects B08 and B03, and FOR1406.

Supplementary material

18_2018_2919_MOESM1_ESM.tif (24.9 mb)
Supplementary material 1 (TIFF 25477 kb)
18_2018_2919_MOESM2_ESM.tif (24.9 mb)
Supplementary material 2 (TIFF 25477 kb)
18_2018_2919_MOESM3_ESM.tif (24.9 mb)
Supplementary material 3 (TIFF 25477 kb)
18_2018_2919_MOESM4_ESM.tif (24.9 mb)
Supplementary material 4 (TIFF 25477 kb)
18_2018_2919_MOESM5_ESM.xlsx (143 kb)
Supplementary material 5 (XLSX 143 kb)

References

  1. 1.
    Pollard TD, Cooper JA (2009) Actin, a central player in cell shape and movement. Science 326(5957):1208–1212.  https://doi.org/10.1126/science.1175862 CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Virtanen JA, Vartiainen MK (2017) Diverse functions for different forms of nuclear actin. Curr Opin Cell Biol 46:33–38.  https://doi.org/10.1016/j.ceb.2016.12.004 CrossRefPubMedGoogle Scholar
  3. 3.
    Falahzadeh K, Banaei-Esfahani A, Shahhoseini M (2015) The potential roles of actin in the nucleus. Cell J 17(1):7–14PubMedPubMedCentralGoogle Scholar
  4. 4.
    de Lanerolle P, Serebryannyy L (2011) Nuclear actin and myosins: life without filaments. Nat Cell Biol 13(11):1282–1288.  https://doi.org/10.1038/ncb2364 CrossRefPubMedGoogle Scholar
  5. 5.
    Vartiainen MK (2008) Nuclear actin dynamics—from form to function. FEBS Lett 582(14):2033–2040.  https://doi.org/10.1016/j.febslet.2008.04.010 CrossRefPubMedGoogle Scholar
  6. 6.
    Szerlong H, Hinata K, Viswanathan R, Erdjument-Bromage H, Tempst P, Cairns BR (2008) The HSA domain binds nuclear actin-related proteins to regulate chromatin-remodeling ATPases. Nat Struct Mol Biol 15(5):469–476.  https://doi.org/10.1038/nsmb.1403 CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Kapoor P, Shen X (2014) Mechanisms of nuclear actin in chromatin-remodeling complexes. Trends Cell Biol 24(4):238–246.  https://doi.org/10.1016/j.tcb.2013.10.007 CrossRefPubMedGoogle Scholar
  8. 8.
    Philimonenko VV, Zhao J, Iben S, Dingova H, Kysela K, Kahle M, Zentgraf H, Hofmann WA, de Lanerolle P, Hozak P, Grummt I (2004) Nuclear actin and myosin I are required for RNA polymerase I transcription. Nat Cell Biol 6(12):1165–1172.  https://doi.org/10.1038/ncb1190 CrossRefPubMedGoogle Scholar
  9. 9.
    Hofmann WA, Stojiljkovic L, Fuchsova B, Vargas GM, Mavrommatis E, Philimonenko V, Kysela K, Goodrich JA, Lessard JL, Hope TJ, Hozak P, de Lanerolle P (2004) Actin is part of pre-initiation complexes and is necessary for transcription by RNA polymerase II. Nat Cell Biol 6(11):1094–1101.  https://doi.org/10.1038/ncb1182 CrossRefPubMedGoogle Scholar
  10. 10.
    Hu P, Wu S, Hernandez N (2004) A role for beta-actin in RNA polymerase III transcription. Genes Dev 18(24):3010–3015.  https://doi.org/10.1101/gad.1250804 CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Almuzzaini B, Sarshad AA, Rahmanto AS, Hansson ML, Von Euler A, Sangfelt O, Visa N, Farrants AK, Percipalle P (2016) In beta-actin knockouts, epigenetic reprogramming and rDNA transcription inactivation lead to growth and proliferation defects. FASEB J Off Publ Fed Am Soc Exp Biolgy 30(8):2860–2873.  https://doi.org/10.1096/fj.201600280R CrossRefGoogle Scholar
  12. 12.
    Serebryannyy LA, Cruz CM, de Lanerolle P (2016) A role for nuclear actin in HDAC 1 and 2 regulation. Sci Rep 6:28460.  https://doi.org/10.1038/srep28460 CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Toh KC, Ramdas NM, Shivashankar GV (2015) Actin cytoskeleton differentially alters the dynamics of lamin A, HP1alpha and H2B core histone proteins to remodel chromatin condensation state in living cells. Integr Biol (Camb).  https://doi.org/10.1039/c5ib00027k CrossRefGoogle Scholar
  14. 14.
    Mammoto A, Mammoto T, Ingber DE (2012) Mechanosensitive mechanisms in transcriptional regulation. J Cell Sci 125(Pt 13):3061–3073.  https://doi.org/10.1242/jcs.093005 CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Baarlink C, Wang H, Grosse R (2013) Nuclear actin network assembly by formins regulates the SRF coactivator MAL. Science 340(6134):864–867.  https://doi.org/10.1126/science.1235038 CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Posern G, Treisman R (2006) Actin’ together: serum response factor, its cofactors and the link to signal transduction. Trends Cell Biol 16(11):588–596.  https://doi.org/10.1016/j.tcb.2006.09.008 CrossRefPubMedGoogle Scholar
  17. 17.
    Vartiainen MK, Guettler S, Larijani B, Treisman R (2007) Nuclear actin regulates dynamic subcellular localization and activity of the SRF cofactor MAL. Science 316(5832):1749–1752.  https://doi.org/10.1126/science.1141084 CrossRefPubMedGoogle Scholar
  18. 18.
    Mana-Capelli S, Paramasivam M, Dutta S, McCollum D (2014) Angiomotins link F-actin architecture to Hippo pathway signaling. Mol Biol Cell 25(10):1676–1685.  https://doi.org/10.1091/mbc.E13-11-0701 CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Zhao B, Li L, Lu Q, Wang LH, Liu CY, Lei Q, Guan KL (2011) Angiomotin is a novel Hippo pathway component that inhibits YAP oncoprotein. Genes Dev 25(1):51–63.  https://doi.org/10.1101/gad.2000111 CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Chan SW, Lim CJ, Chong YF, Pobbati AV, Huang C, Hong W (2011) Hippo pathway-independent restriction of TAZ and YAP by angiomotin. J Biol Chem 286(9):7018–7026.  https://doi.org/10.1074/jbc.C110.212621 CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Gaspar P, Tapon N (2014) Sensing the local environment: actin architecture and Hippo signalling. Curr Opin Cell Biol 31:74–83.  https://doi.org/10.1016/j.ceb.2014.09.003 CrossRefPubMedGoogle Scholar
  22. 22.
    Wada K, Itoga K, Okano T, Yonemura S, Sasaki H (2011) Hippo pathway regulation by cell morphology and stress fibers. Development 138(18):3907–3914.  https://doi.org/10.1242/dev.070987 CrossRefPubMedGoogle Scholar
  23. 23.
    Allingham JS, Klenchin VA, Rayment I (2006) Actin-targeting natural products: structures, properties and mechanisms of action. Cell Mol Life Sci CMLS 63(18):2119–2134.  https://doi.org/10.1007/s00018-006-6157-9 CrossRefPubMedGoogle Scholar
  24. 24.
    Olson EN, Nordheim A (2010) Linking actin dynamics and gene transcription to drive cellular motile functions. Nat Rev Mol Cell Biol 11(5):353–365.  https://doi.org/10.1038/nrm2890 CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Collin O, Na S, Chowdhury F, Hong M, Shin ME, Wang F, Wang N (2008) Self-organized podosomes are dynamic mechanosensors. Curr Biol 18(17):1288–1294.  https://doi.org/10.1016/j.cub.2008.07.046 CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Chang CY, Leu JD, Lee YJ (2015) The actin depolymerizing factor (ADF)/cofilin signaling pathway and DNA damage responses in cancer. Int J Mol Sci 16(2):4095–4120.  https://doi.org/10.3390/ijms16024095 CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Ojima D, Yasui A, Tohyama K, Tokuzumi K, Toriihara E, Ito K, Iwasaki A, Tomura T, Ojika M, Suenaga K (2016) Total synthesis of miuraenamides A and D. J Org Chem 81(20):9886–9894.  https://doi.org/10.1021/acs.joc.6b02061 CrossRefPubMedGoogle Scholar
  28. 28.
    Karmann L, Schultz K, Herrmann J, Muller R, Kazmaier U (2015) Total syntheses and biological evaluation of miuraenamides. Angew Chem Int Ed Engl 54(15):4502–4507.  https://doi.org/10.1002/anie.201411212 CrossRefPubMedGoogle Scholar
  29. 29.
    Iizuka T, Fudou R, Jojima Y, Ogawa S, Yamanaka S, Inukai Y, Ojika M (2006) Miuraenamides A and B, novel antimicrobial cyclic depsipeptides from a new slightly halophilic myxobacterium: taxonomy, production, and biological properties. J Antibiot (Tokyo) 59(7):385–391.  https://doi.org/10.1038/ja.2006.55 CrossRefGoogle Scholar
  30. 30.
    Cheng Z, Garvin D, Paguio A, Stecha P, Wood K, Fan F (2010) Luciferase reporter assay system for deciphering GPCR pathways. Curr Chem Genom 4:84–91.  https://doi.org/10.2174/1875397301004010084 CrossRefGoogle Scholar
  31. 31.
    Hendrix J, Baumgartel V, Schrimpf W, Ivanchenko S, Digman MA, Gratton E, Krausslich HG, Muller B, Lamb DC (2015) Live-cell observation of cytosolic HIV-1 assembly onset reveals RNA-interacting Gag oligomers. J Cell Biol 210(4):629–646.  https://doi.org/10.1083/jcb.201504006 CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Small J, Rottner K, Hahne P, Anderson KI (1999) Visualising the actin cytoskeleton. Microsc Res Tech 47(1):3–17.  https://doi.org/10.1002/(SICI)1097-0029(19991001)47:1%3c3:AID-JEMT2%3e3.0.CO;2-2 CrossRefPubMedGoogle Scholar
  33. 33.
    Soumillon M, Cacchiarelli D, Semrau S, van Oudenaarden A, Mikkelsen TS (2014) Characterization of directed differentiation by high-throughput single-cell RNA-Seq. BioRxiv.  https://doi.org/10.1101/003236 CrossRefGoogle Scholar
  34. 34.
    Parekh S, Ziegenhain C, Vieth B, Enard W, Hellmann I (2017) zUMIs: A fast and flexible pipeline to process RNA sequencing data with UMIs. BioRxiv.  https://doi.org/10.1101/153940 CrossRefGoogle Scholar
  35. 35.
    McDonald D, Carrero G, Andrin C, de Vries G, Hendzel MJ (2006) Nucleoplasmic beta-actin exists in a dynamic equilibrium between low-mobility polymeric species and rapidly diffusing populations. J Cell Biol 172(4):541–552.  https://doi.org/10.1083/jcb.200507101 CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Wachsmuth M, Waldeck W, Langowski J (2000) Anomalous diffusion of fluorescent probes inside living cell nuclei investigated by spatially-resolved fluorescence correlation spectroscopy. J Mol Biol 298(4):677–689.  https://doi.org/10.1006/jmbi.2000.3692 CrossRefPubMedGoogle Scholar
  37. 37.
    Brown CM, Dalal RB, Hebert B, Digman MA, Horwitz AR, Gratton E (2008) Raster image correlation spectroscopy (RICS) for measuring fast protein dynamics and concentrations with a commercial laser scanning confocal microscope. J Microsc 229(Pt 1):78–91.  https://doi.org/10.1111/j.1365-2818.2007.01871.x CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Hendrix J, Lamb DC (2014) Implementation and application of pulsed interleaved excitation for dual-color FCS and RICS. Methods Mol Biol 1076:653–682.  https://doi.org/10.1007/978-1-62703-649-8_30 CrossRefPubMedGoogle Scholar
  39. 39.
    Digman MA, Brown CM, Sengupta P, Wiseman PW, Horwitz AR, Gratton E (2005) Measuring fast dynamics in solutions and cells with a laser scanning microscope. Biophys J 89(2):1317–1327.  https://doi.org/10.1529/biophysj.105.062836 CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Hendrix J, Schrimpf W, Holler M, Lamb DC (2013) Pulsed interleaved excitation fluctuation imaging. Biophys J 105(4):848–861.  https://doi.org/10.1016/j.bpj.2013.05.059 CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Hendrix J, Dekens T, Schrimpf W, Lamb DC (2016) Arbitrary-region raster image correlation spectroscopy. Biophys J 111(8):1785–1796.  https://doi.org/10.1016/j.bpj.2016.09.012 CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Miralles F, Posern G, Zaromytidou AI, Treisman R (2003) Actin dynamics control SRF activity by regulation of its coactivator MAL. Cell 113(3):329–342CrossRefGoogle Scholar
  43. 43.
    Reddy P, Deguchi M, Cheng Y, Hsueh AJ (2013) Actin cytoskeleton regulates Hippo signaling. PLoS One 8(9):e73763.  https://doi.org/10.1371/journal.pone.0073763 CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Esnault C, Stewart A, Gualdrini F, East P, Horswell S, Matthews N, Treisman R (2014) Rho-actin signaling to the MRTF coactivators dominates the immediate transcriptional response to serum in fibroblasts. Genes Dev 28(9):943–958.  https://doi.org/10.1101/gad.239327.114 CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Zanconato F, Forcato M, Battilana G, Azzolin L, Quaranta E, Bodega B, Rosato A, Bicciato S, Cordenonsi M, Piccolo S (2015) Genome-wide association between YAP/TAZ/TEAD and AP-1 at enhancers drives oncogenic growth. Nat Cell Biol 17(9):1218–1227.  https://doi.org/10.1038/ncb3216 CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Belin BJ, Cimini BA, Blackburn EH, Mullins RD (2013) Visualization of actin filaments and monomers in somatic cell nuclei. Mol Biol Cell 24(7):982–994.  https://doi.org/10.1091/mbc.E12-09-0685 CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Melak M, Plessner M, Grosse R (2017) Actin visualization at a glance. J Cell Sci.  https://doi.org/10.1242/jcs.189068 CrossRefPubMedGoogle Scholar
  48. 48.
    Miyamoto K, Gurdon JB (2013) Transcriptional regulation and nuclear reprogramming: roles of nuclear actin and actin-binding proteins. Cell Mol Life Sci CMLS 70(18):3289–3302.  https://doi.org/10.1007/s00018-012-1235-7 CrossRefPubMedGoogle Scholar
  49. 49.
    Rajakyla EK, Vartiainen MK (2014) Rho, nuclear actin, and actin-binding proteins in the regulation of transcription and gene expression. Small GTPases 5:e27539.  https://doi.org/10.4161/sgtp.27539 CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Spencer VA, Costes S, Inman JL, Xu R, Chen J, Hendzel MJ, Bissell MJ (2011) Depletion of nuclear actin is a key mediator of quiescence in epithelial cells. J Cell Sci 124(Pt 1):123–132.  https://doi.org/10.1242/jcs.073197 CrossRefPubMedGoogle Scholar
  51. 51.
    Dopie J, Skarp KP, Rajakyla EK, Tanhuanpaa K, Vartiainen MK (2012) Active maintenance of nuclear actin by importin 9 supports transcription. Proc Natl Acad Sci USA 109(9):E544–E552.  https://doi.org/10.1073/pnas.1118880109 CrossRefPubMedGoogle Scholar
  52. 52.
    Sharili AS, Kenny FN, Vartiainen MK, Connelly JT (2016) Nuclear actin modulates cell motility via transcriptional regulation of adhesive and cytoskeletal genes. Sci Rep 6:33893.  https://doi.org/10.1038/srep33893 CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Stuven T, Hartmann E, Gorlich D (2003) Exportin 6: a novel nuclear export receptor that is specific for profilin.actin complexes. EMBO J 22(21):5928–5940.  https://doi.org/10.1093/emboj/cdg565 CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Pollard TD (2016) Actin and actin-binding proteins. Cold Spring Harb Perspect Biol.  https://doi.org/10.1101/cshperspect.a018226 CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Baarlink C, Plessner M, Sherrard A, Morita K, Misu S, Virant D, Kleinschnitz EM, Harniman R, Alibhai D, Baumeister S, Miyamoto K, Endesfelder U, Kaidi A, Grosse R (2017) A transient pool of nuclear F-actin at mitotic exit controls chromatin organization. Nat Cell Biol.  https://doi.org/10.1038/ncb3641 CrossRefPubMedGoogle Scholar
  56. 56.
    Plessner M, Grosse R (2015) Extracellular signaling cues for nuclear actin polymerization. Eur J Cell Biol.  https://doi.org/10.1016/j.ejcb.2015.05.009 CrossRefPubMedGoogle Scholar
  57. 57.
    Belin BJ, Lee T, Mullins RD (2015) DNA damage induces nuclear actin filament assembly by formin-2 and spire-(1/2) that promotes efficient DNA repair. Elife.  https://doi.org/10.7554/eLife.07735 CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Matsui Y, Lai ZC (2013) Mutual regulation between Hippo signaling and actin cytoskeleton. Protein Cell 4(12):904–910.  https://doi.org/10.1007/s13238-013-3084-z CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Yu FX, Guan KL (2013) The Hippo pathway: regulators and regulations. Genes Dev 27(4):355–371.  https://doi.org/10.1101/gad.210773.112 CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Dai X, She P, Chi F, Feng Y, Liu H, Jin D, Zhao Y, Guo X, Jiang D, Guan KL, Zhong TP, Zhao B (2013) Phosphorylation of angiomotin by Lats1/2 kinases inhibits F-actin binding, cell migration, and angiogenesis. J Biol Chem 288(47):34041–34051.  https://doi.org/10.1074/jbc.M113.518019 CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    Isermann P, Lammerding J (2013) Nuclear mechanics and mechanotransduction in health and disease. Curr Biol 23(24):R1113–R1121.  https://doi.org/10.1016/j.cub.2013.11.009 CrossRefPubMedGoogle Scholar
  62. 62.
    Dahl KN, Ribeiro AJ, Lammerding J (2008) Nuclear shape, mechanics, and mechanotransduction. Circ Res 102(11):1307–1318.  https://doi.org/10.1161/CIRCRESAHA.108.173989 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Florian A. Gegenfurtner
    • 1
  • Themistoklis Zisis
    • 1
  • Nader Al Danaf
    • 2
  • Waldemar Schrimpf
    • 2
  • Zane Kliesmete
    • 3
  • Christoph Ziegenhain
    • 3
  • Wolfgang Enard
    • 3
  • Uli Kazmaier
    • 4
  • Don C. Lamb
    • 2
  • Angelika M. Vollmar
    • 1
  • Stefan Zahler
    • 1
    Email author
  1. 1.Department of Pharmacy, Center for Drug ResearchLudwig-Maximilians-University MunichMunichGermany
  2. 2.Department of Chemistry, Munich Center for Integrated Protein Science, Nanosystems Initiative Munich and Centre for NanoscienceLudwig-Maximilians-University MunichMunichGermany
  3. 3.Department Biology II, Anthropology and Human GenomicsLudwig-Maximilians-University MunichMartinsriedGermany
  4. 4.Institute of Organic ChemistrySaarland UniversitySaarbrückenGermany

Personalised recommendations