Advertisement

Cellular and Molecular Life Sciences

, Volume 76, Issue 1, pp 13–26 | Cite as

Mechanisms for establishment of the placental glucocorticoid barrier, a guard for life

  • Ping Zhu
  • Wangsheng Wang
  • Rujuan Zuo
  • Kang SunEmail author
Review

Abstract

The fetus is shielded from the adverse effects of excessive maternal glucocorticoids by 11β-HSD2, an enzyme which is expressed in the syncytial layer of the placental villi and is capable of converting biologically active cortisol into inactive cortisone. Impairment of this placental glucocorticoid barrier is associated with fetal intrauterine growth restriction (IUGR) and development of chronic diseases in later life. Ontogeny studies show that the expression of 11β-HSD2 is initiated at a very early stage after conception and increases with gestational age but declines around term. The promoter for HSD11B2, the gene encoding 11β-HSD2, has a highly GC-rich core. However, the pattern of methylation on HSD11B2 may have already been set up in the blastocyst when the trophoblast identity is committed. Instead, hCG-initiated signals appear to be responsible for the upsurge of 11β-HSD2 expression during trophoblast syncytialization. By activating the cAMP/PKA pathway, hCG not only alters the modification of histones but also increases the expression of Sp1 which activates the transcription of HSD11B2. Adverse conditions such as stress, hypoxia and nutritional restriction can cause IUGR of the fetus. It appears that different causes of IUGR may attenuate HSD11B2 expression differentially in the placenta. While stress and nutritional restriction may reduce HSD11B2 expression by increasing its methylation, hypoxia may decrease HSD11B2 expression via alternative mechanisms rather than by methylation. Herein, we summarize the advances in the study of mechanisms underlying the establishment of the placental glucocorticoid barrier and the attenuation of this barrier by adverse conditions during pregnancy.

Keywords

Placenta Cortisol 11β-hydroxysteroid dehydrogenase 2 Ontogeny hCG Histone and epigenetics 

Notes

Acknowledgements

This work was supported by National Natural Science Foundation of China (31671566 and 81330018), National Key R&D Program of China (2017YFC1001403) and National Key Basic Research Projects (2014CB943302). The authors would like to thank Dr. Dev Sooranna, Imperial College London, for editing the manuscript.

Compliance with ethical standards

Conflict of interest

All authors declare that they have no conflict of interest.

References

  1. 1.
    Smith SM, Vale WW (2006) The role of the hypothalamic-pituitary-adrenal axis in neuroendocrine responses to stress. Dialogues Clin Neurosci 8(4):383–395Google Scholar
  2. 2.
    Whirledge S, Cidlowski JA (2017) Glucocorticoids and reproduction: traffic control on the road to reproduction. Trends Endocrinol Metabol 28(6):399–415.  https://doi.org/10.1016/j.tem.2017.02.005 Google Scholar
  3. 3.
    Michael AE, Papageorghiou AT (2008) Potential significance of physiological and pharmacological glucocorticoids in early pregnancy. Hum Reprod Update 14(5):497–517.  https://doi.org/10.1093/humupd/dmn021 Google Scholar
  4. 4.
    Larry CG (1995) Effect of corticosteroids for fetal maturation on perinatal outcomes: NIH consensus development panel on the effect of corticosteroids for fetal maturation on perinatal outcomes. JAMA 273(5):413–418.  https://doi.org/10.1001/jama.1995.03520290065031 Google Scholar
  5. 5.
    Liggins GC, Howie RN (1972) A controlled trial of antepartum glucocorticoid treatment for prevention of the respiratory distress syndrome in premature infants. Pediatrics 50(4):515–525Google Scholar
  6. 6.
    Li XQ, Zhu P, Myatt L, Sun K (2014) Roles of glucocorticoids in human parturition: a controversial fact? Placenta 35(5):291–296.  https://doi.org/10.1016/j.placenta.2014.03.005 Google Scholar
  7. 7.
    Wang W, Chen ZJ, Myatt L, Sun K (2018) 11beta-HSD 1 in human fetal membranes as a potential therapeutic target for preterm birth. Endocr Rev.  https://doi.org/10.1210/er.2017-00188 Google Scholar
  8. 8.
    Reynolds RM (2013) Glucocorticoid excess and the developmental origins of disease: two decades of testing the hypothesis—2012 Curt Richter Award Winner. Psychoneuroendocrinology 38(1):1–11.  https://doi.org/10.1016/j.psyneuen.2012.08.012 Google Scholar
  9. 9.
    Roberts D, Dalziel S (2006) Antenatal corticosteroids for accelerating fetal lung maturation for women at risk of preterm birth. Cochrane Database Syst Rev 3:CD004454.  https://doi.org/10.1002/14651858.cd004454.pub2 Google Scholar
  10. 10.
    Reynolds RM (2013) Programming effects of glucocorticoids. Clin Obstet Gynecol 56(3):602–609.  https://doi.org/10.1097/GRF.0b013e31829939f7 Google Scholar
  11. 11.
    Mesiano S, Jaffe RB (1997) Developmental and functional biology of the primate fetal adrenal cortex. Endocr Rev 18(3):378–403.  https://doi.org/10.1210/edrv.18.3.0304 Google Scholar
  12. 12.
    Ishimoto H, Jaffe RB (2011) Development and function of the human fetal adrenal cortex: a key component in the feto-placental unit. Endocr Rev 32(3):317–355.  https://doi.org/10.1210/er.2010-0001 Google Scholar
  13. 13.
    Macnaughton MC, Taylor T, McNally EM, Coutts JR (1977) The effect of synthetic ACTH on the metabolism of [4-14C]-progesterone by the previable human fetus. J Steroid Biochem 8(5):499–504Google Scholar
  14. 14.
    Rainey WE, Rehman KS, Carr BR (2004) Fetal and maternal adrenals in human pregnancy. Obstet Gynecol Clin North Am 31(4):817–835.  https://doi.org/10.1016/j.ogc.2004.08.006 Google Scholar
  15. 15.
    Scott EM, McGarrigle HH, Lachelin GC (1990) The increase in plasma and saliva cortisol levels in pregnancy is not due to the increase in corticosteroid-binding globulin levels. J Clin Endocrinol Metabol 71(3):639–644.  https://doi.org/10.1210/jcem-71-3-639 Google Scholar
  16. 16.
    Cousins L, Rigg L, Hollingsworth D, Meis P, Halberg F, Brink G, Yen SS (1983) Qualitative and quantitative assessment of the circadian rhythm of cortisol in pregnancy. Am J Obstet Gynecol 145(4):411–416Google Scholar
  17. 17.
    Nolten WE, Rueckert PA (1981) Elevated free cortisol index in pregnancy: possible regulatory mechanisms. Am J Obstet Gynecol 139(4):492–498Google Scholar
  18. 18.
    Burke CW, Roulet F (1970) Increased exposure of tissues to cortisol in late pregnancy. Br Med J 1(5697):657–659Google Scholar
  19. 19.
    Gitau R, Adams D, Fisk NM, Glover V (2005) Fetal plasma testosterone correlates positively with cortisol. Arch Dis Child Fetal Neonatal Ed 90(2):F166–F169.  https://doi.org/10.1136/adc.2004.049320 Google Scholar
  20. 20.
    Murphy BE, Clark SJ, Donald IR, Pinsky M, Vedady D (1974) Conversion of maternal cortisol to cortisone during placental transfer to the human fetus. Am J Obstet Gynecol 118(4):538–541Google Scholar
  21. 21.
    Sun K, Adamson SL, Yang K, Challis JR (1999) Interconversion of cortisol and cortisone by 11beta-hydroxysteroid dehydrogenases type 1 and 2 in the perfused human placenta. Placenta 20(1):13–19.  https://doi.org/10.1053/plac.1998.0352 Google Scholar
  22. 22.
    Giannopoulos G, Jackson K, Tulchinsky D (1982) Glucocorticoid metabolism in human placenta, decidua, myometrium and fetal membranes. J Steroid Biochem 17(4):371–374Google Scholar
  23. 23.
    Beitins IZ, Bayard F, Ances IG, Kowarski A, Migeon CJ (1973) The metabolic clearance rate, blood production, interconversion and transplacental passage of cortisol and cortisone in pregnancy near term. Pediatr Res 7(5):509–519.  https://doi.org/10.1203/00006450-197305000-00004 Google Scholar
  24. 24.
    Seckl JR, Benediktsson R, Lindsay RS, Brown RW (1995) Placental 11 beta-hydroxysteroid dehydrogenase and the programming of hypertension. J Steroid Biochem Mol Biol 55(5–6):447–455Google Scholar
  25. 25.
    Albiston AL, Obeyesekere VR, Smith RE, Krozowski ZS (1994) Cloning and tissue distribution of the human 11 beta-hydroxysteroid dehydrogenase type 2 enzyme. Mol Cell Endocrinol 105(2):R11–R17Google Scholar
  26. 26.
    Tannin GM, Agarwal AK, Monder C, New MI, White PC (1991) The human gene for 11 beta-hydroxysteroid dehydrogenase. Structure, tissue distribution, and chromosomal localization. J Biol Chem 266(25):16653–16658Google Scholar
  27. 27.
    White PC, Mune T, Agarwal AK (1997) 11 beta-Hydroxysteroid dehydrogenase and the syndrome of apparent mineralocorticoid excess. Endocr Rev 18(1):135–156.  https://doi.org/10.1210/edrv.18.1.0288 Google Scholar
  28. 28.
    Seckl JR (1993) 11 beta-hydroxysteroid dehydrogenase isoforms and their implications for blood pressure regulation. Eur J Clin Invest 23(10):589–601Google Scholar
  29. 29.
    Monder C, Shackleton CH (1984) 11 beta-Hydroxysteroid dehydrogenase: fact or fancy? Steroids 44(5):383–417Google Scholar
  30. 30.
    Brown RW, Chapman KE, Edwards CR, Seckl JR (1993) Human placental 11 beta-hydroxysteroid dehydrogenase: evidence for and partial purification of a distinct NAD-dependent isoform. Endocrinology 132(6):2614–2621.  https://doi.org/10.1210/endo.132.6.8504762 Google Scholar
  31. 31.
    Hellal-Levy C, Couette B, Fagart J, Souque A, Gomez-Sanchez C, Rafestin-Oblin M (1999) Specific hydroxylations determine selective corticosteroid recognition by human glucocorticoid and mineralocorticoid receptors. FEBS Lett 464(1–2):9–13Google Scholar
  32. 32.
    Seckl JR, Walker BR (2001) Minireview: 11beta-hydroxysteroid dehydrogenase type 1—a tissue-specific amplifier of glucocorticoid action. Endocrinology 142(4):1371–1376.  https://doi.org/10.1210/endo.142.4.8114 Google Scholar
  33. 33.
    Seckl JR, Chapman KE (1997) Medical and physiological aspects of the 11beta-hydroxysteroid dehydrogenase system. Eur J Biochem 249(2):361–364Google Scholar
  34. 34.
    Hirasawa G, Takeyama J, Sasano H, Fukushima K, Suzuki T, Muramatu Y, Darnel AD, Kaneko C, Hiwatashi N, Toyota T, Nagura H, Krozowski ZS (2000) 11Beta-hydroxysteroid dehydrogenase type II and mineralocorticoid receptor in human placenta. J Clin Endocrinol Metabol 85(3):1306–1309.  https://doi.org/10.1210/jcem.85.3.6429 Google Scholar
  35. 35.
    Krozowski Z, MaGuire JA, Stein-Oakley AN, Dowling J, Smith RE, Andrews RK (1995) Immunohistochemical localization of the 11 beta-hydroxysteroid dehydrogenase type II enzyme in human kidney and placenta. J Clin Endocrinol Metabol 80(7):2203–2209.  https://doi.org/10.1210/jcem.80.7.7608280 Google Scholar
  36. 36.
    Brown RW, Chapman KE, Murad P, Edwards CR, Seckl JR (1996) Purification of 11 beta-hydroxysteroid dehydrogenase type 2 from human placenta utilizing a novel affinity labelling technique. Biochem J 313(Pt 3):997–1005Google Scholar
  37. 37.
    Benediktsson R, Calder AA, Edwards CR, Seckl JR (1997) Placental 11 beta-hydroxysteroid dehydrogenase: a key regulator of fetal glucocorticoid exposure. Clin Endocrinol 46(2):161–166Google Scholar
  38. 38.
    Burton PJ, Waddell BJ (1999) Dual function of 11beta-hydroxysteroid dehydrogenase in placenta: modulating placental glucocorticoid passage and local steroid action. Biol Reprod 60(2):234–240Google Scholar
  39. 39.
    Osinski PA (1960) Steroid 11beta-ol dehydrogenase in human placenta. Nature 187:777Google Scholar
  40. 40.
    Beitins IZ, Bayard F, Ances IG, Kowarski A, Migeon CJ (1972) The transplacental passage of prednisone and prednisolone in pregnancy near term. J Pediatr 81(5):936–945Google Scholar
  41. 41.
    Levitz M, Jansen V, Dancis J (1978) The transfer and metabolism of corticosteroids in the perfused human placenta. Am J Obstet Gynecol 132(4):363–366Google Scholar
  42. 42.
    Bernal AL, Flint AP, Anderson AB, Turnbull AC (1980) 11 beta-Hydroxyteroid dehydrogenase activity (E.C. 1.1.1.146) in human placenta and decidua. J Steroid Biochem 13(9):1081–1087Google Scholar
  43. 43.
    Murphy BE (1981) Ontogeny of cortisol-cortisone interconversion in human tissues: a role for cortisone in human fetal development. J Steroid Biochem 14(9):811–817Google Scholar
  44. 44.
    Murphy BE (1977) Chorionic membrane as an extra-adrenal source of foetal cortisol in human amniotic fluid. Nature 266(5598):179–181Google Scholar
  45. 45.
    Li J, Wang W, Liu C, Wang W, Li W, Shu Q, Chen ZJ, Sun K (2013) Critical role of histone acetylation by p300 in human placental 11beta-HSD2 expression. J Clin Endocrinol Metabol 98(7):E1189–E1197.  https://doi.org/10.1210/jc.2012-4291 Google Scholar
  46. 46.
    Yang Q, Wang W, Liu C, Wang Y, Sun K (2016) Compartmentalized localization of 11beta-HSD 1 and 2 at the feto-maternal interface in the first trimester of human pregnancy. Placenta 46:63–71.  https://doi.org/10.1016/j.placenta.2016.08.079 Google Scholar
  47. 47.
    Salvante KG, Milano K, Kliman HJ, Nepomnaschy PA (2017) Placental 11 beta-hydroxysteroid dehydrogenase type 2 (11beta-HSD2) expression very early during human pregnancy. J Dev Origins Health Dis 8(2):149–154.  https://doi.org/10.1017/S2040174416000611 Google Scholar
  48. 48.
    Zuo R, Liu X, Wang W, Li W, Ying H, Sun K (2017) A repressive role of enhancer of zeste homolog 2 in 11beta-hydroxysteroid dehydrogenase type 2 expression in the human placenta. J Biol Chem 292(18):7578–7587.  https://doi.org/10.1074/jbc.M116.765800 Google Scholar
  49. 49.
    Baergen RN (2005) Mannual of Benerschke and Kaufmann’s pathology of the human placenta. Springer, New YorkGoogle Scholar
  50. 50.
    Burton GJ, Jauniaux E, Watson AL (1999) Maternal arterial connections to the placental intervillous space during the first trimester of human pregnancy: the Boyd collection revisited. Am J Obstet Gynecol 181(3):718–724Google Scholar
  51. 51.
    Burton GJ, Jauniaux E, Charnock-Jones DS (2007) Human early placental development: potential roles of the endometrial glands. Placenta 28(Suppl A):S64–S69.  https://doi.org/10.1016/j.placenta.2007.01.007 Google Scholar
  52. 52.
    McTernan CL, Draper N, Nicholson H, Chalder SM, Driver P, Hewison M, Kilby MD, Stewart PM (2001) Reduced placental 11beta-hydroxysteroid dehydrogenase type 2 mRNA levels in human pregnancies complicated by intrauterine growth restriction: an analysis of possible mechanisms. J Clin Endocrinol Metabol 86(10):4979–4983.  https://doi.org/10.1210/jcem.86.10.7893 Google Scholar
  53. 53.
    Schoof E, Girstl M, Frobenius W, Kirschbaum M, Repp R, Knerr I, Rascher W, Dotsch J (2001) Course of placental 11beta-hydroxysteroid dehydrogenase type 2 and 15-hydroxyprostaglandin dehydrogenase mRNA expression during human gestation. Eur J Endocrinol 145(2):187–192Google Scholar
  54. 54.
    Shams M, Kilby MD, Somerset DA, Howie AJ, Gupta A, Wood PJ, Afnan M, Stewart PM (1998) 11Beta-hydroxysteroid dehydrogenase type 2 in human pregnancy and reduced expression in intrauterine growth restriction. Hum Reprod 13(4):799–804Google Scholar
  55. 55.
    Lopez Bernal A, Craft IL (1981) Corticosteroid metabolism in vitro by human placenta, fetal membranes and decidua in early and late gestation. Placenta 2(4):279–285Google Scholar
  56. 56.
    Murphy VE, Clifton VL (2003) Alterations in human placental 11beta-hydroxysteroid dehydrogenase type 1 and 2 with gestational age and labour. Placenta 24(7):739–744Google Scholar
  57. 57.
    Mark PJ, Augustus S, Lewis JL, Hewitt DP, Waddell BJ (2009) Changes in the placental glucocorticoid barrier during rat pregnancy: impact on placental corticosterone levels and regulation by progesterone. Biol Reprod 80(6):1209–1215.  https://doi.org/10.1095/biolreprod.108.073650 Google Scholar
  58. 58.
    Condon J, Ricketts ML, Whorwood CB, Stewart PM (1997) Ontogeny and sexual dimorphic expression of mouse type 2 11beta-hydroxysteroid dehydrogenase. Mol Cell Endocrinol 127(2):121–128Google Scholar
  59. 59.
    Thompson A, Han VK, Yang K (2002) Spatial and temporal patterns of expression of 11beta-hydroxysteroid dehydrogenase types 1 and 2 messenger RNA and glucocorticoid receptor protein in the murine placenta and uterus during late pregnancy. Biol Reprod 67(6):1708–1718Google Scholar
  60. 60.
    Speirs HJ, Seckl JR, Brown RW (2004) Ontogeny of glucocorticoid receptor and 11beta-hydroxysteroid dehydrogenase type-1 gene expression identifies potential critical periods of glucocorticoid susceptibility during development. J Endocrinol 181(1):105–116Google Scholar
  61. 61.
    McArdle AM, Denton KM, Maduwegedera D, Moritz K, Flower RL, Roberts CT (2009) Ontogeny of placental structural development and expression of the renin-angiotensin system and 11beta-HSD2 genes in the rabbit. Placenta 30(7):590–598.  https://doi.org/10.1016/j.placenta.2009.04.006 Google Scholar
  62. 62.
    Sampath-Kumar R, Matthews SG, Yang K (1998) 11beta-hydroxysteroid dehydrogenase type 2 is the predominant isozyme in the guinea pig placenta: decreases in messenger ribonucleic acid and activity at term. Biol Reprod 59(6):1378–1384Google Scholar
  63. 63.
    Sun K, Yang K, Challis JR (1997) Differential expression of 11 beta-hydroxysteroid dehydrogenase types 1 and 2 in human placenta and fetal membranes. J Clin Endocrinol Metabol 82(1):300–305.  https://doi.org/10.1210/jcem.82.1.3681 Google Scholar
  64. 64.
    Agarwal AK, Rogerson FM, Mune T, White PC (1995) Gene structure and chromosomal localization of the human HSD11 K gene encoding the kidney (type 2) isozyme of 11 beta-hydroxysteroid dehydrogenase. Genomics 29(1):195–199.  https://doi.org/10.1006/geno.1995.1231 Google Scholar
  65. 65.
    Agarwal AK, White PC (1996) Analysis of the promoter of the NAD+ dependent 11 beta-hydroxysteroid dehydrogenase (HSD11 K) gene in JEG-3 human choriocarcinoma cells. Mol Cell Endocrinol 121(1):93–99Google Scholar
  66. 66.
    Alikhani-Koopaei R, Fouladkou F, Frey FJ, Frey BM (2004) Epigenetic regulation of 11 beta-hydroxysteroid dehydrogenase type 2 expression. J Clin Investig 114(8):1146–1157.  https://doi.org/10.1172/JCI21647 Google Scholar
  67. 67.
    Hu W, Wang H, Huang H (2015) Analysis of gene expression and preliminary study of methylation about 11beta-HSD2 gene in placentas of Chinese pre-eclampsia patients of Han ethnicity. J Obstetr Gynaecol Res 41(3):343–349.  https://doi.org/10.1111/jog.12555 Google Scholar
  68. 68.
    Seisenberger S, Peat JR, Hore TA, Santos F, Dean W, Reik W (2013) Reprogramming DNA methylation in the mammalian life cycle: building and breaking epigenetic barriers. Philos Trans R Soc Lond B Biol Sci 368(1609):20110330.  https://doi.org/10.1098/rstb.2011.0330 Google Scholar
  69. 69.
    Nakanishi MO, Hayakawa K, Nakabayashi K, Hata K, Shiota K, Tanaka S (2012) Trophoblast-specific DNA methylation occurs after the segregation of the trophectoderm and inner cell mass in the mouse periimplantation embryo. Epigenetics 7(2):173–182.  https://doi.org/10.4161/epi.7.2.18962 Google Scholar
  70. 70.
    Li JN, Ge YC, Yang Z, Guo CM, Duan T, Myatt L, Guan H, Yang K, Sun K (2011) The Sp1 transcription factor is crucial for the expression of 11beta-hydroxysteroid dehydrogenase type 2 in human placental trophoblasts. J Clin Endocrinol Metabol 96(6):E899–E907.  https://doi.org/10.1210/jc.2010-2852 Google Scholar
  71. 71.
    Cole LA (2012) hCG, the wonder of today’s science. Reprod Biol Endocrinol 10:24.  https://doi.org/10.1186/1477-7827-10-24 Google Scholar
  72. 72.
    Nwabuobi C, Arlier S, Schatz F, Guzeloglu-Kayisli O, Lockwood CJ, Kayisli UA (2017) hCG: biological functions and clinical applications. Int J Mol Sci.  https://doi.org/10.3390/ijms18102037 Google Scholar
  73. 73.
    Gerbaud P, Tasken K, Pidoux G (2015) Spatiotemporal regulation of cAMP signaling controls the human trophoblast fusion. Front Pharmacol 6:202.  https://doi.org/10.3389/fphar.2015.00202 Google Scholar
  74. 74.
    Ni XT, Duan T, Yang Z, Guo CM, Li JN, Sun K (2009) Role of human chorionic gonadotropin in maintaining 11beta-hydroxysteroid dehydrogenase type 2 expression in human placental syncytiotrophoblasts. Placenta 30(12):1023–1028.  https://doi.org/10.1016/j.placenta.2009.10.005 Google Scholar
  75. 75.
    Togher KL, Kenny LC, O’Keeffe GW (2017) Class-specific histone deacetylase inhibitors promote 11-beta hydroxysteroid dehydrogenase type 2 expression in JEG-3 cells. Int J Cell Biol 2017:6169310.  https://doi.org/10.1155/2017/6169310 Google Scholar
  76. 76.
    Fahlbusch FB, Ruebner M, Volkert G, Offergeld R, Hartner A, Menendez-Castro C, Strick R, Rauh M, Rascher W, Dotsch J (2012) Corticotropin-releasing hormone stimulates expression of leptin, 11beta-HSD2 and syncytin-1 in primary human trophoblasts. Reprod Biol Endocrinol 10:80.  https://doi.org/10.1186/1477-7827-10-80 Google Scholar
  77. 77.
    Guan H, Sun K, Yang K (2013) The ERK1/2 signaling pathway regulates 11beta-hydroxysteroid dehydrogenase type 2 expression in human trophoblast cells through a transcriptional mechanism. Biol Reprod 89(4):92.  https://doi.org/10.1095/biolreprod.113.110924 Google Scholar
  78. 78.
    Sharma A, Guan H, Yang K (2009) The p38 mitogen-activated protein kinase regulates 11beta-hydroxysteroid dehydrogenase type 2 (11beta-HSD2) expression in human trophoblast cells through modulation of 11beta-HSD2 messenger ribonucleic acid stability. Endocrinology 150(9):4278–4286.  https://doi.org/10.1210/en.2009-0479 Google Scholar
  79. 79.
    Julan L, Guan H, van Beek JP, Yang K (2005) Peroxisome proliferator-activated receptor delta suppresses 11beta-hydroxysteroid dehydrogenase type 2 gene expression in human placental trophoblast cells. Endocrinology 146(3):1482–1490.  https://doi.org/10.1210/en.2004-1357 Google Scholar
  80. 80.
    Zhu H, Zou C, Fan X, Xiong W, Tang L, Wu X, Tang C (2016) Up-regulation of 11beta-hydroxysteroid dehydrogenase type 2 expression by hedgehog ligand contributes to the conversion of cortisol into cortisone. Endocrinology 157(9):3529–3539.  https://doi.org/10.1210/en.2016-1286 Google Scholar
  81. 81.
    Shu Q, Li W, Li J, Wang W, Liu C, Sun K (2014) Cross-talk between cAMP and MAPK pathways in HSD11B2 induction by hCG in placental trophoblasts. PLoS One 9(9):e107938.  https://doi.org/10.1371/journal.pone.0107938 Google Scholar
  82. 82.
    He P, Chen Z, Sun Q, Li Y, Gu H, Ni X (2014) Reduced expression of 11beta-hydroxysteroid dehydrogenase type 2 in preeclamptic placentas is associated with decreased PPARgamma but increased PPARalpha expression. Endocrinology 155(1):299–309.  https://doi.org/10.1210/en.2013-1350 Google Scholar
  83. 83.
    Robins JC, Marsit CJ, Padbury JF, Sharma SS (2011) Endocrine disruptors, environmental oxygen, epigenetics and pregnancy. Front Biosci 3:690–700Google Scholar
  84. 84.
    Reynolds RM (2010) Corticosteroid-mediated programming and the pathogenesis of obesity and diabetes. J Steroid Biochem Mol Biol 122(1–3):3–9.  https://doi.org/10.1016/j.jsbmb.2010.01.009 Google Scholar
  85. 85.
    Nyirenda MJ, Seckl JR (1998) Intrauterine events and the programming of adulthood disease: the role of fetal glucocorticoid exposure (review). Int J Mol Med 2(5):607–614Google Scholar
  86. 86.
    Gomez-Roig MD, Mazarico E, Cardenas D, Fernandez MT, Diaz M, Ruiz de Gauna B, Vela A, Gratacos E, Figueras F (2016) Placental 11B-hydroxysteroid dehydrogenase type 2 mRNA levels in intrauterine growth restriction versus small-for-gestational-age fetuses. Fetal Diagn Ther 39(2):147–151.  https://doi.org/10.1159/000437139 Google Scholar
  87. 87.
    Dy J, Guan H, Sampath-Kumar R, Richardson BS, Yang K (2008) Placental 11beta-hydroxysteroid dehydrogenase type 2 is reduced in pregnancies complicated with idiopathic intrauterine growth Restriction: evidence that this is associated with an attenuated ratio of cortisone to cortisol in the umbilical artery. Placenta 29(2):193–200.  https://doi.org/10.1016/j.placenta.2007.10.010 Google Scholar
  88. 88.
    Tzschoppe A, Struwe E, Blessing H, Fahlbusch F, Liebhaber G, Dorr HG, Rauh M, Rascher W, Goecke TW, Schild RL, Schleussner E, Scheler C, Hubler A, Dahlem P, Dotsch J (2009) Placental 11beta-HSD2 gene expression at birth is inversely correlated with growth velocity in the first year of life after intrauterine growth restriction. Pediatr Res 65(6):647–653.  https://doi.org/10.1203/PDR.0b013e31819e7337 Google Scholar
  89. 89.
    Zhao Y, Gong X, Chen L, Li L, Liang Y, Chen S, Zhang Y (2014) Site-specific methylation of placental HSD11B2 gene promoter is related to intrauterine growth restriction. Eur J Hum Genet 22(6):734–740.  https://doi.org/10.1038/ejhg.2013.226 Google Scholar
  90. 90.
    Lazo-de-la-Vega-Monroy ML, Solis-Martinez MO, Romero-Gutierrez G, Aguirre-Arzola VE, Wrobel K, Wrobel K, Zaina S, Barbosa-Sabanero G (2017) 11 beta-hydroxysteroid dehydrogenase 2 promoter methylation is associated with placental protein expression in small for gestational age newborns. Steroids 124:60–66.  https://doi.org/10.1016/j.steroids.2017.05.007 Google Scholar
  91. 91.
    Togher KL, Togher KL, O’Keeffe MM, O’Keeffe MM, Khashan AS, Khashan AS, Gutierrez H, Gutierrez H, Kenny LC, Kenny LC, O’Keeffe GW, O’Keeffe GW (2014) Epigenetic regulation of the placental HSD11B2 barrier and its role as a critical regulator of fetal development. Epigenetics 9(6):816–822.  https://doi.org/10.4161/epi.28703 Google Scholar
  92. 92.
    Marsit CJ, Maccani MA, Padbury JF, Lester BM (2012) Placental 11-beta hydroxysteroid dehydrogenase methylation is associated with newborn growth and a measure of neurobehavioral outcome. PLoS One 7(3):e33794.  https://doi.org/10.1371/journal.pone.0033794 Google Scholar
  93. 93.
    Ghaemmaghami P, Dainese SM, La Marca R, Zimmermann R, Ehlert U (2014) The association between the acute psychobiological stress response in second trimester pregnant women, amniotic fluid glucocorticoids, and neonatal birth outcome. Dev Psychobiol 56(4):734–747.  https://doi.org/10.1002/dev.21142 Google Scholar
  94. 94.
    O’Donnell KJ, Bugge Jensen A, Freeman L, Khalife N, O’Connor TG, Glover V (2012) Maternal prenatal anxiety and downregulation of placental 11beta-HSD2. Psychoneuroendocrinology 37(6):818–826.  https://doi.org/10.1016/j.psyneuen.2011.09.014 Google Scholar
  95. 95.
    Welberg LA, Thrivikraman KV, Plotsky PM (2005) Chronic maternal stress inhibits the capacity to up-regulate placental 11beta-hydroxysteroid dehydrogenase type 2 activity. J Endocrinol 186(3):R7–R12.  https://doi.org/10.1677/joe.1.06374 Google Scholar
  96. 96.
    Cuffe JS, O’Sullivan L, Simmons DG, Anderson ST, Moritz KM (2012) Maternal corticosterone exposure in the mouse has sex-specific effects on placental growth and mRNA expression. Endocrinology 153(11):5500–5511.  https://doi.org/10.1210/en.2012-1479 Google Scholar
  97. 97.
    Jensen Pena C, Monk C, Champagne FA (2012) Epigenetic effects of prenatal stress on 11beta-hydroxysteroid dehydrogenase-2 in the placenta and fetal brain. PLoS One 7(6):e39791.  https://doi.org/10.1371/journal.pone.0039791 Google Scholar
  98. 98.
    van Beek JP, Guan H, Julan L, Yang K (2004) Glucocorticoids stimulate the expression of 11beta-hydroxysteroid dehydrogenase type 2 in cultured human placental trophoblast cells. J Clin Endocrinol Metabol 89(11):5614–5621.  https://doi.org/10.1210/jc.2004-0113 Google Scholar
  99. 99.
    Olson DM, Severson EM, Verstraeten BS, Ng JW, McCreary JK, Metz GA (2015) Allostatic load and preterm birth. Int J Mol Sci 16(12):29856–29874.  https://doi.org/10.3390/ijms161226209 Google Scholar
  100. 100.
    Conradt E, Lester BM, Appleton AA, Armstrong DA, Marsit CJ (2013) The roles of DNA methylation of NR3C1 and 11beta-HSD2 and exposure to maternal mood disorder in utero on newborn neurobehavior. Epigenetics 8(12):1321–1329.  https://doi.org/10.4161/epi.26634 Google Scholar
  101. 101.
    Mueller BR, Bale TL (2008) Sex-specific programming of offspring emotionality after stress early in pregnancy. J Neurosci 28(36):9055–9065.  https://doi.org/10.1523/JNEUROSCI.1424-08.2008 Google Scholar
  102. 102.
    Green BB, Armstrong DA, Lesseur C, Paquette AG, Guerin DJ, Kwan LE, Marsit CJ (2015) The role of placental 11-beta hydroxysteroid dehydrogenase type 1 and type 2 methylation on gene expression and infant birth weight. Biol Reprod 92(6):149.  https://doi.org/10.1095/biolreprod.115.128066 Google Scholar
  103. 103.
    Mina TH, Raikkonen K, Riley SC, Norman JE, Reynolds RM (2015) Maternal distress associates with placental genes regulating fetal glucocorticoid exposure and IGF2: role of obesity and sex. Psychoneuroendocrinology 59:112–122.  https://doi.org/10.1016/j.psyneuen.2015.05.004 Google Scholar
  104. 104.
    Penailillo R, Guajardo A, Llanos M, Hirsch S, Ronco AM (2015) Folic acid supplementation during pregnancy induces sex-specific changes in methylation and expression of placental 11beta-hydroxysteroid dehydrogenase 2 in rats. PLoS One 10(3):e0121098.  https://doi.org/10.1371/journal.pone.0121098 Google Scholar
  105. 105.
    Cuffe JS, Walton SL, Singh RR, Spiers JG, Bielefeldt-Ohmann H, Wilkinson L, Little MH, Moritz KM (2014) Mid- to late term hypoxia in the mouse alters placental morphology, glucocorticoid regulatory pathways and nutrient transporters in a sex-specific manner. J Physiol 592(14):3127–3141.  https://doi.org/10.1113/jphysiol.2014.272856 Google Scholar
  106. 106.
    Borzsonyi B, Demendi C, Pajor A, Rigo J Jr, Marosi K, Agota A, Nagy ZB, Joo JG (2012) Gene expression patterns of the 11beta-hydroxysteroid dehydrogenase 2 enzyme in human placenta from intrauterine growth restriction: the role of impaired feto-maternal glucocorticoid metabolism. Eur J Obstet Gynecol Reprod Biol 161(1):12–17.  https://doi.org/10.1016/j.ejogrb.2011.12.013 Google Scholar
  107. 107.
    Hardy DB, Yang K (2002) The expression of 11 beta-hydroxysteroid dehydrogenase type 2 is induced during trophoblast differentiation: effects of hypoxia. J Clin Endocrinol Metabol 87(8):3696–3701.  https://doi.org/10.1210/jcem.87.8.8720 Google Scholar
  108. 108.
    Alfaidy N, Gupta S, DeMarco C, Caniggia I, Challis JR (2002) Oxygen regulation of placental 11 beta-hydroxysteroid dehydrogenase 2: physiological and pathological implications. J Clin Endocrinol Metabol 87(10):4797–4805.  https://doi.org/10.1210/jc.2002-020310 Google Scholar
  109. 109.
    Homan A, Guan H, Hardy DB, Gratton RJ, Yang K (2006) Hypoxia blocks 11beta-hydroxysteroid dehydrogenase type 2 induction in human trophoblast cells during differentiation by a time-dependent mechanism that involves both translation and transcription. Placenta 27(8):832–840.  https://doi.org/10.1016/j.placenta.2005.09.006 Google Scholar
  110. 110.
    Hogg K, Blair JD, McFadden DE, von Dadelszen P, Robinson WP (2013) Early onset pre-eclampsia is associated with altered DNA methylation of cortisol-signalling and steroidogenic genes in the placenta. PLoS One 8(5):e62969.  https://doi.org/10.1371/journal.pone.0062969 Google Scholar
  111. 111.
    Causevic M, Mohaupt M (2007) 11beta-Hydroxysteroid dehydrogenase type 2 in pregnancy and preeclampsia. Mol Aspects Med 28(2):220–226.  https://doi.org/10.1016/j.mam.2007.04.003 Google Scholar
  112. 112.
    Ravelli AC, van Der Meulen JH, Osmond C, Barker DJ, Bleker OP (1999) Obesity at the age of 50 y in men and women exposed to famine prenatally. Am J Clin Nutr 70(5):811–816.  https://doi.org/10.1093/ajcn/70.5.811 Google Scholar
  113. 113.
    Roseboom TJ, van der Meulen JH, Ravelli AC, van Montfrans GA, Osmond C, Barker DJ, Bleker OP (1999) Blood pressure in adults after prenatal exposure to famine. J Hypertens 17(3):325–330Google Scholar
  114. 114.
    Guo C, Li C, Myatt L, Nathanielsz PW, Sun K (2013) Sexually dimorphic effects of maternal nutrient reduction on expression of genes regulating cortisol metabolism in fetal baboon adipose and liver tissues. Diabetes 62(4):1175–1185.  https://doi.org/10.2337/db12-0561 Google Scholar
  115. 115.
    Desai M, Crowther NJ, Lucas A, Hales CN (1996) Organ-selective growth in the offspring of protein-restricted mothers. Br J Nutr 76(4):591–603Google Scholar
  116. 116.
    Choi J, Li C, McDonald TJ, Comuzzie A, Mattern V, Nathanielsz PW (2011) Emergence of insulin resistance in juvenile baboon offspring of mothers exposed to moderate maternal nutrient reduction. Am J Physiol Regul Integr Comp Physiol 301(3):R757–R762.  https://doi.org/10.1152/ajpregu.00051.2011 Google Scholar
  117. 117.
    Drake AJ, Tang JI, Nyirenda MJ (2007) Mechanisms underlying the role of glucocorticoids in the early life programming of adult disease. Clin Sci 113(5):219–232.  https://doi.org/10.1042/CS20070107 Google Scholar
  118. 118.
    Belkacemi L, Jelks A, Chen CH, Ross MG, Desai M (2011) Altered placental development in undernourished rats: role of maternal glucocorticoids. Reprod Biol Endocrinol 9:105.  https://doi.org/10.1186/1477-7827-9-105 Google Scholar
  119. 119.
    Gnanalingham MG, Williams P, Wilson V, Bispham J, Hyatt MA, Pellicano A, Budge H, Stephenson T, Symonds ME (2007) Nutritional manipulation between early to mid-gestation: effects on uncoupling protein-2, glucocorticoid sensitivity, IGF-I receptor and cell proliferation but not apoptosis in the ovine placenta. Reproduction 134(4):615–623.  https://doi.org/10.1530/REP-06-0369 Google Scholar
  120. 120.
    Bertram C, Trowern AR, Copin N, Jackson AA, Whorwood CB (2001) The maternal diet during pregnancy programs altered expression of the glucocorticoid receptor and type 2 11beta-hydroxysteroid dehydrogenase: potential molecular mechanisms underlying the programming of hypertension in utero. Endocrinology 142(7):2841–2853.  https://doi.org/10.1210/endo.142.7.8238 Google Scholar
  121. 121.
    Kanitz E, Otten W, Tuchscherer M, Grabner M, Brussow KP, Rehfeldt C, Metges CC (2012) High and low proteinratio carbohydrate dietary ratios during gestation alter maternal-fetal cortisol regulation in pigs. PLoS One 7(12):e52748.  https://doi.org/10.1371/journal.pone.0052748 Google Scholar
  122. 122.
    Shang Y, Jia Y, Sun Q, Shi W, Li R, Wang S, Sui S, Zhao R (2015) Sexually dimorphic effects of maternal dietary protein restriction on fetal growth and placental expression of 11beta-HSD2 in the pig. Anim Reprod Sci 160:40–48.  https://doi.org/10.1016/j.anireprosci.2015.07.001 Google Scholar
  123. 123.
    Shang Y, Yang X, Zhang R, Zou H, Zhao R (2012) Low amino acids affect expression of 11beta-HSD2 in BeWo cells through leptin-activated JAK-STAT and MAPK pathways. Amino Acids 42(5):1879–1887.  https://doi.org/10.1007/s00726-011-0907-1 Google Scholar
  124. 124.
    West AA, Caudill MA (2014) Applied choline-omics: lessons from human metabolic studies for the integration of genomics research into nutrition practice. J Acad Nutr Diet 114(8):1242–1250.  https://doi.org/10.1016/j.jand.2013.12.012 Google Scholar
  125. 125.
    Torrens C, Brawley L, Anthony FW, Dance CS, Dunn R, Jackson AA, Poston L, Hanson MA (2006) Folate supplementation during pregnancy improves offspring cardiovascular dysfunction induced by protein restriction. Hypertension 47(5):982–987.  https://doi.org/10.1161/01.HYP.0000215580.43711.d1 Google Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Center for Reproductive Medicine, Ren Ji Hospital, School of MedicineShanghai Jiao Tong UniversityShanghaiPeople’s Republic of China
  2. 2.Department of Obstetrics and GynecologyNo. 401 HospitalQingdaoPeople’s Republic of China
  3. 3.Shanghai Key Laboratory for Assisted Reproduction and Reproductive GeneticsShanghaiPeople’s Republic of China

Personalised recommendations