Skip to main content
Log in

Editing porcine IGF2 regulatory element improved meat production in Chinese Bama pigs

  • Original Article
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Insulin-like growth factor 2 (IGF2) is an important growth factor, which promotes growth and development in mammals during fetal and postnatal stages. Using CRISPR–Cas9 system, we generated multiple founder pigs containing 12 different mutant alleles around a regulatory element within the intron 3 of IGF2 gene. Crossing two male founders passed four mutant alleles onto F1 generation, and these mutations abolished repressor ZBED6 binding and rendered this regulatory element nonfunctional. Both founders and F1 animals showed significantly faster growth, without affecting meat quality. These results indicated that editing IGF2 intron 3–3072 site using CRISPR–Cas9 technology improved meat production in Bama pigs. This is the first demonstration that editing non-coding region can improve economic traits in livestock.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

Cas9:

CRISPR-associated protein 9

CRISPR:

Clustered, regularly interspaced, short-palindromic repeats

EMSA:

Electrophoretic mobility shift assay

GM:

Genetically modified

IGF2:

Insulin-like growth factor 2

QTL:

Trait locus

QTN:

Quantitative trait nucleotide

sgRNA:

Single-guide RNA

WT:

Wild type

ZBED6:

BED-type containing 6

References

  1. Spychalla JP, Kinney AJ, Browse J (1997) Identification of an animal omega-3 fatty acid desaturase by heterologous expression in Arabidopsis. Proc Natl Acad Sci USA 94:1142–1147

    Article  CAS  Google Scholar 

  2. Grobet L, Martin LJ, Poncelet D, Pirottin D, Brouwers B, Riquet J, Schoeberlein A, Dunner S, Menissier F, Massabanda J et al (1997) A deletion in the bovine myostatin gene causes the double-muscled phenotype in cattle. Nat Genet 17:71–74

    Article  CAS  Google Scholar 

  3. Jeon JT, Carlborg O, Tornsten A, Giuffra E, Amarger V, Chardon P, Andersson-Eklund L, Andersson K, Hansson I, Lundstrom K et al (1999) A paternally expressed QTL affecting skeletal and cardiac muscle mass in pigs maps to the IGF2 locus. Nat Genet 21:157–158

    Article  CAS  Google Scholar 

  4. Nezer C, Moreau L, Brouwers B, Coppieters W, Detilleux J, Hanset R, Karim L, Kvasz A, Leroy P, Georges M (1999) An imprinted QTL with major effect on muscle mass and fat deposition maps to the IGF2 locus in pigs. Nat Genet 21:155–156

    Article  CAS  Google Scholar 

  5. Laible G, Wei J, Wagner S (2015) Improving livestock for agriculture—technological progress from random transgenesis to precision genome editing heralds a new era. Biotechnol J 10:109–120

    Article  CAS  Google Scholar 

  6. Hammer RE, Pursel VG, Rexroad CE Jr, Wall RJ, Bolt DJ, Ebert KM, Palmiter RD, Brinster RL (1985) Production of transgenic rabbits, sheep and pigs by microinjection. Nature 315:680–683

    Article  CAS  Google Scholar 

  7. McCreath KJ, Howcroft J, Campbell KH, Colman A, Schnieke AE, Kind AJ (2000) Production of gene-targeted sheep by nuclear transfer from cultured somatic cells. Nature 405:1066–1069

    Article  CAS  Google Scholar 

  8. Ohlsen SM, Lugenbeel KA, Wong EA (1994) Characterization of the linked ovine insulin and insulin-like growth factor-II genes. DNA Cell Biol 13:377–388

    Article  CAS  Google Scholar 

  9. DeChiara TM, Efstratiadis A, Robertson EJ (1990) A growth-deficiency phenotype in heterozygous mice carrying an insulin-like growth factor II gene disrupted by targeting. Nature 345:78–80

    Article  CAS  Google Scholar 

  10. Sun FL, Dean WL, Kelsey G, Allen ND, Reik W (1997) Transactivation of Igf2 in a mouse model of Beckwith–Wiedemann syndrome. Nature 389:809–815

    Article  CAS  Google Scholar 

  11. Van Laere AS, Nguyen M, Braunschweig M, Nezer C, Collette C, Moreau L, Archibald AL, Haley CS, Buys N, Tally M et al (2003) A regulatory mutation in IGF2 causes a major QTL effect on muscle growth in the pig. Nature 425:832–836

    Article  Google Scholar 

  12. Markljung E, Jiang L, Jaffe JD, Mikkelsen TS, Wallerman O, Larhammar M, Zhang X, Wang L, Saenz-Vash V, Gnirke A et al (2009) ZBED6, a novel transcription factor derived from a domesticated DNA transposon regulates IGF2 expression and muscle growth. PLoS Biol 7:e1000256

    Article  Google Scholar 

  13. Hu LL, Lu YQ, Xu HY, Yang XG, Lu SS, Lu KH (2015) Production of hGFAP-DsRed transgenic Guangxi Bama mini-pigs via somatic cell nuclear transfer. Genet Mol Res 14:16285–16296

    Article  CAS  Google Scholar 

  14. Hai T, Teng F, Guo R, Li W, Zhou Q (2014) One-step generation of knockout pigs by zygote injection of CRISPR/Cas system. Cell Res 24:372–375

    Article  CAS  Google Scholar 

  15. Niu Y, Shen B, Cui Y, Chen Y, Wang J, Wang L, Kang Y, Zhao X, Si W, Li W et al (2014) Generation of gene-modified cynomolgus monkey via Cas9/RNA-mediated gene targeting in one-cell embryos. Cell 156:836–843

    Article  CAS  Google Scholar 

  16. Wang H, Yang H, Shivalila CS, Dawlaty MM, Cheng AW, Zhang F, Jaenisch R (2013) One-step generation of mice carrying mutations in multiple genes by CRISPR/Cas-mediated genome engineering. Cell 153:910–918

    Article  CAS  Google Scholar 

  17. Peng J, Wang Y, Jiang J, Zhou X, Song L, Wang L, Ding C, Qin J, Liu L, Wang W et al (2015) Production of human albumin in pigs through CRISPR/Cas9-mediated knockin of human cDNA into swine albumin locus in the zygotes. Sci Rep 5:16705

    Article  Google Scholar 

  18. Yang Y, Wang K, Wu H, Jin Q, Ruan D, Ouyang Z, Zhao B, Liu Z, Zhao Y, Zhang Q et al (2016) Genetically humanized pigs exclusively expressing human insulin are generated through custom endonuclease-mediated seamless engineering. J Mol Cell Biol 8:174–177

    Article  Google Scholar 

  19. Yan S, Tu Z, Liu Z, Fan N, Yang H, Yang S, Yang W, Zhao Y, Ouyang Z, Lai C et al (2018) A Huntingtin knockin pig model recapitulates features of selective neurodegeneration in Huntington’s disease. Cell 173(989–1002):e1013

    Google Scholar 

  20. Yang L, Guell M, Niu D, George H, Lesha E, Grishin D, Aach J, Shrock E, Xu W, Poci J et al (2015) Genome-wide inactivation of porcine endogenous retroviruses (PERVs). Science 350:1101–1104

    Article  CAS  Google Scholar 

  21. Qin W, Kutny PM, Maser RS, Dion SL, Lamont JD, Zhang Y, Perry GA, Wang H (2016) Generating mouse models using CRISPR–Cas9-mediated genome editing. Curr Protoc Mouse Biol 6:39–66

    Article  Google Scholar 

  22. Schmittgen TD, Livak KJ (2008) Analyzing real-time PCR data by the comparative C(T) method. Nat Protoc 3:1101–1108

    Article  CAS  Google Scholar 

  23. Dyer BW, Ferrer FA, Klinedinst DK, Rodriguez R (2000) A noncommercial dual luciferase enzyme assay system for reporter gene analysis. Anal Biochem 282:158–161

    Article  CAS  Google Scholar 

  24. Yang SL, Wang ZG, Liu B, Zhang GX, Zhao SH, Yu M, Fan B, Li MH, Xiong TA, Li K (2003) Genetic variation and relationships of eighteen Chinese indigenous pig breeds. Genet Sel Evol 35:657–671

    Article  CAS  Google Scholar 

  25. Ran FA, Hsu PD, Lin CY, Gootenberg JS, Konermann S, Trevino AE, Scott DA, Inoue A, Matoba S, Zhang Y et al (2013) Double nicking by RNA-guided CRISPR Cas9 for enhanced genome editing specificity. Cell 154:1380–1389

    Article  CAS  Google Scholar 

  26. McPherron AC, Lee SJ (1997) Double muscling in cattle due to mutations in the myostatin gene. Proc Natl Acad Sci USA 94:12457–12461

    Article  CAS  Google Scholar 

  27. Zheng Q, Lin J, Huang J, Zhang H, Zhang R, Zhang X, Cao C, Hambly C, Qin G, Yao J et al (2017) Reconstitution of UCP1 using CRISPR/Cas9 in the white adipose tissue of pigs decreases fat deposition and improves thermogenic capacity. Proc Natl Acad Sci USA 114:E9474–E9482

    Article  CAS  Google Scholar 

  28. Gao CX (2015) Genome editing in crops: from bench to field. Natl Sci Rev 2:13–15

    Article  CAS  Google Scholar 

  29. Waltz E (2016) Gene-edited CRISPR mushroom escapes US regulation. Nature 532:293

    Article  CAS  Google Scholar 

  30. Sharma A, Lee JS, Dang CG, Sudrajad P, Kim HC, Yeon SH, Kang HS, Lee SH (2015) Stories and challenges of genome wide association studies in livestock—a review. Asian Australas J Anim Sci 28:1371–1379

    Article  Google Scholar 

  31. Freking BA, Murphy SK, Wylie AA, Rhodes SJ, Keele JW, Leymaster KA, Jirtle RL, Smith TP (2002) Identification of the single base change causing the callipyge muscle hypertrophy phenotype, the only known example of polar overdominance in mammals. Genome Res 12:1496–1506

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank H.W and Q.Z laboratory members for helpful discussions and comments on the manuscript. H.W was supported by Strategic Priority Research Program of Chinese Academy of Sciences (no. XDA16010205), the National Natural Science Foundation of China (nos. 31471215 and 31722036), and National Key Research and Development Program of China (no. 2016YFA0101402). Q.Z was supported by National Natural Science Foundation of China Grants 31422038, 31471395, and 31501188; National High Technology Research and Development Program Grants 2015AA020307 and 2014BAI02B01; National Basic Research Program of China Grants 2014CB964900 and 2014CB964800; National Special Key Project for Transgenic Breeding 2016ZX08010001.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Haoyi Wang or Qi Zhou.

Ethics declarations

Conflict of interest

Guanghai Xiang, Jilong Ren, Tang Hai, Rui Fu, Dawei Yu, Jing Wang, Wei Li, Haoyi Wang, and Qi Zhou declare that they have no conflict of interest.

Ethical approval

All experiments related to animal work described in this study were performed strictly in accordance with the guidelines for the Care and Use of Laboratory Animals, and approved by Animal Welfare and Research Ethics Committee of Institute of Zoology, Chinese Academy of Sciences (Animal Ethics Investigation AEI-12-04-2014). All surgical procedures were performed under anesthesia, and great efforts were made to minimize animal suffering.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 4117 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiang, G., Ren, J., Hai, T. et al. Editing porcine IGF2 regulatory element improved meat production in Chinese Bama pigs. Cell. Mol. Life Sci. 75, 4619–4628 (2018). https://doi.org/10.1007/s00018-018-2917-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-018-2917-6

Keywords

Navigation