Advertisement

Cellular and Molecular Life Sciences

, Volume 75, Issue 22, pp 4163–4176 | Cite as

Epigenetic mechanisms of tumor resistance to immunotherapy

  • Natalia Arenas-Ramirez
  • Dilara Sahin
  • Onur Boyman
Review

Abstract

The recent impact of cancer immunotherapies has firmly established the ability and importance of the immune system to fight malignancies. However, the intimate interaction between the highly dynamic tumor and immune cells leads to a selection process driven by genetic and epigenetic processes. As the molecular pathways of cancer resistance mechanisms to immunotherapy become increasingly known, novel therapeutic targets are being tested in combination with immune-stimulating approaches. We here review recent insights into the molecular mechanisms of tumor resistance with particular emphasis on epigenetic processes and place these in the context of previous models.

Keywords

EZH2 EED PRC2 Tumor escape Immunogenicity Checkpoint inhibitor PD-1 CTLA-4 Cytokine IL-2 

Notes

Acknowledgements

We thank Catherine Crowley-Kühn for critical reading of the manuscript. This work was funded by the Sassella Foundation (to N. A. R.), Swiss National Science Foundation Grant 310030-172978 (to O. B.), Swiss Cancer Research Grant KFS-4136-02-2017 (to O. B.), and Hochspezialisierte Medizin Schwerpunkt Immunologie (HSM-2-Immunologie; to O. B.).

References

  1. 1.
    Coley WB (1893) The treatment of malignant tumors by repeated inoculations of erysipelas: with a report of ten original cases. Am J Med Sci 105:487–511Google Scholar
  2. 2.
    McCarthy EF (2006) The toxins of William B. Coley and the treatment of bone and soft-tissue sarcomas. Iowa Orthop J 26:154–158PubMedPubMedCentralGoogle Scholar
  3. 3.
    Hodi FS et al (2010) Improved survival with ipilimumab in patients with metastatic melanoma. N Engl J Med 363(8):711–723PubMedPubMedCentralGoogle Scholar
  4. 4.
    Garon EB et al (2015) Pembrolizumab for the treatment of non-small-cell lung cancer. N Engl J Med 372(21):2018–2028PubMedGoogle Scholar
  5. 5.
    Larkin J, Hodi FS, Wolchok JD (2015) Combined nivolumab and ipilimumab or monotherapy in untreated melanoma. N Engl J Med 373(13):1270–1271PubMedGoogle Scholar
  6. 6.
    Ribas A et al (2016) Association of pembrolizumab with tumor response and survival among patients with advanced melanoma. JAMA 315(15):1600–1609Google Scholar
  7. 7.
    Robert C et al (2015) Pembrolizumab versus ipilimumab in advanced melanoma. N Engl J Med 372(26):2521–2532PubMedGoogle Scholar
  8. 8.
    Sharma P et al (2017) Primary, adaptive, and acquired resistance to cancer immunotherapy. Cell 168(4):707–723PubMedPubMedCentralGoogle Scholar
  9. 9.
    Anagnostou V et al (2017) Evolution of neoantigen landscape during immune checkpoint blockade in non-small cell lung cancer. Cancer Discov 7(3):264–276PubMedGoogle Scholar
  10. 10.
    Matsushita H et al (2012) Cancer exome analysis reveals a T-cell-dependent mechanism of cancer immunoediting. Nature 482(7385):400–404PubMedPubMedCentralGoogle Scholar
  11. 11.
    Schreiber RD, Old LJ, Smyth MJ (2011) Cancer immunoediting: integrating immunity’s roles in cancer suppression and promotion. Science 331(6024):1565–1570PubMedGoogle Scholar
  12. 12.
    Verdegaal EM et al (2016) Neoantigen landscape dynamics during human melanoma–T cell interactions. Nature 536(7614):91–95PubMedGoogle Scholar
  13. 13.
    Spranger S, Bao R, Gajewski TF (2015) Melanoma-intrinsic beta-catenin signalling prevents anti-tumour immunity. Nature 523(7559):231–235Google Scholar
  14. 14.
    Peng W et al (2016) Loss of PTEN promotes resistance to T cell-mediated immunotherapy. Cancer Discov 6(2):202–216Google Scholar
  15. 15.
    Shin DS et al (2017) Primary resistance to PD-1 blockade mediated by JAK1/2 mutations. Cancer Discov 7(2):188–201PubMedGoogle Scholar
  16. 16.
    Zaretsky JM et al (2016) Mutations associated with acquired resistance to PD-1 blockade in melanoma. N Engl J Med 375(9):819–829PubMedPubMedCentralGoogle Scholar
  17. 17.
    Gao J et al (2016) Loss of IFN-gamma pathway genes in tumor cells as a mechanism of resistance to anti-CTLA-4 therapy. Cell 167(2):397 e9–404 e9Google Scholar
  18. 18.
    Patel SJ et al (2017) Identification of essential genes for cancer immunotherapy. Nature 548(7669):537–542PubMedPubMedCentralGoogle Scholar
  19. 19.
    Spranger S et al (2017) Tumor-residing Batf3 dendritic cells are required for effector T cell trafficking and adoptive T cell therapy. Cancer Cell 31(5):711.e4–723.e4Google Scholar
  20. 20.
    Casey SC et al (2016) MYC regulates the antitumor immune response through CD47 and PD-L1. Science 352(6282):227–231PubMedPubMedCentralGoogle Scholar
  21. 21.
    Lastwika KJ et al (2016) Control of PD-L1 expression by oncogenic activation of the AKT–mTOR pathway in non-small cell lung cancer. Cancer Res 76(2):227–238PubMedGoogle Scholar
  22. 22.
    Topalian SL, Drake CG, Pardoll DM (2015) Immune checkpoint blockade: a common denominator approach to cancer therapy. Cancer Cell 27(4):450–461PubMedPubMedCentralGoogle Scholar
  23. 23.
    Spranger S et al (2013) Up-regulation of PD-L1, IDO, and T(regs) in the melanoma tumor microenvironment is driven by CD8(+) T cells. Sci Transl Med 5(200):200ra116PubMedPubMedCentralGoogle Scholar
  24. 24.
    Benci JL et al (2016) Tumor interferon signaling regulates a multigenic resistance program to immune checkpoint blockade. Cell 167(6):1540.e12–1554.e12Google Scholar
  25. 25.
    Shayan G et al (2017) Adaptive resistance to anti-PD1 therapy by Tim-3 upregulation is mediated by the PI3K–Akt pathway in head and neck cancer. Oncoimmunology 6(1):e1261779PubMedGoogle Scholar
  26. 26.
    Gao J et al (2017) VISTA is an inhibitory immune checkpoint that is increased after ipilimumab therapy in patients with prostate cancer. Nat Med 23(5):551–555PubMedPubMedCentralGoogle Scholar
  27. 27.
    Brand A et al (2016) LDHA-associated lactic acid production blunts tumor immunosurveillance by T and NK cells. Cell Metab 24(5):657–671PubMedGoogle Scholar
  28. 28.
    Chaudhary B, Elkord E (2016) Regulatory T cells in the tumor microenvironment and cancer progression: role and therapeutic targeting.Vaccines (Basel). 4(3). pii: E28.  https://doi.org/10.1016/j.cellimm.2018.02.008 PubMedGoogle Scholar
  29. 29.
    Lin YC et al (2013) Activated but not resting regulatory T cells accumulated in tumor microenvironment and correlated with tumor progression in patients with colorectal cancer. Int J Cancer 132(6):1341–1350PubMedGoogle Scholar
  30. 30.
    Yang L et al (2008) Abrogation of TGF beta signaling in mammary carcinomas recruits Gr-1+CD11b+ myeloid cells that promote metastasis. Cancer Cell 13(1):23–35PubMedPubMedCentralGoogle Scholar
  31. 31.
    Solito S et al (2011) A human promyelocytic-like population is responsible for the immune suppression mediated by myeloid-derived suppressor cells. Blood 118(8):2254–2265PubMedPubMedCentralGoogle Scholar
  32. 32.
    Yang L et al (2004) Expansion of myeloid immune suppressor Gr+CD11b+ cells in tumor-bearing host directly promotes tumor angiogenesis. Cancer Cell 6(4):409–421PubMedGoogle Scholar
  33. 33.
    Kiss M et al (2018) Myeloid cell heterogeneity in cancer: not a single cell alike. Cell Immunol.  https://doi.org/10.1016/j.cellimm.2018.02.008 CrossRefPubMedGoogle Scholar
  34. 34.
    Talmadge JE, Gabrilovich DI (2013) History of myeloid-derived suppressor cells. Nat Rev Cancer 13(10):739–752PubMedPubMedCentralGoogle Scholar
  35. 35.
    Lewis CE, Harney AS, Pollard JW (2016) The multifaceted role of perivascular macrophages in tumors. Cancer Cell 30(2):365PubMedGoogle Scholar
  36. 36.
    Mantovani A et al (2017) Tumour-associated macrophages as treatment targets in oncology. Nat Rev Clin Oncol 14(7):399–416PubMedPubMedCentralGoogle Scholar
  37. 37.
    Motz GT et al (2014) Tumor endothelium FasL establishes a selective immune barrier promoting tolerance in tumors. Nat Med 20(6):607–615PubMedPubMedCentralGoogle Scholar
  38. 38.
    Caruana I et al (2015) Heparanase promotes tumor infiltration and antitumor activity of CAR-redirected T lymphocytes. Nat Med 21(5):524–529PubMedPubMedCentralGoogle Scholar
  39. 39.
    Vetizou M et al (2015) Anticancer immunotherapy by CTLA-4 blockade relies on the gut microbiota. Science 350(6264):1079–1084PubMedPubMedCentralGoogle Scholar
  40. 40.
    Maio M et al (2015) Molecular pathways: at the crossroads of cancer epigenetics and immunotherapy. Clin Cancer Res 21(18):4040–4047PubMedGoogle Scholar
  41. 41.
    Kanwal R, Gupta K, Gupta S (2015) Cancer epigenetics: an introduction. Methods Mol Biol 1238:3–25PubMedGoogle Scholar
  42. 42.
    Nebbioso A et al (2012) Trials with ‘epigenetic’ drugs: an update. Mol Oncol 6(6):657–682PubMedPubMedCentralGoogle Scholar
  43. 43.
    Coulie PG et al (2014) Tumour antigens recognized by T lymphocytes: at the core of cancer immunotherapy. Nat Rev Cancer 14(2):135–146PubMedGoogle Scholar
  44. 44.
    Heninger E, Krueger TE, Lang JM (2015) Augmenting antitumor immune responses with epigenetic modifying agents. Front Immunol 6:29PubMedPubMedCentralGoogle Scholar
  45. 45.
    Huijbers IJ et al (2012) Minimal tolerance to a tumor antigen encoded by a cancer-germline gene. J Immunol 188(1):111–121PubMedGoogle Scholar
  46. 46.
    Scanlan MJ et al (2002) Cancer/testis antigens: an expanding family of targets for cancer immunotherapy. Immunol Rev 188:22–32PubMedGoogle Scholar
  47. 47.
    James SR, Link PA, Karpf AR (2006) Epigenetic regulation of X-linked cancer/germline antigen genes by DNMT1 and DNMT3b. Oncogene 25(52):6975–6985PubMedGoogle Scholar
  48. 48.
    Yu J et al (2004) Methylation profiles of thirty four promoter-CpG islands and concordant methylation behaviours of sixteen genes that may contribute to carcinogenesis of astrocytoma. BMC Cancer 4:65PubMedPubMedCentralGoogle Scholar
  49. 49.
    Yu J et al (2002) Methylation profiling of twenty promoter-CpG islands of genes which may contribute to hepatocellular carcinogenesis. BMC Cancer 2:29PubMedPubMedCentralGoogle Scholar
  50. 50.
    Smith HA et al (2011) Expression and immunotherapeutic targeting of the SSX family of cancer-testis antigens in prostate cancer. Cancer Res 71(21):6785–6795PubMedGoogle Scholar
  51. 51.
    Weber J et al (1994) Expression of the MAGE-1 tumor antigen is up-regulated by the demethylating agent 5-aza-2′-deoxycytidine. Cancer Res 54(7):1766–1771PubMedGoogle Scholar
  52. 52.
    Dubovsky JA, McNeel DG (2007) Inducible expression of a prostate cancer-testis antigen, SSX-2, following treatment with a DNA methylation inhibitor. Prostate 67(16):1781–1790PubMedGoogle Scholar
  53. 53.
    Goodyear O et al (2010) Induction of a CD8+ T-cell response to the MAGE cancer testis antigen by combined treatment with azacitidine and sodium valproate in patients with acute myeloid leukemia and myelodysplasia. Blood 116(11):1908–1918PubMedGoogle Scholar
  54. 54.
    Rao M et al (2011) Inhibition of histone lysine methylation enhances cancer-testis antigen expression in lung cancer cells: implications for adoptive immunotherapy of cancer. Cancer Res 71(12):4192–4204PubMedPubMedCentralGoogle Scholar
  55. 55.
    Toor AA et al (2012) Epigenetic induction of adaptive immune response in multiple myeloma: sequential azacitidine and lenalidomide generate cancer testis antigen-specific cellular immunity. Br J Haematol 158(6):700–711PubMedPubMedCentralGoogle Scholar
  56. 56.
    Garcia-Lora A et al (2003) MHC class I-deficient metastatic tumor variants immunoselected by T lymphocytes originate from the coordinated downregulation of APM components. Int J Cancer 106(4):521–527PubMedGoogle Scholar
  57. 57.
    Serrano A et al (2001) Rexpression of HLA class I antigens and restoration of antigen-specific CTL response in melanoma cells following 5-aza-2′-deoxycytidine treatment. Int J Cancer 94(2):243–251PubMedGoogle Scholar
  58. 58.
    Li H et al (2014) Immune regulation by low doses of the DNA methyltransferase inhibitor 5-azacitidine in common human epithelial cancers. Oncotarget 5(3):587–598PubMedPubMedCentralGoogle Scholar
  59. 59.
    Setiadi AF et al (2007) Epigenetic control of the immune escape mechanisms in malignant carcinomas. Mol Cell Biol 27(22):7886–7894PubMedPubMedCentralGoogle Scholar
  60. 60.
    Setiadi AF et al (2008) Epigenetic enhancement of antigen processing and presentation promotes immune recognition of tumors. Cancer Res 68(23):9601–9607PubMedGoogle Scholar
  61. 61.
    Ritter C et al (2017) Epigenetic priming restores the HLA class-I antigen processing machinery expression in Merkel cell carcinoma. Sci Rep 7(1):2290PubMedPubMedCentralGoogle Scholar
  62. 62.
    Chou SD et al (2005) Histone acetylation regulates the cell type specific CIITA promoters, MHC class II expression and antigen presentation in tumor cells. Int Immunol 17(11):1483–1494PubMedGoogle Scholar
  63. 63.
    Khan AN, Magner WJ, Tomasi TB (2004) An epigenetically altered tumor cell vaccine. Cancer Immunol Immunother 53(8):748–754PubMedGoogle Scholar
  64. 64.
    Magner WJ et al (2000) Activation of MHC class I, II, and CD40 gene expression by histone deacetylase inhibitors. J Immunol 165(12):7017–7024PubMedGoogle Scholar
  65. 65.
    Maeda T et al (2000) Up-regulation of costimulatory/adhesion molecules by histone deacetylase inhibitors in acute myeloid leukemia cells. Blood 96(12):3847–3856PubMedGoogle Scholar
  66. 66.
    Nencioni A et al (2007) Histone deacetylase inhibitors affect dendritic cell differentiation and immunogenicity. Clin Cancer Res 13(13):3933–3941PubMedGoogle Scholar
  67. 67.
    Rosenzweig JM et al (2013) KLF4 modulates expression of IL-6 in dendritic cells via both promoter activation and epigenetic modification. J Biol Chem 288(33):23868–23874PubMedPubMedCentralGoogle Scholar
  68. 68.
    Hervouet E et al (2013) DNA methylation and apoptosis resistance in cancer cells. Cells 2(3):545–573PubMedPubMedCentralGoogle Scholar
  69. 69.
    Hopkins-Donaldson S et al (2003) Silencing of death receptor and caspase-8 expression in small cell lung carcinoma cell lines and tumors by DNA methylation. Cell Death Differ 10(3):356–364PubMedGoogle Scholar
  70. 70.
    Eramo A et al (2005) Inhibition of DNA methylation sensitizes glioblastoma for tumor necrosis factor-related apoptosis-inducing ligand-mediated destruction. Cancer Res 65(24):11469–11477PubMedGoogle Scholar
  71. 71.
    Lucas DM et al (2004) The histone deacetylase inhibitor MS-275 induces caspase-dependent apoptosis in B-cell chronic lymphocytic leukemia cells. Leukemia 18(7):1207–1214PubMedGoogle Scholar
  72. 72.
    Insinga A et al (2005) Inhibitors of histone deacetylases induce tumor-selective apoptosis through activation of the death receptor pathway. Nat Med 11(1):71–76PubMedGoogle Scholar
  73. 73.
    Natoni F et al (2005) Sodium butyrate sensitises human pancreatic cancer cells to both the intrinsic and the extrinsic apoptotic pathways. Biochim Biophys Acta 1745(3):318–329PubMedGoogle Scholar
  74. 74.
    Lee PP et al (2001) A critical role for Dnmt1 and DNA methylation in T cell development, function, and survival. Immunity 15(5):763–774PubMedGoogle Scholar
  75. 75.
    de Araújo-Souza PS, Hanschke SCH, Viola JPB (2015) Epigenetic control of interferon-gamma expression in CD8 T cells. J Immunol Res 2015:849573PubMedPubMedCentralGoogle Scholar
  76. 76.
    Harland KL et al (2014) Epigenetic plasticity of Cd8a locus during CD8(+) T-cell development and effector differentiation and reprogramming. Nat Commun 5:3547PubMedPubMedCentralGoogle Scholar
  77. 77.
    Wherry EJ, Kurachi M (2015) Molecular and cellular insights into T cell exhaustion. Nat Rev Immunol 15(8):486–499PubMedPubMedCentralGoogle Scholar
  78. 78.
    Utzschneider DT et al (2013) T cells maintain an exhausted phenotype after antigen withdrawal and population reexpansion. Nat Immunol 14(6):603–610PubMedGoogle Scholar
  79. 79.
    Ahn E et al (2016) Demethylation of the PD-1 promoter is imprinted during the effector phase of CD8 T cell exhaustion. J Virol 90(19):8934–8946PubMedPubMedCentralGoogle Scholar
  80. 80.
    Youngblood B et al (2013) Cutting edge: prolonged exposure to HIV reinforces a poised epigenetic program for PD-1 expression in virus-specific CD8 T cells. J Immunol 191(2):540–544PubMedPubMedCentralGoogle Scholar
  81. 81.
    Youngblood B et al (2011) Chronic virus infection enforces demethylation of the locus that encodes PD-1 in antigen-specific CD8(+) T cells. Immunity 35(3):400–412PubMedPubMedCentralGoogle Scholar
  82. 82.
    Sen DR et al (2016) The epigenetic landscape of T cell exhaustion. Science 354(6316):1165–1169PubMedPubMedCentralGoogle Scholar
  83. 83.
    Raeber ME et al (2018) The role of cytokines in T-cell memory in health and disease. Immunol Rev 283(1):176–193PubMedGoogle Scholar
  84. 84.
    Pauken KE et al (2016) Epigenetic stability of exhausted T cells limits durability of reinvigoration by PD-1 blockade. Science 354(6316):1160–1165PubMedPubMedCentralGoogle Scholar
  85. 85.
    Topper MJ et al (2017) Epigenetic therapy ties MYC depletion to reversing immune evasion and treating lung cancer. Cell 171(6):1284.e21–1300.e21Google Scholar
  86. 86.
    Ghoneim HE et al (2017) De novo epigenetic programs inhibit PD-1 blockade-mediated T cell rejuvenation. Cell 170(1):142 e19–157 e19Google Scholar
  87. 87.
    Wrangle J et al (2013) Alterations of immune response of non-small cell lung cancer with azacytidine. Oncotarget 4(11):2067–2079PubMedPubMedCentralGoogle Scholar
  88. 88.
    Yang H et al (2014) Expression of PD-L1, PD-L2, PD-1 and CTLA4 in myelodysplastic syndromes is enhanced by treatment with hypomethylating agents. Leukemia 28(6):1280–1288PubMedGoogle Scholar
  89. 89.
    Boyman O, Sprent J (2012) The role of interleukin-2 during homeostasis and activation of the immune system. Nat Rev Immunol 12(3):180–190PubMedGoogle Scholar
  90. 90.
    Wing K, Yamaguchi T, Sakaguchi S (2011) Cell-autonomous and -non-autonomous roles of CTLA-4 in immune regulation. Trends Immunol 32(9):428–433PubMedGoogle Scholar
  91. 91.
    Letourneau S et al (2009) IL-2- and CD25-dependent immunoregulatory mechanisms in the homeostasis of T-cell subsets. J Allergy Clin Immunol 123(4):758–762PubMedGoogle Scholar
  92. 92.
    Ohkura N, Kitagawa Y, Sakaguchi S (2013) Development and maintenance of regulatory T cells. Immunity 38(3):414–423PubMedGoogle Scholar
  93. 93.
    Overacre AE, Vignali DA (2016) T(reg) stability: to be or not to be. Curr Opin Immunol 39:39–43PubMedPubMedCentralGoogle Scholar
  94. 94.
    Ohkura N et al (2012) T cell receptor stimulation-induced epigenetic changes and Foxp3 expression are independent and complementary events required for Treg cell development. Immunity 37(5):785–799PubMedGoogle Scholar
  95. 95.
    Lal G et al (2009) Epigenetic regulation of Foxp3 expression in regulatory T cells by DNA methylation. J Immunol 182(1):259–273PubMedPubMedCentralGoogle Scholar
  96. 96.
    Polansky JK et al (2008) DNA methylation controls Foxp3 gene expression. Eur J Immunol 38(6):1654–1663PubMedGoogle Scholar
  97. 97.
    Sahakian E et al (2015) Histone deacetylase 11: a novel epigenetic regulator of myeloid derived suppressor cell expansion and function. Mol Immunol 63(2):579–585PubMedGoogle Scholar
  98. 98.
    Kim K et al (2014) Eradication of metastatic mouse cancers resistant to immune checkpoint blockade by suppression of myeloid-derived cells. Proc Natl Acad Sci USA 111(32):11774–11779PubMedGoogle Scholar
  99. 99.
    Youn JI et al (2013) Epigenetic silencing of retinoblastoma gene regulates pathologic differentiation of myeloid cells in cancer. Nat Immunol 14(3):211–220PubMedPubMedCentralGoogle Scholar
  100. 100.
    Franklin RA et al (2014) The cellular and molecular origin of tumor-associated macrophages. Science 344(6186):921–925PubMedPubMedCentralGoogle Scholar
  101. 101.
    Pollard JW (2004) Tumour-educated macrophages promote tumour progression and metastasis. Nat Rev Cancer 4(1):71–78PubMedGoogle Scholar
  102. 102.
    Sica A et al (2006) Tumour-associated macrophages are a distinct M2 polarised population promoting tumour progression: potential targets of anti-cancer therapy. Eur J Cancer 42(6):717–727PubMedGoogle Scholar
  103. 103.
    Ivashkiv LB (2013) Epigenetic regulation of macrophage polarization and function. Trends Immunol 34(5):216–223PubMedGoogle Scholar
  104. 104.
    Ishii M et al (2009) Epigenetic regulation of the alternatively activated macrophage phenotype. Blood 114(15):3244–3254PubMedPubMedCentralGoogle Scholar
  105. 105.
    Heeb LE et al (2018) Regulation of neutrophils in type 2 immune responses. Curr Opin Immunol 54:115–122PubMedGoogle Scholar
  106. 106.
    Chang YC et al (2008) Epigenetic control of MHC class II expression in tumor-associated macrophages by decoy receptor 3. Blood 111(10):5054–5063PubMedGoogle Scholar
  107. 107.
    Margueron R, Reinberg D (2011) The Polycomb complex PRC2 and its mark in life. Nature 469(7330):343–349PubMedPubMedCentralGoogle Scholar
  108. 108.
    Comet I et al (2016) Maintaining cell identity: pRC2-mediated regulation of transcription and cancer. Nat Rev Cancer 16(12):803–810Google Scholar
  109. 109.
    Kim KH, Roberts CW (2016) Targeting EZH2 in cancer. Nat Med 22(2):128–134PubMedPubMedCentralGoogle Scholar
  110. 110.
    Christofides A et al (2016) Epigenetic regulation of cancer biology and anti-tumor immunity by EZH2. Oncotarget 7(51):85624–85640PubMedPubMedCentralGoogle Scholar
  111. 111.
    Holling TM et al (2007) A role for EZH2 in silencing of IFN-gamma inducible MHC2TA transcription in uveal melanoma. J Immunol 179(8):5317–5325PubMedGoogle Scholar
  112. 112.
    McCabe MT et al (2012) EZH2 inhibition as a therapeutic strategy for lymphoma with EZH2-activating mutations. Nature 492(7427):108–112PubMedGoogle Scholar
  113. 113.
    Verma SK et al (2012) Identification of potent, selective, cell-active inhibitors of the histone lysine methyltransferase EZH2. ACS Med Chem Lett 3(12):1091–1096PubMedPubMedCentralGoogle Scholar
  114. 114.
    van Vlerken LE et al (2013) EZH2 is required for breast and pancreatic cancer stem cell maintenance and can be used as a functional cancer stem cell reporter. Stem Cells Transl Med 2(1):43–52PubMedGoogle Scholar
  115. 115.
    Adhikary G et al (2015) Survival of skin cancer stem cells requires the Ezh2 polycomb group protein. Carcinogenesis 36(7):800–810PubMedPubMedCentralGoogle Scholar
  116. 116.
    Zingg D et al (2015) The epigenetic modifier EZH2 controls melanoma growth and metastasis through silencing of distinct tumour suppressors. Nat Commun 6:6051PubMedGoogle Scholar
  117. 117.
    Cao Q et al (2008) Repression of E-cadherin by the polycomb group protein EZH2 in cancer. Oncogene 27(58):7274–7284PubMedPubMedCentralGoogle Scholar
  118. 118.
    Ma DN et al (2016) MicroRNA-26a suppresses epithelial-mesenchymal transition in human hepatocellular carcinoma by repressing enhancer of zeste homolog 2. J Hematol Oncol 9:1PubMedPubMedCentralGoogle Scholar
  119. 119.
    Mikucki ME et al (2015) Non-redundant requirement for CXCR3 signalling during tumoricidal T-cell trafficking across tumour vascular checkpoints. Nat Commun 6:7458PubMedPubMedCentralGoogle Scholar
  120. 120.
    Peng D et al (2015) Epigenetic silencing of TH1-type chemokines shapes tumour immunity and immunotherapy. Nature 527(7577):249–253PubMedPubMedCentralGoogle Scholar
  121. 121.
    Nagarsheth N et al (2016) PRC2 epigenetically silences Th1-type chemokines to suppress effector T-cell trafficking in colon cancer. Cancer Res 76(2):275–282PubMedGoogle Scholar
  122. 122.
    Zingg D et al (2017) The histone methyltransferase Ezh2 controls mechanisms of adaptive resistance to tumor immunotherapy. Cell Rep 20(4):854–867PubMedGoogle Scholar
  123. 123.
    Arenas-Ramirez N, Woytschak J, Boyman O (2015) Interleukin-2: biology, design and application. Trends Immunol 36(12):763–777PubMedGoogle Scholar
  124. 124.
    Arenas-Ramirez N et al (2016) Improved cancer immunotherapy by a CD25-mimobody conferring selectivity to human interleukin-2. Sci Transl Med 8(367):367ra166PubMedGoogle Scholar
  125. 125.
    Landsberg J et al (2012) Melanomas resist T-cell therapy through inflammation-induced reversible dedifferentiation. Nature 490(7420):412–416PubMedGoogle Scholar
  126. 126.
    Pan D et al (2018) A major chromatin regulator determines resistance of tumor cells to T cell-mediated killing. Science 359(6377):770–775PubMedPubMedCentralGoogle Scholar
  127. 127.
    Tumes DJ et al (2013) The polycomb protein Ezh2 regulates differentiation and plasticity of CD4(+) T helper type 1 and type 2 cells. Immunity 39(5):819–832PubMedGoogle Scholar
  128. 128.
    Yang XP et al (2015) EZH2 is crucial for both differentiation of regulatory T cells and T effector cell expansion. Sci Rep 5:10643PubMedPubMedCentralGoogle Scholar
  129. 129.
    Tong Q et al (2014) Ezh2 regulates transcriptional and posttranslational expression of T-bet and promotes Th1 cell responses mediating aplastic anemia in mice. J Immunol 192(11):5012–5022PubMedPubMedCentralGoogle Scholar
  130. 130.
    Zhao E et al (2016) Cancer mediates effector T cell dysfunction by targeting microRNAs and EZH2 via glycolysis restriction. Nat Immunol 17(1):95–103PubMedGoogle Scholar
  131. 131.
    He S et al (2017) Ezh2 phosphorylation state determines its capacity to maintain CD8(+) T memory precursors for antitumor immunity. Nat Commun 8(1):2125PubMedPubMedCentralGoogle Scholar
  132. 132.
    Gunawan M et al (2015) The methyltransferase Ezh2 controls cell adhesion and migration through direct methylation of the extranuclear regulatory protein talin. Nat Immunol 16(5):505–516PubMedGoogle Scholar
  133. 133.
    Shi X et al (2016) Epigenetic suppression of the antitumor cytotoxicity of NK cells by histone deacetylase inhibitor valproic acid. Am J Cancer Res 6(3):600–614PubMedPubMedCentralGoogle Scholar
  134. 134.
    Santourlidis S et al (2002) Crucial role of DNA methylation in determination of clonally distributed killer cell Ig-like receptor expression patterns in NK cells. J Immunol 169(8):4253–4261PubMedGoogle Scholar
  135. 135.
    Santourlidis S et al (2008) Lineage-specific transition of histone signatures in the killer cell Ig-like receptor locus from hematopoietic progenitor to NK cells. J Immunol 180(1):418–425PubMedGoogle Scholar
  136. 136.
    Nagel S et al (2010) Polycomb repressor complex 2 regulates HOXA9 and HOXA10, activating ID2 in NK/T-cell lines. Mol Cancer 9:151PubMedPubMedCentralGoogle Scholar
  137. 137.
    Yin J et al (2015) Ezh2 regulates differentiation and function of natural killer cells through histone methyltransferase activity. Proc Natl Acad Sci USA 112(52):15988–15993PubMedGoogle Scholar
  138. 138.
    DuPage M et al (2015) The chromatin-modifying enzyme Ezh2 is critical for the maintenance of regulatory T cell identity after activation. Immunity 42(2):227–238PubMedPubMedCentralGoogle Scholar
  139. 139.
    Wang D et al (2018) Targeting EZH2 reprograms intratumoral regulatory T cells to enhance cancer immunity. Cell Rep 23(11):3262–3274PubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Department of ImmunologyUniversity Hospital ZurichZurichSwitzerland
  2. 2.Faculty of MedicineUniversity of ZurichZurichSwitzerland

Personalised recommendations