Advertisement

Cellular and Molecular Life Sciences

, Volume 75, Issue 22, pp 4107–4124 | Cite as

Anti-type 2 transglutaminase antibodies as modulators of type 2 transglutaminase functions: a possible pathological role in celiac disease

  • Stefania Martucciello
  • Gaetana Paolella
  • Carla Esposito
  • Marilena Lepretti
  • Ivana Caputo
Review
  • 240 Downloads

Abstract

Auto-antibodies to the ubiquitous enzyme type-2 transglutaminase (TG2) are a specific hallmark of celiac disease (CD), a widely diffused, multi-factorial disease, affecting genetically predisposed subjects. In CD an inflammatory response, at the intestinal level, is triggered by diet consumption of gluten-containing cereals. Intestinal mucosa displays various degrees of atrophy and hyperplasia, with consequent global intestinal dysfunction and other relevant extra-intestinal symptoms. Through deamidation of specific glutamines of gluten-derived gliadin peptides, TG2 strongly enhances gliadin immunogenicity. In addition, TG2 cross-linking activity may generate complexes between TG2 itself and gliadin peptides, and these complexes seem to cause the auto-immune response by means of an apten-carrier-like mechanism of antigen presentation. Anti-TG2 antibodies can be early detected in the intestinal mucosa of celiac patients and are also abundantly present into the serum, thus potentially reaching other organs and tissues by blood circulation. Recently, the possible pathogenetic role of auto-antibodies to TG2 in CD has been investigated. Here, we report an overview about the genesis of these antibodies, their specificity, their modulating ability toward TG2 enzymatic or non-enzymatic activities and their biological effects exerted by interacting with extracellular TG2 or with cell-surface TG2. We also discuss the auto-immune response occurring in CD against other TG members (i.e. type 3 and type 6) and analyze the occurrence of anti-TG2 antibodies in other auto-immune CD-related diseases. Data now available let us to suppose that, even if antibodies to TG2 do not represent the triggering molecules in CD, they could be important players in disease progression and manifestations.

Keywords

Type-2 transglutaminase Celiac disease Anti-TG2 auto-antibodies Humoral auto-immune response Post-translational modifications Auto-immune diseases 

Abbreviations

TG2

Type-2 transglutaminase

CD

Celiac disease

TG

Transglutaminase

HLA

Human leukocyte antigens

DH

Dermatitis herpetiformis

TG3

Type 3 transglutaminase

TG6

Type 6 transglutaminase

T1D

Type 1 diabetes

References

  1. 1.
    Lorand L, Graham RM (2003) Transglutaminases: crosslinking enzymes with pleiotropic functions. Nat Rev Mol Cell Biol 4:140–156.  https://doi.org/10.1038/nrm1014 CrossRefPubMedGoogle Scholar
  2. 2.
    Dieterich W, Ehnis T, Bauer M, Donner P, Volta U, Riecken EO, Schuppan D (1997) Identification of tissue transglutaminase as the autoantigen of celiac disease. Nat Med 3(7):797–801.  https://doi.org/10.1038/nm0797-797 CrossRefPubMedGoogle Scholar
  3. 3.
    Grenard P, Bates MK, Aeschlimann D (2001) Evolution of transglutaminase genes: identification of a transglutaminase gene cluster on human chromosome 15q15. Structure of the gene encoding transglutaminase X and a novel gene family member, transglutaminase Z. J Biol Chem 276(35):33066–33078.  https://doi.org/10.1074/jbc.M102553200 CrossRefPubMedGoogle Scholar
  4. 4.
    Lai TS, Lin CJ, Greenberg CS (2017) Role of tissue transglutaminase-2 (TG2)-mediated aminylation in biological processes. Amino Acids 49(3):501–551.  https://doi.org/10.1007/s00726-016-2270-8 CrossRefPubMedGoogle Scholar
  5. 5.
    Stamnaes J, Fleckenstein B, Sollid LM (2008) The propensity for deamidation and transamidation of peptides by transglutaminase 2 is dependent on substrate affinity and reaction conditions. Biochim Biophys Acta 1784(11):1804–1811.  https://doi.org/10.1016/j.bbapap.2008.08.011 CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Muszbek L, Bereczky Z, Bagoly Z, Komáromi I, Katona É (2011) Factor XIII: a coagulation factor with multiple plasmatic and cellular functions. Physiol Rev 91(3):931–972.  https://doi.org/10.1152/physrev.00016.2010 CrossRefPubMedGoogle Scholar
  7. 7.
    Dean MD (2013) Genetic disruption of the copulatory plug in mice leads to severely reduced fertility. PLoS Genet 9(1):e1003185.  https://doi.org/10.1371/journal.pgen.1003185 CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Jiang WG, Ablin RJ (2011) Prostate transglutaminase: a unique transglutaminase and its role in prostate cancer. Biomark Med 5(3):285–291.  https://doi.org/10.2217/bmm.11.36 CrossRefPubMedGoogle Scholar
  9. 9.
    Candi E, Schmidt R, Melino G (2005) The cornified envelope: a model of cell death in the skin. Nat Rev Mol Cell Biol 6(4):328–340.  https://doi.org/10.1038/nrm1619 CrossRefPubMedGoogle Scholar
  10. 10.
    Eckert RL, Kaartinen MT, Nurminskaya M, Belkin AM, Colak G, Johnson GV, Mehta K (2014) Transglutaminase regulation of cell function. Physiol Rev 94(2):383–417.  https://doi.org/10.1152/physrev.00019.2013 CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Ientile R, Caccamo D, Griffin M (2007) Tissue transglutaminase and the stress response. Amino Acids 33(2):385–394.  https://doi.org/10.1007/s00726-007-0517-0 CrossRefPubMedGoogle Scholar
  12. 12.
    Nurminskaya MV, Belkin AM (2012) Cellular functions of tissue transglutaminase. Int Rev Cell Mol Biol 294:1–97.  https://doi.org/10.1016/B978-0-12-394305-7.00001-X CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Nakaoka H, Perez DM, Baek KJ, Das T, Husain A, Misono K, Im MJ, Graham RM (1994) Gh: a GTP-binding protein with transglutaminase activity and receptor signaling function. Science 264(5165):1593–1596CrossRefGoogle Scholar
  14. 14.
    Iismaa SE, Mearns BM, Lorand L, Graham RM (2009) Transglutaminases and disease: lessons from genetically engineered mouse models and inherited disorders. Physiol Rev 89(3):991–1023.  https://doi.org/10.1152/physrev.00044.2008 CrossRefPubMedGoogle Scholar
  15. 15.
    Liu S, Cerione RA, Clardy J (2002) Structural basis for the guanine nucleotide-binding activity of tissue transglutaminase and its regulation of transamidation activity. Proc Natl Acad Sci USA 99(5):2743–2747.  https://doi.org/10.1073/pnas.042454899 CrossRefPubMedGoogle Scholar
  16. 16.
    Pinkas DM, Strop P, Brunger AT, Khosla C (2007) Transglutaminase 2 undergoes a large conformational change upon activation. PLoS Biol 5(12):e327.  https://doi.org/10.1371/journal.pbio.0050327 CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Kuo TF, Tatsukawa H, Kojima S (2011) New insights into the functions and localization of nuclear transglutaminase 2. FEBS J 278(24):4756–4767.  https://doi.org/10.1111/j.1742-4658.2011.08409.x CrossRefPubMedGoogle Scholar
  18. 18.
    Kanchan K, Fuxreiter M, Fésüs L (2015) Physiological, pathological, and structural implications of non-enzymatic protein-protein interactions of the multifunctional human transglutaminase 2. Cell Mol Life Sci 72(16):3009–3035.  https://doi.org/10.1007/s00018-015-1909-z CrossRefPubMedGoogle Scholar
  19. 19.
    RodolfoC Mormone E, Matarrese P, Ciccosanti F, Farrace MG, Garofano E, Piredda L, Fimia GM, Malorni W, Piacentini M (2004) Tissue transglutaminase is a multifunctional BH3-only protein. J Biol Chem 279:54783–54792.  https://doi.org/10.1074/jbc.M410938200 CrossRefGoogle Scholar
  20. 20.
    Hasegawa G, Suwa M, Ichikawa Y, Ohtsuka T, Kumagai S, Kikuchi M, Sato Y, Saito Y (2003) A novel function of tissue-type transglutaminase: protein disulphide isomerase. Biochem J 373:793–803.  https://doi.org/10.1042/BJ20021084 CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Mastroberardino PG, Farrace MG, Viti I, Pavone F, Fimia GM, Melino G, Rodolfo C, Piacentini M (2006) “Tissue” transglutaminase contributes to the formation of disulphide bridges in proteins of mitochondrial respiratory complexes. Biochim Biophys Acta 1757:1357–1365.  https://doi.org/10.1016/j.bbabio.2006.07.007 CrossRefPubMedGoogle Scholar
  22. 22.
    Lai TS, Lin CJ, Wu YT, Wu CJ (2017) Tissue transglutaminase (TG2) and mitochondrial function and dysfunction. Front Biosci (Landmark Ed) 1(22):1114–11372017CrossRefGoogle Scholar
  23. 23.
    Zemskov EA, Mikhailenko I, Hsia RC, Zaritskaya L, Belkin AM (2011) Unconventional secretion of tissue transglutaminase involves phospholipid-dependent delivery into recycling endosomes. PLoS One 6(4):e19414.  https://doi.org/10.1371/journal.pone.0019414 CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Akimov SS, Krylov D, Fleischman LF, Belkin AM (2000) Tissue transglutaminase is an integrin-binding adhesion coreceptor for fibronectin. J Cell Biol 148(4):825–838CrossRefGoogle Scholar
  25. 25.
    Zemskov EA, Mikhailenko I, Smith EP, Belkin AM (2012) Tissue transglutaminase promotes PDGF/PDGFR-mediated signaling and responses in vascular smooth muscle cells. J Cell Physiol 227(5):2089–2096.  https://doi.org/10.1002/jcp.22938 CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Dardik R, Inbal A (2006) Complex formation between tissue transglutaminase II (tTG) and vascular endothelial growth factor receptor 2 (VEGFR-2): proposed mechanism for modulation of endothelial cell response to VEGF. Exp Cell Res 312(16):2973–2982.  https://doi.org/10.1016/j.yexcr.2006.05.019 CrossRefPubMedGoogle Scholar
  27. 27.
    Zemskov EA, Mikhailenko I, Strickland DK, Belkin AM (2007) Cell-surface transglutaminase undergoes internalization and lysosomal degradation: an essential role for LRP1. J Cell Sci 120(Pt 18):3188–3199.  https://doi.org/10.1242/jcs.010397 CrossRefPubMedGoogle Scholar
  28. 28.
    Faverman L, Mikhaylova L, Malmquist J, Nurminskaya M (2008) Extracellular transglutaminase 2 activates beta-catenin signaling in calcifying vascular smooth muscle cells. FEBS Lett 582(10):1552–1557.  https://doi.org/10.1016/j.febslet.2008.03.053 CrossRefPubMedGoogle Scholar
  29. 29.
    Scarpellini A, Germack R, Lortat-Jacob H, Muramatsu T, Billett E, Johnson T, Verderio EA (2009) Heparan sulfate proteoglycans are receptors for the cell-surface trafficking and biological activity of transglutaminase-2. J Biol Chem 284(27):18411–18423.  https://doi.org/10.1074/jbc.M109.012948 CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Belkin AM (2011) Extracellular TG2: emerging functions and regulation. FEBS J 278(24):4704–4716.  https://doi.org/10.1111/j.1742-4658.2011.08346.x CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Siegel M, Strnad P, Watts RE, Choi K, Jabri B, Omary MB, Khosla C (2008) Extracellular transglutaminase 2 is catalytically inactive, but is transiently activated upon tissue injury. PLoS One 3(3):e1861.  https://doi.org/10.1371/journal.pone.000186132 CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Stamnaes J, Pinkas DM, Fleckenstein B, Khosla C, Sollid LM (2010) Redox regulation of transglutaminase 2 activity. J Biol Chem 285:25402–25409.  https://doi.org/10.1074/jbc.M109.097162 CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Fraij BM, Gonzales RA (1996) A third human tissue transglutaminase homologue as a result of alternative gene transcripts. Biochim Biophys Acta 1306:63–74CrossRefGoogle Scholar
  34. 34.
    Monsonego A, Shani Y, Friedmann I, Paas Y, Eizenberg O, Schwartz M (1997) Expression of GTPdependent and GTP-independent tissue-type transglutaminase in cytokine-treated rat brain astrocytes. J Biol Chem 272:3724–3732CrossRefGoogle Scholar
  35. 35.
    Antonyak MA, Jansen JM, Miller AM, Ly TK, Endo M, Cerione RA (1996) Two isoforms of tissue transglutaminase mediate opposing cellular fates. Proc Natl Acad Sci USA 103:18609–18614CrossRefGoogle Scholar
  36. 36.
    Lai TS, Liu Y, Li W, Greenberg CS (2007) Identification of two GTP-independent alternatively spliced forms of tissue transglutaminase in human leukocytes, vascular smooth muscle, and endothelial cells. FASEB J 21:4131–4143CrossRefGoogle Scholar
  37. 37.
    Mishra S, Murphy LJ (2004) Tissue transglutaminase has intrinsic kinase activity: identification of transglutaminase 2 as an insulin-like growth factor-binding protein-3 kinase. J Biol Chem 279:23863–23868.  https://doi.org/10.1074/jbc.m311919200 CrossRefPubMedGoogle Scholar
  38. 38.
    Mishra S, Saleh A, Espino PS, Davie JR, Murphy LJ (2006) Phosphorylation of histones by tissue transglutaminase. J Biol Chem 281:5532–5538.  https://doi.org/10.1074/jbc.m506864200 CrossRefPubMedGoogle Scholar
  39. 39.
    Mishra S, Melino G, Murphy LJ (2007) Transglutaminase 2 kinase activity facilitates protein kinaseA-induced phosphorylation of retinoblastoma protein. J Biol Chem 282:18108–18115.  https://doi.org/10.1074/jbc.m607413200 CrossRefPubMedGoogle Scholar
  40. 40.
    Mishra S, Murphy LJ (2006) The p53 oncoprotein is a substrate for tissue transglutaminase kinase activity. Biochem Biophys Res Commun 339:726–730.  https://doi.org/10.1016/j.bbrc.2005.11.071 CrossRefPubMedGoogle Scholar
  41. 41.
    Király R, Thangaraju K, Nagy Z, Collighan R, Nemes Z, Griffin M, Fésüs L (2016) Isopeptidase activity of human transglutaminase 2: disconnection from transamidation and characterization by kinetic parameters. Amino Acids 48(1):31–40.  https://doi.org/10.1007/s00726-015-2063-5 CrossRefPubMedGoogle Scholar
  42. 42.
    Esposito C, Caputo I (2005) Mammalian transglutaminases. Identification of substrates as a key to physiological function and physiopathological relevance. FEBS J 272(3):615–631.  https://doi.org/10.1111/j.1742-4658.2004.04476.x CrossRefPubMedGoogle Scholar
  43. 43.
    Kumar S, Mehta K (2013) Tissue transglutaminase, inflammation, and cancer: how intimate is the relationship? Amino Acids 44(1):81–88.  https://doi.org/10.1007/s00726-011-1139-0 CrossRefPubMedGoogle Scholar
  44. 44.
    Ruan Q, Johnson GV (2007) Transglutaminase 2 in neurodegenerative disorders. Front Biosci 12:891–904.  https://doi.org/10.2741/2111 CrossRefPubMedGoogle Scholar
  45. 45.
    Sollid LM (2002) Coeliac disease: dissecting a complex inflammatory disorder. Nat Rev Immunol 2(9):647–655.  https://doi.org/10.1038/nri885 CrossRefPubMedGoogle Scholar
  46. 46.
    Leffler DA, Green PH, Fasano A (2015) Extraintestinal manifestations of coeliac disease. Nat Rev Gastroenterol Hepatol 12(10):561–571.  https://doi.org/10.1038/nrgastro.2015.131 CrossRefPubMedGoogle Scholar
  47. 47.
    Wieser H (2007) Chemistry of gluten proteins. Food Microbiol 24(2):115–119.  https://doi.org/10.1016/j.fm.2006.07.004 CrossRefPubMedGoogle Scholar
  48. 48.
    Shan L, Molberg Ø, Parrot I, Hausch F, Filiz F, Gray GM, Sollid LM, Khosla C (2002) Structural basis for gluten intolerance in celiac sprue. Science 297(5590):2275–2279.  https://doi.org/10.1126/science.1074129 CrossRefPubMedGoogle Scholar
  49. 49.
    Setty M, Discepolo V, Abadie V, Kamhawi S, Mayassi T, Kent A, Ciszewski C, Maglio M, Kistner E, Bhagat G, Semrad C, Kupfer SS, Green PH, Guandalini S, Troncone R, Murray JA, Turner JR, Jabri B (2015) Distinct and synergistic contributions of epithelial stress and adaptive immunity to functions of intraepithelial killer cells and active celiac disease. Gastroenterology 149(3):681–691.  https://doi.org/10.1053/j.gastro.2015.05.013 CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Schuppan D, Junker Y, Barisani D (2009) Celiac disease: from pathogenesis to novel therapies. Gastroenterology 137(6):1912–1933.  https://doi.org/10.1053/j.gastro.2009.09.008 CrossRefPubMedGoogle Scholar
  51. 51.
    Kaukinen K, Partanen J, Mäki M, Collin P (2002) HLA-DQ typing in the diagnosis of celiac disease. Am J Gastroenterol 97(3):695–699.  https://doi.org/10.1111/j.1572-0241.2002.05471.x CrossRefPubMedGoogle Scholar
  52. 52.
    Romanos J, Rosén A, Kumar V, Trynka G, Franke L, Szperl A, Gutierrez-Achury J, van Diemen CC, Kanninga R, Jankipersadsing SA, Steck A, Eisenbarth G, van Heel DA, Cukrowska B, Bruno V, Mazzilli MC, Núñez C, Bilbao JR, Mearin ML, Barisani D, Rewers M, Norris JM, Ivarsson A, Boezen HM, Liu E, Wijmenga C, Prevent CD Group (2014) Improving coeliac disease risk prediction by testing non-HLA variants additional to HLA variants. Gut 63(3):415–422.  https://doi.org/10.1136/gutjnl-2012-304110 CrossRefPubMedGoogle Scholar
  53. 53.
    Giersiepen K, Lelgemann M, Stuhldreher N, Ronfani L, Husby S, Koletzko S, Korponay-Szabó IR (2012) ESPGHAN Working Group on Coeliac Disease Diagnosis. Accuracy of diagnostic antibody tests for coeliac disease in children: summary of an evidence report. J Pediatr Gastroenterol Nutr 54(2):229–241.  https://doi.org/10.1097/MPG.0b013e318216f2e5 CrossRefPubMedGoogle Scholar
  54. 54.
    Werkstetter KJ, Korponay-Szabó IR, Popp A, Villanacci V, Salemme M, Heilig G, Lillevang ST, Mearin ML, Ribes-Koninckx C, Thomas A, Troncone R, Filipiak B, Mäki M, Gyimesi J, Najafi M, Dolinšek J, Dydensborg Sander S, Auricchio R, Papadopoulou A, Vécsei A, Szitanyi P, Donat E, Nenna R, Alliet P, Penagini F, Garnier-Lengliné H, Castillejo G, Kurppa K, Shamir R, Hauer AC, Smets F, Corujeira S, van Winckel M, Buderus S, Chong S, Husby S, Koletzko S, ProCeDE study group (2017) Accuracy in diagnosis of celiac disease without biopsies in clinical practice. Gastroenterology 153(4):924–935.  https://doi.org/10.1053/j.gastro.2017.06.002 CrossRefPubMedGoogle Scholar
  55. 55.
    Vader LW, de Ru A, van der Wal Y, Kooy YM, Benckhuijsen W, Mearin ML, Drijfhout JW, van Veelen P, Koning F (2002) Specificity of tissue transglutaminase explains cereal toxicity in celiac disease. J Exp Med 195(5):643–92002CrossRefGoogle Scholar
  56. 56.
    Sollid LM, Jabri B (2011) Celiac disease and transglutaminase 2: a model for posttranslational modification of antigens and HLA association in the pathogenesis of auto-immune disorders. Curr Opin Immunol 23(6):732–738.  https://doi.org/10.1016/j.coi.2011.08.006 CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Sollid LM, Qiao SW, Anderson RP, Gianfrani C, Koning F (2012) Nomenclature and listing of celiac disease relevant gluten T-cell epitopes restricted by HLA-DQ molecules. Immunogenetics 64:455–460.  https://doi.org/10.1007/s00251-012-0599-z CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Fleckenstein B, Molberg Ø, Qiao SW, Schmid DG, von der Mülbe F, Elgstøen K, Jung G, Sollid LM (2002) Gliadin T cell epitope selection by tissue transglutaminase in celiac disease. Role of enzyme specificity and pH influence on the transamidation versus deamidation process. J Biol Chem 277(37):34109–34116.  https://doi.org/10.1074/jbc.m204521200 CrossRefPubMedGoogle Scholar
  59. 59.
    Esposito C, Paparo F, Caputo I, Porta R, Salvati VM, Mazzarella G, Auricchio S, Troncone R (2003) Expression and enzymatic activity of small intestinal tissue transglutaminase in celiac disease. Am J Gastroenterol 98(8):1813–1820.  https://doi.org/10.1111/j.1572-0241.2003.07582.x CrossRefPubMedGoogle Scholar
  60. 60.
    Biagi F, Campanella J, Laforenza U, Gastaldi G, Tritto S, Grazioli M, Villanacci V, Corazza GR (2006) Transglutaminase 2 in the enterocytes is coeliac specific and gluten dependent. Dig Liver Dis 38(9):652–658.  https://doi.org/10.1016/j.dld.2006.05.021 CrossRefPubMedGoogle Scholar
  61. 61.
    Villanacci V, Not T, Sblattero D, Gaiotto T, Chirdo F, Galletti A, Bassotti G (2009) Mucosal tissue transglutaminase expression in celiac disease. J Cell Mol Med 13(2):334–340.  https://doi.org/10.1111/j.1582-4934.2008.00325.x CrossRefPubMedGoogle Scholar
  62. 62.
    Dahle C, Hagman A, Ignatova S, Ström M (2010) Antibodies against deamidated gliadin peptides identify adult coeliac disease patients negative for antibodies against endomysium and tissue transglutaminase. Aliment Pharmacol Ther 32(2):254–260.  https://doi.org/10.1111/j.1365-2036.2010.04337.x CrossRefPubMedGoogle Scholar
  63. 63.
    Marzari R, Sblattero D, Florian F, Tongiorgi E, Not T, Tommasini A, Ventura A, Bradbury A (2001) Molecular dissection of the tissue transglutaminase autoantibody response in celiac disease. J Immunol 166:4170–4176CrossRefGoogle Scholar
  64. 64.
    Korponay-Szabó IR, Halttunen T, Szalai Z, Laurila K, Király R, Kovács JB, Fésüs L, Mäki M (2004) In vivo targeting of intestinal and extraintestinal transglutaminase 2 by coeliac auto-antibodies. Gut 53(5):641–648.  https://doi.org/10.1136/gut.2003.024836 CrossRefPubMedPubMedCentralGoogle Scholar
  65. 65.
    Kaukinen K, Peräaho M, Collin P, Partanen J, Woolley N et al (2005) Small-bowel mucosal transglutaminase 2-specific IgA deposits in coeliac disease without villous atrophy: a prospective and randomized clinical study. Scand J Gastroenterol 40:564–572.  https://doi.org/10.1080/00365520510023422 CrossRefPubMedGoogle Scholar
  66. 66.
    Taavela J, Kurppa K, Collin P, Lähdeaho ML, Salmi T, Saavalainen P, Haimila K, Huhtala H, Laurila K, Sievänen H, Mäki M, Kaukinen K (2013) Degree of damage to the small bowel and serum antibody titers correlate with clinical presentation of patients with celiac disease. Clin Gastroenterol Hepatol 11(2):166–171.  https://doi.org/10.1016/j.cgh.2012.09.030 CrossRefPubMedGoogle Scholar
  67. 67.
    Sardy M, Karpati S, Merkl B, Paulsson M, Smyth N (2002) Epidermal transglutaminase (TGase 3) is the autoantigen of dermatitis herpetiformis. J Exp Med 195(6):747–757.  https://doi.org/10.1084/jem.20011299 CrossRefPubMedPubMedCentralGoogle Scholar
  68. 68.
    Hadjivassiliou M, Aeschlimann P, Strigun A, Sanders DS, Woodroofe N, Aeschlimann D (2008) Auto-antibodies in gluten ataxia recognize a novel neuronal transglutaminase. Ann Neurol 64:332–343.  https://doi.org/10.1002/ana.21450 CrossRefPubMedGoogle Scholar
  69. 69.
    Sollid LM, Molberg Ø, McAdam S, Lundin KEA (1997) Auto-antibodies in celiac disease: tissue transglutaminase–guilt by association? Gut 41:851–852CrossRefGoogle Scholar
  70. 70.
    Fleckenstein B, Qiao SW, Larsen MR, Jung G, Roepstorff P, Sollid LM (2004) Molecular characterization of covalent complexes between tissue transglutaminase and gliadin peptides. J Biol Chem 279:17607–17616.  https://doi.org/10.1074/jbc.M310198200 CrossRefPubMedGoogle Scholar
  71. 71.
    Stamnaes J, Iversen R, du Pré MF, Chen X, Sollid LM (2015) Enhanced B-cell receptor recognition of the autoantigen transglutaminase 2 by efficient catalytic self-multimerization. PLoS One 10(8):e0134922.  https://doi.org/10.1371/journal.pone.0134922 CrossRefPubMedPubMedCentralGoogle Scholar
  72. 72.
    Sollid LM (2017) The roles of MHC class II genes and post-translational modification in celiac disease. Immunogenetics 69(8–9):605–616.  https://doi.org/10.1007/s00251-017-0985-7 CrossRefPubMedGoogle Scholar
  73. 73.
    Shaoul R, Lerner A (2007) Associated auto-antibodies in celiac disease. Autoimmun Rev 6(8):559–565.  https://doi.org/10.1016/j.autrev.2007.02.006 CrossRefPubMedGoogle Scholar
  74. 74.
    Alaedini A, Green PH (2008) Auto-antibodies in celiac disease. Autoimmunity 41(1):19–26.  https://doi.org/10.1080/08916930701619219 CrossRefPubMedGoogle Scholar
  75. 75.
    Stamnaes J, Sollid LM (2015) Celiac disease: autoimmunity in response to food antigen. Semin Immunol 27(5):343–352.  https://doi.org/10.1016/j.smim.2015.11.001 CrossRefPubMedGoogle Scholar
  76. 76.
    Iversen R, du Pré MF, Di Niro R, Sollid LM (2015) Igs as substrates for transglutaminase 2: implications for autoantibody production in celiac disease. J Immunol 195:5159–5168.  https://doi.org/10.4049/jimmunol.1501363 CrossRefPubMedPubMedCentralGoogle Scholar
  77. 77.
    Zanoni G, Navone R, Lunardi C, Tridente G, Bason C, Sivori S, Beri R, Dolcino M, Valletta E, Corrocher R, Puccetti A (2006) In celiac disease, a subset of autoantibodies against transglutaminase binds toll-like receptor 4 and induces activation of monocytes. PLoS Med 3(9):e358.  https://doi.org/10.1371/journal.pmed.0030358 CrossRefPubMedPubMedCentralGoogle Scholar
  78. 78.
    Dolcino M, Zanoni G, Bason C, Tinazzi E, Boccola E, Valletta E, Contreas G, Lunardi C, Puccetti A (2013) A subset of anti-rotavirus antibodies directed against the viral protein VP7 predicts the onset of celiac disease and induces typical features of the disease in the intestinal epithelial cell line T84. Immunol Res 56(2–3):465–476.  https://doi.org/10.1007/s12026-013-8420-0 CrossRefPubMedGoogle Scholar
  79. 79.
    Korponay-Szabó IR, Vecsei A, Kiraly R, Dahlbom I, Chirdo F, Nemes E, Fésüs L, Maki M (2008) Deamidated gliadin peptides form epitopes that transglutaminase antibodies recognize. J Pediatr Gastroenterol Nutr 46:253–261.  https://doi.org/10.1097/mpg.0b013e31815ee555 CrossRefPubMedGoogle Scholar
  80. 80.
    Seissler J, Wohlrab U, Wuensche C, Scherbaum WA, Boehm BO (2001) Auto-antibodies from patients with coeliac disease recognize distinct functional domains of the autoantigen tissue transglutaminase. Clin Exp Immunol 125(2):216–221.  https://doi.org/10.1046/j.1365-2249.2001.01584.x CrossRefPubMedPubMedCentralGoogle Scholar
  81. 81.
    Nakachi K, Powell M, Swift G, Amoroso MA, Ananieva-Jordanova R, Arnold C, Sanders J, Furmaniak J, Rees Smith B (2004) Epitopes recognised by tissue transglutaminase antibodies in coeliac disease. J Autoimmun 22(1):53–63CrossRefGoogle Scholar
  82. 82.
    Sblattero D, Florian F, Azzoni E, Zyla T, Park M, Baldas V, Not T, Ventura A, Bradbury A, Marzari R (2002) The analysis of the fine specificity of celiac disease antibodies using tissue transglutaminase fragments. Eur J Biochem 269(21):5175–5181.  https://doi.org/10.1046/j.1432-1033.2002.03215.x CrossRefPubMedGoogle Scholar
  83. 83.
    Di Niro R, Ferrara F, Not T, Bradbury AR, Chirdo F, Marzari R, Sblattero D (2005) Characterizing monoclonal antibody epitopes by filtered gene fragment phage display. Biochem J 388(Pt 3):889–894.  https://doi.org/10.1042/bj20041983 CrossRefPubMedPubMedCentralGoogle Scholar
  84. 84.
    Király R, Vecsei Z, Deményi T, Korponay-Szabó IR, Fésüs L (2006) Coeliac auto-antibodies can enhance transamidating and inhibit GTPase activity of tissue transglutaminase: dependence on reaction environment and enzyme fitness. J Autoimmun 26(4):278–287.  https://doi.org/10.1016/j.jaut.2006.03.002 CrossRefPubMedGoogle Scholar
  85. 85.
    Simon-Vecsei Z, Király R, Bagossi P, Tóth B, Dahlbom I, Caja S, Csosz É, Lindfors K, Sblattero D, Nemes É, Mäki M, Fésüs L, Korponay-Szabó IR (2012) A single conformational transglutaminase 2 epitope contributed by three domains is critical for celiac antibody binding and effects. Proc Natl Acad Sci USA 109(2):431–436.  https://doi.org/10.1073/pnas.1107811108 CrossRefPubMedGoogle Scholar
  86. 86.
    Di Pisa M, Buccato P, Sabatino G, Real Fernández F, Berti B, Cocola F, Papini AM, Rovero P (2014) Epitope mapping of the N-terminal portion of tissue transglutaminase protein antigen to identify linear epitopes in celiac disease. J Pept Sci 20(9):689–695.  https://doi.org/10.1002/psc.2650 CrossRefPubMedGoogle Scholar
  87. 87.
    Chen X, Hnida K, Graewert MA, Andersen JT, Iversen R, Tuukkanen A, Svergun D, Sollid LM (2015) Structural basis for antigen recognition by transglutaminase 2-specific auto-antibodies in celiac disease. J Biol Chem 290(35):21365–21375.  https://doi.org/10.1074/jbc.M115.669895 CrossRefPubMedPubMedCentralGoogle Scholar
  88. 88.
    Iversen R, Di Niro R, Stamnaes J, Lundin KE, Wilson PC, Sollid LM (2013) Transglutaminase 2-specific autoantibodies in celiac disease target clustered, N-terminal epitopes not displayed on the surface of cells. J Immunol 190(12):5981–5991.  https://doi.org/10.4049/jimmunol.1300183 CrossRefPubMedPubMedCentralGoogle Scholar
  89. 89.
    Byrne G, Ryan F, Jackson J, Feighery C, Kelly J (2007) Mutagenesis of the catalytic triad of tissue transglutaminase abrogates coeliac disease serum IgA autoantibody binding. Gut 56(3):336-41. https://doi.org/ https://doi.org/10.1136/gut.2006.092908 CrossRefGoogle Scholar
  90. 90.
    Telci D, Griffin M (2006) Tissue transglutaminase (TG2)—a wound response enzyme. Front Biosci 11:867–882CrossRefGoogle Scholar
  91. 91.
    Caputo I, Barone MV, Martucciello S, Lepretti M, Esposito C (2009) Tissue transglutaminase in celiac disease: role of autoantibodies. Amino Acids 36(4):693–699.  https://doi.org/10.1007/s00726-008-0120-z CrossRefPubMedGoogle Scholar
  92. 92.
    Halttunen T, Mäki M (1999) Serum immunoglobulin A from patients with celiac disease inhibits human T84 intestinal crypt epithelial cell differentiation. Gastroenterology 116(3):566–572CrossRefGoogle Scholar
  93. 93.
    Esposito C, Paparo F, Caputo I, Rossi M, Maglio M, Sblattero D, Not T, Porta R, Auricchio S, Marzari R, Troncone R (2002) Anti-tissue transglutaminase antibodies from coeliac patients inhibit transglutaminase activity both in vitro and in situ. Gut 51(2):177–181.  https://doi.org/10.1136/gut.51.2.177 CrossRefPubMedPubMedCentralGoogle Scholar
  94. 94.
    Dieterich W, Trapp D, Esslinger B, Leidenberger M, Piper J, Hahn E, Schuppan D (2003) Auto-antibodies of patients with coeliac disease are insufficient to block tissue transglutaminase activity. Gut 52(11):1562–1566.  https://doi.org/10.1136/gut.52.11.1562 CrossRefPubMedPubMedCentralGoogle Scholar
  95. 95.
    Byrne G, Feighery C, Jackson J, Kelly J (2010) Coeliac disease auto-antibodies mediate significant inhibition of tissue transglutaminase. Clin Immunol 136(3):426–431.  https://doi.org/10.1016/j.clim.2010.04.017 CrossRefPubMedGoogle Scholar
  96. 96.
    Anjum N, Baker PN, Robinson NJ, Aplin JD (2009) Maternal celiac disease auto-antibodies bind directly to syncytiotrophoblast and inhibit placental tissue transglutaminase activity. Reprod Biol Endocrinol 7:16.  https://doi.org/10.1186/1477-7827-7-16 CrossRefPubMedPubMedCentralGoogle Scholar
  97. 97.
    Di Niro R, Mesin L, Zheng NY, Stamnaes J, Morrissey M, Lee JH, Huang M, Iversen R, du Pré MF, Qiao SW, Lundin KE, Wilson PC, Sollid LM (2012) High abundance of plasma cells secreting transglutaminase 2-specific IgA autoantibodies with limited somatic hypermutation in celiac disease intestinal lesions. Nat Med 18(3):441–445.  https://doi.org/10.1038/nm.2656 CrossRefPubMedPubMedCentralGoogle Scholar
  98. 98.
    Myrsky E, Caja S, Simon-Vecsei Z, Korponay-Szabo IR, Nadalutti C, Collighan R, Mongeot A, Griffin M, Mäki M, Kaukinen K, Lindfors K (2009) Celiac disease IgA modulates vascular permeability in vitro through the activity of transglutaminase 2 and RhoA. Cell Mol Life Sci 66(20):3375–3385.  https://doi.org/10.1007/s00018-009-0116-1 CrossRefPubMedGoogle Scholar
  99. 99.
    Caja S, Myrsky E, Korponay-Szabo IR, Nadalutti C, Sulic AM, Lavric M, Sblattero D, Marzari R, Collighan R, Mongeot A, Griffin M, Mäki M, Kaukinen K, Lindfors K (2010) Inhibition of transglutaminase 2 enzymatic activity ameliorates the anti-angiogenic effects of coeliac disease autoantibodies. Scand J Gastroenterol 45(4):421–427.  https://doi.org/10.3109/00365520903540822 CrossRefPubMedGoogle Scholar
  100. 100.
    Kalliokoski S, Sulic AM, Korponay-Szabó IR, Szondy Z, Frias R, Perez MA, Martucciello S, Roivainen A, Pelliniemi LJ, Esposito C, Griffin M, Sblattero D, Mäki M, Kaukinen K, Lindfors K, Caja S (2013) Celiac disease-specific TG2-targeted auto-antibodies inhibit angiogenesis ex vivo and in vivo in mice by interfering with endothelial cell dynamics. PLoS One 8(6):e65887.  https://doi.org/10.1371/journal.pone.0065887 CrossRefPubMedPubMedCentralGoogle Scholar
  101. 101.
    Barone MV, Caputo I, Ribecco MT, Maglio M, Marzari R, Sblattero D, Troncone R, Auricchio S, Esposito C (2007) Humoral immune response to tissue transglutaminase is related to epithelial cell proliferation in celiac disease. Gastroenterology 132(4):1245–1253.  https://doi.org/10.1053/j.gastro.2007.01.030 CrossRefPubMedGoogle Scholar
  102. 102.
    Hnida K, Stamnaes J, du Pré MF, Mysling S, Jørgensen TJ, Sollid LM, Iversen R (2016) Epitope-dependent functional effects of celiac disease auto-antibodies on transglutaminase 2. J Biol Chem 291(49):25542–25552.  https://doi.org/10.1074/jbc.M116.738161 CrossRefPubMedPubMedCentralGoogle Scholar
  103. 103.
    Iversen R, Mysling S, Hnida K, Jørgensen TJ, Sollid LM (2014) Activity-regulating structural changes and autoantibody epitopes in transglutaminase 2 assessed by hydrogen/deuterium exchange. Proc Natl Acad Sci USA 111(48):17146–17151.  https://doi.org/10.1073/pnas.1407457111 CrossRefPubMedGoogle Scholar
  104. 104.
    Caputo I, Barone MV, Lepretti M, Martucciello S, Nista I, Troncone R, Auricchio S, Sblattero D, Esposito C (2010) Celiac anti-tissue transglutaminase antibodies interfere with the uptake of alpha gliadin peptide 31–43 but not of peptide 57–68 by epithelial cells. Biochim Biophys Acta 9:717–727.  https://doi.org/10.1016/j.bbadis.2010.05.010 CrossRefGoogle Scholar
  105. 105.
    Teesalu K, Panarina M, Uibo O, Uibo R, Utt M (2012) Autoantibodies from patients with celiac disease inhibit transglutaminase 2 binding to heparin/heparan sulfate and interfere with intestinal epithelial cell adhesion. Amino Acids 42(2–3):1055–1064.  https://doi.org/10.1007/s00726-011-1020-1 CrossRefPubMedGoogle Scholar
  106. 106.
    Myrsky E, Kaukinen K, Syrjänen M, Korponay-Szabó IR, Mäki M, Lindfors K (2008) Coeliac disease-specific autoantibodies targeted against transglutaminase 2 disturb angiogenesis. Clin Exp Immunol 152(1):111–119.  https://doi.org/10.1111/j.1365-2249.2008.03600.x CrossRefPubMedPubMedCentralGoogle Scholar
  107. 107.
    Nanayakkara M, Kosova R, Lania G, Sarno M, Gaito A, Galatola M, Greco L, Cuomo M, Troncone R, Auricchio S, Auricchio R, Barone MV (2013) A celiac cellular phenotype, with altered LPP sub-cellular distribution, is inducible in controls by the toxic gliadin peptide P31-43. PLoS One 8(11):e79763.  https://doi.org/10.1371/journal.pone.0079763 CrossRefPubMedPubMedCentralGoogle Scholar
  108. 108.
    Paolella G, Lepretti M, Barone MV, Nanayakkara M, Di Zenzo M, Sblattero D, Auricchio S, Esposito C, Caputo I (2017) Celiac anti-type 2 transglutaminase antibodies induce differential effects in fibroblasts from celiac disease patients and from healthy subjects. Amino Acid 49(3):541–550.  https://doi.org/10.1007/s00726-016-2307-z CrossRefGoogle Scholar
  109. 109.
    Caputo I, Lepretti M, Secondo A, Martucciello S, Paolella G, Sblattero D, Barone MV, Esposito C (2013) Anti-tissue transglutaminase antibodies activate intracellular tissue transglutaminase by modulating cytosolic Ca2+ homeostasis. Amino Acids 44(1):251–260.  https://doi.org/10.1007/s00726-011-1120-y CrossRefPubMedGoogle Scholar
  110. 110.
    Caputo I, Secondo A, Lepretti M, Paolella G, Auricchio S, Barone MV, Esposito C (2012) Gliadin peptides induce tissue transglutaminase activation and ER-stress through Ca2+ mobilization in Caco-2 cells. PLoS One 7(9):e45209.  https://doi.org/10.1371/journal.pone.0045209 CrossRefPubMedPubMedCentralGoogle Scholar
  111. 111.
    Paolella G, Caputo I, Marabotti A, Lepretti M, Salzano AM, Scaloni A, Vitale M, Zambrano N, Sblattero D, Esposito C (2013) Celiac anti-type 2 transglutaminase antibodies induce phosphoproteome modification in intestinal epithelial Caco-2 cells. PLoS One 8(12):e84403.  https://doi.org/10.1371/journal.pone.0084403 CrossRefPubMedPubMedCentralGoogle Scholar
  112. 112.
    Myrsky E, Syrjänen M, Korponay-Szabo IR, Mäki M, Kaukinen K, Lindfors K (2009) Altered small-bowel mucosal vascular network in untreated coeliac disease. Scand J Gastroenterol 44(2):162–167.  https://doi.org/10.1080/00365520802400875 CrossRefPubMedGoogle Scholar
  113. 113.
    Martucciello S, Lavric M, Toth B, Korponay-Szabo I, Nadalutti C, Myrsky E, Rauhavirta T, Esposito C, Sulic AM, Sblattero D, Marzari R, Mäki M, Kaukinen K, Lindfors K, Caja S (2012) RhoB is associated with the anti-angiogenic effects of celiac patient transglutaminase 2-targeted auto-antibodies. J Mol Med (Berl) 90(7):817–826.  https://doi.org/10.1007/s00109-011-0853-0 CrossRefGoogle Scholar
  114. 114.
    Lee YJ, Jung SH, Kim SH, Kim MS, Lee S, Hwang J, Kim SY, Kim YM, Ha KS (2016) Essential role of transglutaminase 2 in vascular endothelial growth factor-induced vascular leakage in the retina of diabetic mice. Diabetes 65(8):2414–2428.  https://doi.org/10.2337/db15-1594 CrossRefPubMedGoogle Scholar
  115. 115.
    Adini I, Rabinovitz I, Sun JF, Prendergast GC, Benjamin LE (2003) Rho B controls Akt trafficking and stage-specific survival of endothelial cells during vascular development. Genes Dev 17(21):2721–2732.  https://doi.org/10.1101/gad.1134603 CrossRefPubMedPubMedCentralGoogle Scholar
  116. 116.
    Nadalutti CA, Korponay-Szabo IR, Kaukinen K, Griffin M, Mäki M, Lindfors K (2014) Celiac disease patient IgA antibodies induce endothelial adhesion and cell polarization defects via extracellular transglutaminase 2. Cell Mol Life Sci 71(7):1315–1326.  https://doi.org/10.1007/s00018-013-1455-5 CrossRefPubMedGoogle Scholar
  117. 117.
    Moss SF, Attia L, Scholes JV, Walters JR, Holt PR (1996) Increased small intestinal apoptosis in coeliac disease. Gut 39(6):811–817CrossRefGoogle Scholar
  118. 118.
    Ciccocioppo R, Di Sabatino A, Parroni R, Muzi P, D’Alò S, Ventura T, Pistoia MA, Cifone MG, Corazza GR (2001) Increased enterocyte apoptosis and Fas-Fas ligand system in celiac disease. Am J Clin Pathol 115(4):494–503.  https://doi.org/10.1309/uv54-bhp3-a66b-0qud CrossRefPubMedGoogle Scholar
  119. 119.
    Hoffmanová I, Sánchez D, Hábová V, Anděl M, Tučková L, Tlaskalová-Hogenová H (2015) Serological markers of enterocyte damage and apoptosis in patients with celiac disease, autoimmune diabetes mellitus and diabetes mellitus type 2. Physiol Res 64(4):537–546PubMedGoogle Scholar
  120. 120.
    Kalliokoski S, Piqueras VO, Frías R, Sulic AM, Määttä JA, Kähkönen N, Viiri K, Huhtala H, Pasternack A, Laurila K, Sblattero D, Korponay-Szabó IR, Mäki M, Caja S, Kaukinen K, Lindfors K (2017) Transglutaminase 2-specific coeliac disease auto-antibodies induce morphological changes and signs of inflammation in the small-bowel mucosa of mice. Amino Acids 49(3):529–540.  https://doi.org/10.1007/s00726-016-2306-0 CrossRefPubMedGoogle Scholar
  121. 121.
    Sóñora C, Calo G, Fraccaroli L, Pérez-Leirós C, Hernández A, Ramhorst R (2014) Tissue transglutaminase on trophoblast cells as a possible target of auto-antibodies contributing to pregnancy complications in celiac patients. Am J Reprod Immunol 72(5):485–495.  https://doi.org/10.1111/aji.12290 CrossRefPubMedGoogle Scholar
  122. 122.
    Cervio E, Volta U, Verri M, Boschi F, Pastoris O, Granito A, Barbara G, Parisi C, Felicani C, Tonini M, De Giorgio R (2007) Sera of patients with celiac disease and neurologic disorders evoke a mitochondrial-dependent apoptosis in vitro. Gastroenterology 133(1):195–206.  https://doi.org/10.1053/j.gastro.2007.04.070 CrossRefPubMedGoogle Scholar
  123. 123.
    Rauhavirta T, Qiao SW, Jiang Z, Myrsky E, Loponen J, Korponay-Szabó IR, Salovaara H, Garcia-Horsman JA, Venäläinen J, Männistö PT, Collighan R, Mongeot A, Griffin M, Mäki M, Kaukinen K, Lindfors K (2011) Epithelial transport and deamidation of gliadin peptides: a role for coeliac disease patient immunoglobulin A. Clin Exp Immunol 164(1):127–136.  https://doi.org/10.1111/j.1365-2249.2010.04317.x CrossRefPubMedPubMedCentralGoogle Scholar
  124. 124.
    Paolella G, Lepretti M, Martucciello S, Nanayakkara M, Auricchio S, Esposito C, Barone MV, Caputo I (2018) The toxic alpha-gliadin peptide 31-43 enters cells without a surface membrane receptor. Cell biol Intern 42(1):112–120.  https://doi.org/10.1002/cbin.10874 CrossRefGoogle Scholar
  125. 125.
    Freitag T, Schulze-Koops H, Niedobitek G, Melino G, Schuppan D (2004) The role of the immune response against tissue transglutaminase in the pathogenesis of coeliac disease. Autoimmun Rev 3(2):13–20.  https://doi.org/10.1016/s1568-9972(03)00054-5 CrossRefPubMedGoogle Scholar
  126. 126.
    Di Niro R, Sblattero D, Florian F, Stebel M, Zentilin L, Giacca M, Villanacci V, Galletti A, Not T, Ventura A, Marzari R (2008) Anti-idiotypic response in mice expressing human auto-antibodies. Mol Immunol 45(6):1782–1791.  https://doi.org/10.1016/j.molimm.2007.09.025 CrossRefPubMedGoogle Scholar
  127. 127.
    Vangone A, Abdel-Azeim S, Caputo I, Sblattero D, Di Niro R, Cavallo L, Oliva R (2014) Structural basis for the recognition in an idiotype-anti-idiotype antibody complex related to celiac disease. PLoS One 9(7):e102839.  https://doi.org/10.1371/journal.pone.0102839 CrossRefPubMedPubMedCentralGoogle Scholar
  128. 128.
    Tzioufas AG, Routsias JG (2010) Idiotype, anti-idiotype network of autoantibodies: pathogenetic considerations and clinical application. Autoimmun Rev 9:631–633CrossRefGoogle Scholar
  129. 129.
    Kalliokoski S, Caja S, Frias R, Laurila K, Koskinen O, Niemelä O, Mäki M, Kaukinen K, Korponay-Szabó IR, Lindfors K (2015) Injection of celiac disease patient sera or immunoglobulins to mice reproduces a condition mimicking early developing celiac disease. J Mol Med (Berl) 93(1):51–62.  https://doi.org/10.1007/s00109-014-1204-8 CrossRefGoogle Scholar
  130. 130.
    Hoffmanová I, Sánchez D, Tučková L, Tlaskalová-Hogenová H (2018) Celiac disease and liver disorders: from putative pathogenesis to clinical implications. Nutrients 10(7):E892.  https://doi.org/10.3390/nu10070892 CrossRefPubMedGoogle Scholar
  131. 131.
    Hadjivassiliou M, Mäki M, Sanders DS, Williamson CA, Grünewald RA, Woodroofe NM, Korponay-Szabó IR (2006) Autoantibody targeting of brain and intestinal transglutaminase in gluten ataxia. Neurology 66:373–377.  https://doi.org/10.1212/01.wnl.0000196480.55601.3a CrossRefPubMedGoogle Scholar
  132. 132.
    Boscolo S, Lorenzon A, Sblattero D, Florian F, Stebel M, Marzari R, Not T, Aeschlimann D, Ventura A, Hadjivassiliou M, Tongiorgi E (2010) Anti transglutaminase antibodies cause ataxia in mice. PLoS One 5(3):e9698.  https://doi.org/10.1371/journal.pone.0009698 CrossRefPubMedPubMedCentralGoogle Scholar
  133. 133.
    Sugai E, Cherñavsky A, Pedreira S, Smecuol E, Vazquez H, Niveloni S, Mazure R, Mauriro E, Rabinovich GA, Bai JC (2002) Bone-specific antibodies in sera from patients with celiac disease: characterization and implications in osteoporosis. J Clin Immunol 22(6):353–362.  https://doi.org/10.1023/A:1020786315956 CrossRefPubMedGoogle Scholar
  134. 134.
    Naiyer AJ, Shah J, Hernandez L, Kim SY, Ciaccio EJ, Cheng J, Manavalan S, Bhagat G, Green PH (2008) Tissue transglutaminase antibodies in individuals with celiac disease bind to thyroid follicles and extracellular matrix and may contribute to thyroid dysfunction. Thyroid 18(11):1171–1178.  https://doi.org/10.1089/thy.2008.0110 CrossRefPubMedGoogle Scholar
  135. 135.
    Sategna-Guidetti C, Franco E, Martini S, Bobbio M (2004) Binding by serum IgA antibodies from patients with coeliac disease to monkey heart tissue. Scand J Gastroenterol 39(6):540–543.  https://doi.org/10.1080/00365520410008764 CrossRefPubMedGoogle Scholar
  136. 136.
    Sane DC, Kontos JL, Greenberg CS (2007) Roles of transglutaminases in cardiac and vascular diseases. Front Biosci 12:2530–2545CrossRefGoogle Scholar
  137. 137.
    Lauret E, Rodrigo L (2013) Celiac disease and auto-immune-associated conditions. Biomed Res Int 2013:127589.  https://doi.org/10.1155/2013/127589 CrossRefPubMedPubMedCentralGoogle Scholar
  138. 138.
    Collin P, Salmi TT, Hervonen K, Kaukinen K, Reunala T (2017) Dermatitis herpetiformis: a cutaneous manifestation of coeliac disease. Ann Med 49(1):23–31.  https://doi.org/10.1080/07853890.2016.1222450 CrossRefPubMedGoogle Scholar
  139. 139.
    Hällström O (1989) Comparison of IgA-class reticulin and endomysium antibodies in coeliac disease and dermatitis herpetiformis. Gut 30:1225–1232CrossRefGoogle Scholar
  140. 140.
    Salmi TT, Hervonen K, Laurila K, Collin P, Mäki M, Koskinen O, Huhtala H, Kaukinen K, Reunala T (2014) Small bowel transglutaminase 2-specific IgA deposits in dermatitis herpetiformis. Acta Derm Venereol 94:393–397.  https://doi.org/10.2340/00015555-1764 CrossRefPubMedGoogle Scholar
  141. 141.
    Rose C, Armbruster FP, Ruppert J, Igl BW, Zillikens D, Shimanovich I (2009) Auto-antibodies against epidermal transglutaminase are a sensitive diagnostic marker in patients with dermatitis herpetiformis on a normal or gluten-free diet. J Am Acad Dermatol 61(1):39–43.  https://doi.org/10.1016/j.jaad.2008.12.037 CrossRefPubMedGoogle Scholar
  142. 142.
    Reunala T, Salmi TT, Hervonen K (2015) Dermatitis herpetiformis: pathognomonic transglutaminase IgA deposits in the skin and excellent prognosis on a gluten-free diet. Acta Derm Venereol 95(8):917–922.  https://doi.org/10.2340/00015555-2162 CrossRefPubMedGoogle Scholar
  143. 143.
    Marietta EV, Camilleri MJ, Castro LA, Krause PK, Pittelkow MR, Murray JA (2008) Transgluaminase auto-antibodies in dermatitis herpetiformis and celiac sprue. J Invest Dermatol 128:332–335.  https://doi.org/10.1038/sj.jid.5701041 CrossRefPubMedGoogle Scholar
  144. 144.
    Jackson JR, Eaton WW, Cascella NG, Fasano A, Kelly DL (2012) Neurologic and psychiatric manifestations of celiac disease and gluten sensitivity. Psychiatr Q 83(1):91–102.  https://doi.org/10.1007/s11126-011-9186-y CrossRefPubMedPubMedCentralGoogle Scholar
  145. 145.
    Hadjivassiliou M, Aeschlimann P, Sanders DS, Mäki M, Kaukinen K, Grünewald RA, Bandmann O, Woodroofe N, Haddock G, Aeschlimann DP (2013) Transglutaminase 6 antibodies in the diagnosis of gluten ataxia. Neurology 80(19):1740–1745.  https://doi.org/10.1212/WNL.0b013e3182919070 CrossRefPubMedGoogle Scholar
  146. 146.
    Zis P, Rao DG, Sarrigiannis PG, Aeschlimann P, Aeschlimann DP, Sanders D, Grünewald RA, Hadjivassiliou M (2017) Transglutaminase 6 antibodies in gluten neuropathy. Dig Liver Dis 49(11):1196–1200.  https://doi.org/10.1016/j.dld.2017.08.019 CrossRefPubMedGoogle Scholar
  147. 147.
    De Leo L, Aeschlimann D, Hadjivassiliou M, Aeschlimann P, Salce N, Vatta S, Ziberna F, Cozzi G, Martelossi S, Ventura A, Not T (2018) Anti-transglutaminase 6 antibody development in children with celiac disease correlates with duration of gluten exposure. J Pediatr Gastroenterol Nutr 66:64–68.  https://doi.org/10.1097/MPG.0000000000001642 CrossRefPubMedGoogle Scholar
  148. 148.
    Stamnaes J, Dorum S, Fleckenstein B, Aeschlimann D, Sollid LM (2010) Gluten T cell epitope targeting by TG3 and TG6; implications for dermatitis herpetiformis and gluten ataxia. Amino Acids 39(5):1183–1191.  https://doi.org/10.1007/s00726-010-0554-y CrossRefPubMedGoogle Scholar
  149. 149.
    Collin P, Kaukinen K, Välimäki M, Salmi J (2002) Endocrinological disorders and celiac disease. Endocr Rev 23:464–483.  https://doi.org/10.1210/er.2001-0035 CrossRefPubMedGoogle Scholar
  150. 150.
    Lampasona V, Bonfanti R, Bazzigaluppi E, Venerando A, Chiumello G, Bosi E, Bonifacio E (1999) Antibodies to tissue TGase C in type I diabetes. Diabetologia 42:1195–1198.  https://doi.org/10.1007/s001250051291 CrossRefPubMedGoogle Scholar
  151. 151.
    Camarca ME, Mozzillo E, Nugnes R, Zito E, Falco M, Fattorusso V, Mobilia S, Buono P, Valerio G, Troncone R, Franzese A (2012) Celiac disease in type 1 diabetes mellitus. Ital J Pediatr 38:10.  https://doi.org/10.1186/1824-7288-38-10 CrossRefPubMedPubMedCentralGoogle Scholar
  152. 152.
    Cohn A, Sofia AM, Kupfer SS (2014) Type 1 diabetes and celiac disease: clinical overlap and new insights into disease pathogenesis. Curr Diab Rep 14(8):517.  https://doi.org/10.1007/s11892-014-0517-x CrossRefPubMedPubMedCentralGoogle Scholar
  153. 153.
    Bao F, Yu L, Babu S, Wang T, Hoffenberg EJ, Rewers M, Eisenbarth GS (1999) One third of HLA DQ2 homozygous patients with type 1 diabetes express celiac disease-associated transglutaminase auto-antibodies. J Autoimmun 13(1):143–148.  https://doi.org/10.1006/jaut.1999.0303 CrossRefPubMedGoogle Scholar
  154. 154.
    McGinty JW, Marré ML, Bajzik V, Piganelli JD, James EA (2015) T cell epitopes and post-translationally modified epitopes in type 1 diabetes. Curr Diab Rep 15(11):90.  https://doi.org/10.1007/s11892-015-0657-7 CrossRefPubMedPubMedCentralGoogle Scholar
  155. 155.
    Ch’ng CL, Biswas M, Benton A, Jones MK, Kingham JGC (2005) Prospective screening for coeliac disease in patients with Graves’ hyperthyroidism using anti-gliadin and tissue transglutaminase antibodies. Clin Endocrinol (Oxf) 62(3):303–306.  https://doi.org/10.1111/j.1365-2265.2005.02214.x CrossRefGoogle Scholar
  156. 156.
    Hadithi M, de Boer H, Meijer JW, Willekens F, Kerckhaert JA, Heijmans R, Peña AS, Stehouwer CD, Mulder CJ (2007) Coeliac disease in Dutch patients with Hashimoto’s thyroiditis and vice versa. World J Gastroenterol 13:1715–1722.  https://doi.org/10.3748/wjg.v13.i11.1715 CrossRefPubMedPubMedCentralGoogle Scholar
  157. 157.
    Elfström P, Montgomery SM, Kampe O, Ekbom A, Ludvigsson JF (2008) Risk of thyroid disease in individuals with celiac disease. J Clin Endocrinol Metab 93:3915–3921.  https://doi.org/10.1210/jc.2008-0798 CrossRefPubMedGoogle Scholar
  158. 158.
    Badenhoop K, Dieterich W, Segni M, Hofmann S, Hüfner M, Usadel KH, Hahn EG, Schuppan D (2001) HLA DQ2 and/or DQ8 is associated with celiac disease-specific auto-antibodies to tissue transglutaminase in families with thyroid autoimmunity. Am J Gastroenterol 96(5):1648–1649.  https://doi.org/10.1111/j.1572-0241.2001.03821.x CrossRefPubMedGoogle Scholar
  159. 159.
    Luft LM, Barr SG, Martin LO, Chan EKL, Fritzler MJ (2003) Auto-antibodies to tissue transglutaminase in Sjögren’s syndrome and related rheumatic diseases. J Rheumatol 30:2613–2619PubMedGoogle Scholar
  160. 160.
    Marai I, Shoenfeld Y, Bizzaro N, Villalta D, Doria A, Tonutti E, Tozzoli R (2004) IgA and IgG tissue transglutaminase antibodies in systemic lupus erythematosus. Lupus 13:241–244.  https://doi.org/10.1191/0961203304lu1004oa CrossRefPubMedGoogle Scholar
  161. 161.
    Lerner A, Prager K, Matthias T (2015) Transient anti TG2 auto-antibodies in systemic lupus erythematosus: a window to autoimmunity. Int J Celiac Dis 3:72–74.  https://doi.org/10.12691/ijcd-3-2-11 CrossRefGoogle Scholar
  162. 162.
    Ferrara F, Quaglia S, Caputo I, Esposito C, Lepretti M, Pastore S, Giorgi R, Martelossi S, Dal Molin G, Di Toro N, Ventura A, Not T (2010) Anti-transglutaminase antibodies in non-coeliac children suffering from infectious diseases. Clin Exp Immunol 159(2):212–217.  https://doi.org/10.1111/j.1365-2249.2009.04054.x CrossRefGoogle Scholar
  163. 163.
    Roth EB, Stenberg P, Book C, Sjöberg K (2006) Antibodies against transglutaminases, peptidylarginine deiminase and citrulline in rheumatoid arthritis—new pathways to epitope spreading. Clin Exp Rheumatol 24:12–18PubMedGoogle Scholar
  164. 164.
    Dahan S, Shor DB, Comaneshter D, Tekes-Manova D, Shovman O, Amital H, Cohen AD (2016) All disease begins in the gut: celiac disease co-existence with SLE. Autoimmun Rev 15:848–853.  https://doi.org/10.1016/j.autrev.2016.06.003 CrossRefPubMedGoogle Scholar
  165. 165.
    Picarelli A, Di Tola M, Sabbatella L, Vetrano S, Anania MC, Spadaro A, Sorgi ML, Taccari E (2003) Anti-tissue transglutaminase antibodies in arthritic patients: a disease-specific finding? Clin Chem 49(12):2091–2094.  https://doi.org/10.1373/clinchem.2003.023234 CrossRefPubMedGoogle Scholar
  166. 166.
    Király R, Csosz E, Kurtán T, Antus S, Szigeti K, Simon-Vecsei Z, Korponay-Szabó IR, Keresztessy Z, Fésüs L (2009) Functional significance of five noncanonical Ca2+-binding sites of human transglutaminase 2 characterized by site-directed mutagenesis. FEBS J 276(23):7083–7096.  https://doi.org/10.1111/j.1742-4658.2009.07420.x CrossRefPubMedGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Department of Chemistry and BiologyUniversity of SalernoFisciano (SA)Italy
  2. 2.Interuniversity Centre “European Laboratory for the Investigation of Food-Induced Diseases” (ELFID)University of SalernoFisciano (SA)Italy

Personalised recommendations