Cellular and Molecular Life Sciences

, Volume 75, Issue 20, pp 3751–3770 | Cite as

Cellular mechanisms and signals that coordinate plasma membrane repair

  • Adam Horn
  • Jyoti K. JaiswalEmail author


Plasma membrane forms the barrier between the cytoplasm and the environment. Cells constantly and selectively transport molecules across their plasma membrane without disrupting it. Any disruption in the plasma membrane compromises its selective permeability and is lethal, if not rapidly repaired. There is a growing understanding of the organelles, proteins, lipids, and small molecules that help cells signal and efficiently coordinate plasma membrane repair. This review aims to summarize how these subcellular responses are coordinated and how cellular signals generated due to plasma membrane injury interact with each other to spatially and temporally coordinate repair. With the involvement of calcium and redox signaling in single cell and tissue repair, we will discuss how these and other related signals extend from single cell repair to tissue level repair. These signals link repair processes that are activated immediately after plasma membrane injury with longer term processes regulating repair and regeneration of the damaged tissue. We propose that investigating cell and tissue repair as part of a continuum of wound repair mechanisms would be of value in treating degenerative diseases.


Injury Calcium Lipids Redox Cell membrane Tissue repair 



A. H. performed this work as part of his doctoral studies at the Institute for Biomedical Sciences at the George Washington University, and this writing constitutes part of his Ph.D. dissertation. J. K. J. and A. H. acknowledge financial support by Grants from the National Institute of Arthritis and Musculoskeletal and Skin Disease (R01AR055686), National Institute of Child Health and Human Development (U54HD090257), and Clark Charitable Foundation. We thank our lab members for useful discussions and inputs during the course of writing and editing this work.


  1. 1.
    Lombard J (2014) Once upon a time the cell membranes: 175 years of cell boundary research. Biol Direct 9(1):32CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Harvey EN (1931) The tension at the surface of marine eggs, especially those of the sea urchin, Arbacia. Biol Bull 61(3):273–279CrossRefGoogle Scholar
  3. 3.
    McNeil PL, Steinhardt RA (2003) Plasma membrane disruption: repair, prevention, adaptation. Annu Rev Cell Dev Biol 19(1):697–731CrossRefPubMedGoogle Scholar
  4. 4.
    Cooper ST, McNeil PL (2015) Membrane repair: mechanisms and pathophysiology. Physiol Rev 95(4):1205–1240CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Blazek AD, Paleo BJ, Weisleder N (2015) Plasma membrane repair: a central process for maintaining cellular homeostasis. Physiology 30(6):438–448CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Andrews N, Perez F (2015) The plasma membrane repair shop: fixing the damage. In: Andrews N, Perez F, Boizet-Bonhoure B (eds) Seminars in cell & developmental biology, vol 45. Elsevier, p 1Google Scholar
  7. 7.
    Heilbrunn L (1930) The surface precipitation reaction of living cells. Proc Am Philos Soc 69(1):295–301Google Scholar
  8. 8.
    Bouter A, Gounou C, Bérat R, Tan S, Gallois B, Granier T, d’Estaintot BL, Pöschl E, Brachvogel B, Brisson AR (2011) Annexin-A5 assembled into two-dimensional arrays promotes cell membrane repair. Nat Commun 2:270CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Sharma N, Medikayala S, Defour A, Rayavarapu S, Brown KJ, Hathout Y, Jaiswal JK (2012) Use of quantitative membrane proteomics identifies a novel role of mitochondria in healing injured muscles. J Biol Chem 287(36):30455–30467CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Eddleman CS, Bittner GD, Fishman HM (2000) Barrier permeability at cut axonal ends progressively decreases until an ionic seal is formed. Biophys J 79(4):1883–1890CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Demonbreun AR, Quattrocelli M, Barefield DY, Allen MV, Swanson KE, McNally EM (2016) An actin-dependent annexin complex mediates plasma membrane repair in muscle. J Cell Biol 213(6):705–718CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Bouter A, Carmeille R, Gounou C, Bouvet F, Degrelle S, Evain-Brion D, Brisson A (2015) Annexin-A5 and cell membrane repair. Placenta 36:S43–S49CrossRefPubMedGoogle Scholar
  13. 13.
    Papadimitriou J, Robertson T, Mitchell C, Grounds M (1990) The process of new plasmalemma formation in focally injured skeletal muscle fibers. J Struct Biol 103(2):124–134CrossRefPubMedGoogle Scholar
  14. 14.
    Miyake K, McNeil PL, Suzuki K, Tsunoda R, Sugai N (2001) An actin barrier to resealing. J Cell Sci 114(19):3487–3494PubMedGoogle Scholar
  15. 15.
    McNeil PL (2002) Repairing a torn cell surface: make way, lysosomes to the rescue. J Cell Sci 115(5):873–879PubMedGoogle Scholar
  16. 16.
    Jaiswal JK, Lauritzen SP, Scheffer L, Sakaguchi M, Bunkenborg J, Simon SM, Kallunki T, Jäättelä M, Nylandsted J (2014) S100A11 is required for efficient plasma membrane repair and survival of invasive cancer cells. Nat Commun 5:3795CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Togo T, Krasieva TB, Steinhardt RA (2000) A decrease in membrane tension precedes successful cell-membrane repair. Mol Biol Cell 11(12):4339–4346CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    McDade JR, Archambeau A, Michele DE (2014) Rapid actin-cytoskeleton-dependent recruitment of plasma membrane-derived dysferlin at wounds is critical for muscle membrane repair. FASEB J 28(8):3660–3670CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Horn A, Van der Meulen JH, Defour A, Hogarth M, Sreetama SC, Reed A, Scheffer L, Chandel NS, Jaiswal JK (2017) Mitochondrial redox signaling enables repair of injured skeletal muscle cells. Sci Signal. CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Bement WM, von Dassow G (2014) Single cell pattern formation and transient cytoskeletal arrays. Curr Opin Cell Biol 26:51–59CrossRefPubMedGoogle Scholar
  21. 21.
    Clark AG, Miller AL, Vaughan E, Hoi-Ying EY, Penkert R, Bement WM (2009) Integration of single and multicellular wound responses. Curr Biol 19(16):1389–1395CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Chambers R Jr (1917) Microdissection studies: I. The visible structure of cell protoplasm and death changes. Am J Physiol Leg Content 43(1):1–12CrossRefGoogle Scholar
  23. 23.
    Terasaki M, Miyake K, McNeil PL (1997) Large plasma membrane disruptions are rapidly resealed by Ca2+-dependent vesicle–vesicle fusion events. J Cell Biol 139(1):63–74CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Steinhardt RA, Bi G, Alderton JM (1994) Cell membrane resealing by a vesicular mechanism similar to neurotransmitter release. Science 263(5145):390–393CrossRefPubMedGoogle Scholar
  25. 25.
    Bi G-Q, Alderton JM, Steinhardt RA (1995) Calcium-regulated exocytosis is required for cell membrane resealing. J Cell Biol 131(6):1747–1758CrossRefPubMedGoogle Scholar
  26. 26.
    McNeil PL, Kirchhausen T (2005) An emergency response team for membrane repair. Nat Rev Mol Cell Biol 6(6):499CrossRefPubMedGoogle Scholar
  27. 27.
    Davenport NR, Sonnemann KJ, Eliceiri KW, Bement WM (2016) Membrane dynamics during cellular wound repair. Mol Biol Cell 27(14):2272–2285CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Jaiswal JK, Andrews NW, Simon SM (2002) Membrane proximal lysosomes are the major vesicles responsible for calcium-dependent exocytosis in nonsecretory cells. J Cell Biol 159(4):625–635CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Rodríguez A, Webster P, Ortego J, Andrews NW (1997) Lysosomes behave as Ca2+-regulated exocytic vesicles in fibroblasts and epithelial cells. J Cell Biol 137(1):93–104CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Reddy A, Caler EV, Andrews NW (2001) Plasma membrane repair is mediated by Ca2+-regulated exocytosis of lysosomes. Cell 106(2):157–169CrossRefPubMedGoogle Scholar
  31. 31.
    Idone V, Tam C, Goss JW, Toomre D, Pypaert M, Andrews NW (2008) Repair of injured plasma membrane by rapid Ca2+-dependent endocytosis. J Cell Biol 180(5):905–914CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Defour A, Van der Meulen JH, Bhat R, Bigot A, Bashir R, Nagaraju K, Jaiswal JK (2014) Dysferlin regulates cell membrane repair by facilitating injury-triggered acid sphingomyelinase secretion. Cell Death Dis 5(6):e1306CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Tam C, Idone V, Devlin C, Fernandes MC, Flannery A, He X, Schuchman E, Tabas I, Andrews NW (2010) Exocytosis of acid sphingomyelinase by wounded cells promotes endocytosis and plasma membrane repair. J Cell Biol 189(6):1027–1038CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Keefe D, Shi L, Feske S, Massol R, Navarro F, Kirchhausen T, Lieberman J (2005) Perforin triggers a plasma membrane-repair response that facilitates CTL induction of apoptosis. Immunity 23(3):249–262CrossRefPubMedGoogle Scholar
  35. 35.
    Thiery J, Keefe D, Saffarian S, Martinvalet D, Walch M, Boucrot E, Kirchhausen T, Lieberman J (2010) Perforin activates clathrin- and dynamin-dependent endocytosis, which is required for plasma membrane repair and delivery of granzyme B for granzyme-mediated apoptosis. Blood 115(8):1582–1593CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Keyel PA, Loultcheva L, Roth R, Salter RD, Watkins SC, Yokoyama WM, Heuser JE (2011) Streptolysin O clearance through sequestration into blebs that bud passively from the plasma membrane. J Cell Sci 124(14):2414–2423CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Romero M, Keyel M, Shi G, Bhattacharjee P, Roth R, Heuser JE, Keyel PA (2017) Intrinsic repair protects cells from pore-forming toxins by microvesicle shedding. Cell Death Differ 24(5):798CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Jimenez AJ, Maiuri P, Lafaurie-Janvore J, Divoux S, Piel M, Perez F (2014) ESCRT machinery is required for plasma membrane repair. Science 343(6174):1247136CrossRefPubMedGoogle Scholar
  39. 39.
    Scheffer LL, Sreetama SC, Sharma N, Medikayala S, Brown KJ, Defour A, Jaiswal JK (2014) Mechanism of Ca2+-triggered ESCRT assembly and regulation of cell membrane repair. Nat Commun 5:5646CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Jaiswal J (2001) Calcium—how and why? J Biosci 26(3):357–363CrossRefPubMedGoogle Scholar
  41. 41.
    Schanne F, Kane AB, Young EE, Farber JL (1979) Calcium dependence of toxic cell death: a final common pathway. Science 206(4419):700–702CrossRefPubMedGoogle Scholar
  42. 42.
    Heilbrunn L (1923) The colloid chemistry of protoplasm: I. General considerations II. The electrical charges of protoplasm. Am J Physiol Leg Content 64(3):481–498CrossRefGoogle Scholar
  43. 43.
    De Mello W (1973) Membrane sealing in frog skeletal-muscle fibers. Proc Natl Acad Sci 70(4):982–984CrossRefPubMedGoogle Scholar
  44. 44.
    Potez S, Luginbühl M, Monastyrskaya K, Hostettler A, Draeger A, Babiychuk EB (2011) Tailored protection against plasmalemmal injury by annexins with different Ca2+ sensitivities. J Biol Chem 286(20):17982–17991CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Boucher E, Mandato CA (2015) Plasma membrane and cytoskeleton dynamics during single-cell wound healing. Biochim Biophys Acta Mol Cell Res 1853 10:2649–2661CrossRefGoogle Scholar
  46. 46.
    Babiychuk E, Monastyrskaya K, Potez S, Draeger A (2009) Intracellular Ca2+ operates a switch between repair and lysis of streptolysin O-perforated cells. Cell Death Differ 16(8):1126CrossRefPubMedGoogle Scholar
  47. 47.
    Scolding N, Morgan B, Campbell A, Compston D (1992) The role of calcium in rat oligodendrocyte injury and repair. Neurosci Lett 135(1):95–98CrossRefPubMedGoogle Scholar
  48. 48.
    Gerke V, Moss SE (2002) Annexins: from structure to function. Physiol Rev 82(2):331–371CrossRefPubMedGoogle Scholar
  49. 49.
    Boye TL, Nylandsted J (2016) Annexins in plasma membrane repair. Biol Chem 397(10):961–969CrossRefPubMedGoogle Scholar
  50. 50.
    Draeger A, Schoenauer R, Atanassoff AP, Wolfmeier H, Babiychuk EB (2014) Dealing with damage: plasma membrane repair mechanisms. Biochimie 107:66–72CrossRefPubMedGoogle Scholar
  51. 51.
    Roostalu U, Strähle U (2012) In vivo imaging of molecular interactions at damaged sarcolemma. Dev Cell 22(3):515–529CrossRefPubMedGoogle Scholar
  52. 52.
    Boye TL, Maeda K, Pezeshkian W, Sønder SL, Haeger SC, Gerke V, Simonsen AC, Nylandsted J (2017) Annexin A4 and A6 induce membrane curvature and constriction during cell membrane repair. Nat Commun 8(1):1623CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Leikina E, Defour A, Melikov K, Van der Meulen JH, Nagaraju K, Bhuvanendran S, Gebert C, Pfeifer K, Chernomordik LV, Jaiswal JK (2015) Annexin A1 deficiency does not affect myofiber repair but delays regeneration of injured muscles. Sci Rep 5:18246CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    McNeil AK, Rescher U, Gerke V, McNeil PL (2006) Requirement for annexin A1 in plasma membrane repair. J Biol Chem 281(46):35202–35207CrossRefPubMedGoogle Scholar
  55. 55.
    Koerdt SN, Gerke V (2017) Annexin A2 is involved in Ca2+-dependent plasma membrane repair in primary human endothelial cells. Biochim Biophys Acta Mol Cell Res 1864 6:1046–1053CrossRefGoogle Scholar
  56. 56.
    Mellgren RL, Zhang W, Miyake K, McNeil PL (2007) Calpain is required for the rapid, calcium-dependent repair of wounded plasma membrane. J Biol Chem 282(4):2567–2575CrossRefPubMedGoogle Scholar
  57. 57.
    Xie X, Barrett JN (1991) Membrane resealing in cultured rat septal neurons after neurite transection: evidence for enhancement by Ca(2+)-triggered protease activity and cytoskeletal disassembly. J Neurosci 11(10):3257–3267CrossRefPubMedGoogle Scholar
  58. 58.
    Howard M, David G, Barrett J (1999) Resealing of transected myelinated mammalian axons in vivo: evidence for involvement of calpain. Neuroscience 93(2):807–815CrossRefPubMedGoogle Scholar
  59. 59.
    Gitler D, Spira ME (1998) Real time imaging of calcium-induced localized proteolytic activity after axotomy and its relation to growth cone formation. Neuron 20(6):1123–1135CrossRefPubMedGoogle Scholar
  60. 60.
    Redpath G, Woolger N, Piper A, Lemckert F, Lek A, Greer P, North K, Cooper S (2014) Calpain cleavage within dysferlin exon 40a releases a synaptotagmin-like module for membrane repair. Mol Biol Cell 25(19):3037–3048CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    Hendricks BK, Shi R (2014) Mechanisms of neuronal membrane sealing following mechanical trauma. Neurosci Bull 30(4):627–644CrossRefPubMedPubMedCentralGoogle Scholar
  62. 62.
    Kamber D, Erez H, Spira ME (2009) Local calcium-dependent mechanisms determine whether a cut axonal end assembles a retarded endbulb or competent growth cone. Exp Neurol 219(1):112–125CrossRefPubMedGoogle Scholar
  63. 63.
    Evans JS, Turner MD (2007) Emerging functions of the calpain superfamily of cysteine proteases in neuroendocrine secretory pathways. J Neurochem 103(3):849–859CrossRefPubMedGoogle Scholar
  64. 64.
    Liu X, Van Vleet T, Schnellmann RG (2004) The role of calpain in oncotic cell death. Annu Rev Pharmacol Toxicol 44:349–370CrossRefPubMedGoogle Scholar
  65. 65.
    Padamsey Z, McGuinness L, Emptage NJ (2017) Inhibition of lysosomal Ca2+ signalling disrupts dendritic spine structure and impairs wound healing in neurons. Commun Integr Biol 10(5–6):e1344802CrossRefPubMedPubMedCentralGoogle Scholar
  66. 66.
    Cheng X, Zhang X, Gao Q, Samie MA, Azar M, Tsang WL, Dong L, Sahoo N, Li X, Zhuo Y (2014) The intracellular Ca2+ channel MCOLN1 is required for sarcolemma repair to prevent muscular dystrophy. Nat Med 20(10):1187CrossRefPubMedPubMedCentralGoogle Scholar
  67. 67.
    Li X, Rydzewski N, Hider A, Zhang X, Yang J, Wang W, Gao Q, Cheng X, Xu H (2016) A molecular mechanism to regulate lysosome motility for lysosome positioning and tubulation. Nat Cell Biol 18(4):404CrossRefPubMedPubMedCentralGoogle Scholar
  68. 68.
    Schöneberg J, Lee I-H, Iwasa JH, Hurley JH (2017) Reverse-topology membrane scission by the ESCRT proteins. Nat Rev Mol Cell Biol 18(1):5CrossRefPubMedGoogle Scholar
  69. 69.
    Südhof TC (2002) Synaptotagmins: why so many? J Biol Chem 277(10):7629–7632CrossRefPubMedGoogle Scholar
  70. 70.
    Detrait E, Yoo S, Eddleman C, Fukuda M, Bittner G, Fishman H (2000) Plasmalemmal repair of severed neurites of PC12 cells requires Ca2+ and synaptotagmin. J Neurosci Res 62(4):566–573CrossRefPubMedGoogle Scholar
  71. 71.
    Yoo S, Nguyen MP, Fukuda M, Bittner GD, Fishman HM (2003) Plasmalemmal sealing of transected mammalian neurites is a gradual process mediated by Ca2+-regulated proteins. J Neurosci Res 74(4):541–551CrossRefPubMedGoogle Scholar
  72. 72.
    Martinez I, Chakrabarti S, Hellevik T, Morehead J, Fowler K, Andrews NW (2000) Synaptotagmin VII regulates Ca2+-dependent exocytosis of lysosomes in fibroblasts. J Cell Biol 148(6):1141–1150CrossRefPubMedPubMedCentralGoogle Scholar
  73. 73.
    Caler EV, Chakrabarti S, Fowler KT, Rao S, Andrews NW (2001) The exocytosis-regulatory protein synaptotagmin VII mediates cell invasion by Trypanosoma cruzi. J Exp Med 193(9):1097–1104CrossRefPubMedPubMedCentralGoogle Scholar
  74. 74.
    Jaiswal JK, Chakrabarti S, Andrews NW, Simon SM (2004) Synaptotagmin VII restricts fusion pore expansion during lysosomal exocytosis. PLoS Biol 2(8):e233CrossRefPubMedPubMedCentralGoogle Scholar
  75. 75.
    Sreetama S, Takano T, Nedergaard M, Simon S, Jaiswal J (2016) Injured astrocytes are repaired by Synaptotagmin XI-regulated lysosome exocytosis. Cell Death Differ 23(4):596CrossRefPubMedGoogle Scholar
  76. 76.
    Baram D, Adachi R, Medalia O, Tuvim M, Dickey BF, Mekori YA, Sagi-Eisenberg R (1999) Synaptotagmin II negatively regulates Ca2+-triggered exocytosis of lysosomes in mast cells. J Exp Med 189(10):1649–1658CrossRefPubMedPubMedCentralGoogle Scholar
  77. 77.
    Encarnação M, Espada L, Escrevente C, Mateus D, Ramalho J, Michelet X, Santarino I, Hsu VW, Brenner MB, Barral DC (2016) A Rab3a-dependent complex essential for lysosome positioning and plasma membrane repair. J Cell Biol 213(6):631–640CrossRefPubMedPubMedCentralGoogle Scholar
  78. 78.
    Lek A, Evesson FJ, Lemckert FA, Redpath GM, Lueders A-K, Turnbull L, Whitchurch CB, North KN, Cooper ST (2013) Calpains, cleaved mini-dysferlinC72, and L-type channels underpin calcium-dependent muscle membrane repair. J Neurosci 33(12):5085–5094CrossRefPubMedGoogle Scholar
  79. 79.
    Bansal D, Miyake K, Vogel SS, Groh S, Chen C-C, Williamson R, McNeil PL, Campbell KP (2003) Defective membrane repair in dysferlin-deficient muscular dystrophy. Nature 423(6936):168CrossRefPubMedGoogle Scholar
  80. 80.
    Han W-Q, Xia M, Xu M, Boini KM, Ritter JK, Li N-J, Li P-L (2012) Lysosome fusion to the cell membrane is mediated by the dysferlin C2A domain in coronary arterial endothelial cells. J Cell Sci 125(5):1225–1234CrossRefPubMedPubMedCentralGoogle Scholar
  81. 81.
    Corrotte M, Almeida PE, Tam C, Castro-Gomes T, Fernandes MC, Millis BA, Cortez M, Miller H, Song W, Maugel TK (2013) Caveolae internalization repairs wounded cells and muscle fibers. Elife 2:e00926CrossRefPubMedPubMedCentralGoogle Scholar
  82. 82.
    Clapham DE (2007) Calcium signaling. Cell 131(6):1047–1058CrossRefPubMedGoogle Scholar
  83. 83.
    Benink HA, Bement WM (2005) Concentric zones of active RhoA and Cdc42 around single cell wounds. J Cell Biol 168(3):429–439CrossRefPubMedPubMedCentralGoogle Scholar
  84. 84.
    Bement WM, Hoi-Ying EY, Burkel BM, Vaughan EM, Clark AG (2007) Rehabilitation and the single cell. Curr Opin Cell Biol 19(1):95–100CrossRefPubMedGoogle Scholar
  85. 85.
    Mandato CA, Bement WM (2001) Contraction and polymerization cooperate to assemble and close actomyosin rings around Xenopus oocyte wounds. J Cell Biol 154(4):785–798CrossRefPubMedPubMedCentralGoogle Scholar
  86. 86.
    Vaughan EM, You J-S, Yu H-YE, Lasek A, Vitale N, Hornberger TA, Bement WM (2014) Lipid domain-dependent regulation of single-cell wound repair. Mol Biol Cell 25(12):1867–1876CrossRefPubMedPubMedCentralGoogle Scholar
  87. 87.
    Holmes WR, Liao L, Bement W, Edelstein-Keshet L (2015) Modeling the roles of protein kinase Cβ and η in single-cell wound repair. Mol Biol Cell 26(22):4100–4108CrossRefPubMedPubMedCentralGoogle Scholar
  88. 88.
    Floyd CL, Rzigalinski BA, Weber JT, Sitterding HA, Willoughby KA, Ellis EF (2001) Traumatic injury of cultured astrocytes alters inositol (1, 4, 5)-trisphosphate-mediated signaling. Glia 33(1):12–23CrossRefPubMedGoogle Scholar
  89. 89.
    Arun SN, Xie D, Howard AC, Zhong Q, Zhong X, McNeil PL, Bollag WB (2013) Cell wounding activates phospholipase D in primary mouse keratinocytes. J Lipid Res 54(3):581–591CrossRefPubMedPubMedCentralGoogle Scholar
  90. 90.
    Bader M-F, Vitale N (2009) Phospholipase D in calcium-regulated exocytosis: lessons from chromaffin cells. Biochim Biophys Acta Mol Cell Biol Lipids 1791(9):936–941CrossRefGoogle Scholar
  91. 91.
    Frohman MA, Sung T-C, Morris AJ (1999) Mammalian phospholipase D structure and regulation. Biochim Biophys Acta Mol Cell Biol Lipids 1439(2):175–186CrossRefGoogle Scholar
  92. 92.
    Zuzek A, Fan JD, Spaeth CS, Bittner GD (2013) Sealing of transected neurites of rat B104 cells requires a diacylglycerol PKC-dependent pathway and a PKA-dependent pathway. Cell Mol Neurobiol 33(1):31–46CrossRefPubMedGoogle Scholar
  93. 93.
    Togo T (2017) Cell membrane disruption stimulates cAMP and Ca2+ signaling to potentiate cell membrane resealing in neighboring cells. Biol Open 6(12):1814–1819CrossRefPubMedPubMedCentralGoogle Scholar
  94. 94.
    Spaeth CS, Boydston EA, Figard LR, Zuzek A, Bittner GD (2010) A model for sealing plasmalemmal damage in neurons and other eukaryotic cells. J Neurosci 30(47):15790–15800CrossRefPubMedGoogle Scholar
  95. 95.
    Togo T (2006) Disruption of the plasma membrane stimulates rearrangement of microtubules and lipid traffic toward the wound site. J Cell Sci 119(13):2780–2786CrossRefPubMedGoogle Scholar
  96. 96.
    Togo T (2004) Long-term potentiation of wound-induced exocytosis and plasma membrane repair is dependant on cAMP-response element-mediated transcription via a protein kinase C- and p38 MAPK-dependent pathway. J Biol Chem 279(43):44996–45003CrossRefPubMedGoogle Scholar
  97. 97.
    Togo T (2012) Cell membrane disruption stimulates NO/PKG signaling and potentiates cell membrane repair in neighboring cells. PLoS One 7(8):e42885CrossRefPubMedPubMedCentralGoogle Scholar
  98. 98.
    Covian-Nares JF, Koushik SV, Puhl HL, Vogel SS (2010) Membrane wounding triggers ATP release and dysferlin-mediated intercellular calcium signaling. J Cell Sci 123(11):1884–1893CrossRefPubMedPubMedCentralGoogle Scholar
  99. 99.
    Ahmed SM, Rzigalinski BA, Willoughby KA, Sitterding HA, Ellis EF (2000) Stretch-induced injury alters mitochondrial membrane potential and cellular ATP in cultured astrocytes and neurons. J Neurochem 74(5):1951–1960CrossRefPubMedGoogle Scholar
  100. 100.
    Sivaramakrishnan V, Bidula S, Campwala H, Katikaneni D, Fountain SJ (2012) Constitutive lysosome exocytosis releases ATP and engages P2Y receptors in human monocytes. J Cell Sci 125(19):4567–4575CrossRefPubMedGoogle Scholar
  101. 101.
    Zhang Z, Chen G, Zhou W, Song A, Xu T, Luo Q, Wang W, X-s Gu, Duan S (2007) Regulated ATP release from astrocytes through lysosome exocytosis. Nat Cell Biol 9(8):945CrossRefGoogle Scholar
  102. 102.
    Togo T (2014) Short-term potentiation of membrane resealing in neighboring cells is mediated by purinergic signaling. Purinergic Signal 10(2):283–290CrossRefPubMedGoogle Scholar
  103. 103.
    Neary JT, Kang Y, Tran M, Feld J (2005) Traumatic injury activates protein kinase B/Akt in cultured astrocytes: role of extracellular ATP and P2 purinergic receptors. J Neurotrauma 22(4):491–500CrossRefPubMedGoogle Scholar
  104. 104.
    Sardiello M, Palmieri M, di Ronza A, Medina DL, Valenza M, Gennarino VA, Di Malta C, Donaudy F, Embrione V, Polishchuk RS (2009) A gene network regulating lysosomal biogenesis and function. Science 325(5939):473–477CrossRefPubMedGoogle Scholar
  105. 105.
    Palmieri M, Pal R, Nelvagal HR, Lotfi P, Stinnett GR, Seymour ML, Chaudhury A, Bajaj L, Bondar VV, Bremner L (2017) mTORC1-independent TFEB activation via Akt inhibition promotes cellular clearance in neurodegenerative storage diseases. Nat Commun 8:14338CrossRefPubMedPubMedCentralGoogle Scholar
  106. 106.
    Schieber M, Chandel NS (2014) ROS function in redox signaling and oxidative stress. Curr Biol 24(10):R453–R462CrossRefPubMedPubMedCentralGoogle Scholar
  107. 107.
    Reczek CR, Chandel NS (2015) ROS-dependent signal transduction. Curr Opin Cell Biol 33:8–13CrossRefPubMedGoogle Scholar
  108. 108.
    Forman HJ, Ursini F, Maiorino M (2014) An overview of mechanisms of redox signaling. J Mol Cell Cardiol 73:2–9CrossRefPubMedGoogle Scholar
  109. 109.
    Cai C, Masumiya H, Weisleder N, Matsuda N, Nishi M, Hwang M, Ko J-K, Lin P, Thornton A, Zhao X (2009) MG53 nucleates assembly of cell membrane repair machinery. Nat Cell Biol 11(1):56CrossRefPubMedGoogle Scholar
  110. 110.
    Spaeth C, Fan J, Spaeth E, Robison T, Wilcott R, Bittner G (2012) Neurite transection produces cytosolic oxidation, which enhances plasmalemmal repair. J Neurosci Res 90(5):945–954CrossRefPubMedGoogle Scholar
  111. 111.
    Duan X, Chan KT, Lee KK, Mak AF (2015) Oxidative stress and plasma membrane repair in single myoblasts after femtosecond laser photoporation. Ann Biomed Eng 43(11):2735–2744CrossRefPubMedGoogle Scholar
  112. 112.
    Howard AC, McNeil AK, McNeil PL (2011) Promotion of plasma membrane repair by vitamin E. Nat Commun 2:597CrossRefPubMedPubMedCentralGoogle Scholar
  113. 113.
    Hwang M, J-k Ko, Weisleder N, Takeshima H, Ma J (2011) Redox-dependent oligomerization through a leucine zipper motif is essential for MG53-mediated cell membrane repair. Am J Physiol Cell Physiol 301(1):C106–C114CrossRefPubMedPubMedCentralGoogle Scholar
  114. 114.
    Gushchina LV, Bhattacharya S, McElhanon KE, Choi JH, Manring H, Beck EX, Alloush J, Weisleder N (2017) Treatment with recombinant human MG53 protein increases membrane integrity in a mouse model of limb girdle muscular dystrophy 2B. Mol Ther 25(10):2360–2371CrossRefPubMedGoogle Scholar
  115. 115.
    Andrews NW, Corrotte M, Castro-Gomes T (2015) Above the fray: surface remodeling by secreted lysosomal enzymes leads to endocytosis-mediated plasma membrane repair. Semin Cell Dev Biol 45:10–17CrossRefPubMedPubMedCentralGoogle Scholar
  116. 116.
    Brennan JP, Bardswell SC, Burgoyne JR, Fuller W, Schröder E, Wait R, Begum S, Kentish JC, Eaton P (2006) Oxidant-induced activation of type I protein kinase A is mediated by RI subunit interprotein disulfide bond formation. J Biol Chem 281(31):21827–21836CrossRefPubMedGoogle Scholar
  117. 117.
    Humphries KM, Pennypacker JK, Taylor SS (2007) Redox regulation of cAMP-dependent protein kinase signaling KINASE VERSUS PHOSPHATASE INACTIVATION. J Biol Chem 282(30):22072–22079CrossRefPubMedGoogle Scholar
  118. 118.
    Aghajanian A, Wittchen ES, Campbell SL, Burridge K (2009) Direct activation of RhoA by reactive oxygen species requires a redox-sensitive motif. PLoS One 4(11):e8045CrossRefPubMedPubMedCentralGoogle Scholar
  119. 119.
    Li Q-F, Spinelli AM, Tang DD (2009) Cdc42GAP, reactive oxygen species, and the vimentin network. Am J Physiol Cell Physiol 297(2):C299–C309CrossRefPubMedPubMedCentralGoogle Scholar
  120. 120.
    Labazi M, McNeil AK, Kurtz T, Lee TC, Pegg RB, Angeli JPF, Conrad M, McNeil PL (2015) The antioxidant requirement for plasma membrane repair in skeletal muscle. Free Radic Biol Med 84:246–253CrossRefPubMedPubMedCentralGoogle Scholar
  121. 121.
    Angelova PR, Abramov AY (2016) Functional role of mitochondrial reactive oxygen species in physiology. Free Radic Biol Med 100:81–85CrossRefPubMedGoogle Scholar
  122. 122.
    Domijan A-M, Kovac S, Abramov AY (2014) Lipid peroxidation is essential for phospholipase C activity and the inositol-trisphosphate-related Ca2+ signal. J Cell Sci 127(1):21–26CrossRefPubMedGoogle Scholar
  123. 123.
    Lamb RG, Harper CC, McKinney JS, Rzigalinski BA, Ellis EF (1997) Alterations in phosphatidylcholine metabolism of stretch-injured cultured rat astrocytes. J Neurochem 68(5):1904–1910CrossRefPubMedGoogle Scholar
  124. 124.
    Fisher AB, Vasquez-Medina JP, Dodia C, Sorokina EM, Tao J-Q, Feinstein SI (2018) Peroxiredoxin 6 phospholipid hydroperoxidase activity in the repair of peroxidized cell membranes. Redox Biol 14:41–46CrossRefPubMedGoogle Scholar
  125. 125.
    Görlach A, Bertram K, Hudecova S, Krizanova O (2015) Calcium and ROS: a mutual interplay. Redox Biol 6:260–271CrossRefPubMedPubMedCentralGoogle Scholar
  126. 126.
    Gurkoff G, Shahlaie K, Lyeth B, Berman R (2013) Voltage-gated calcium channel antagonists and traumatic brain injury. Pharmaceuticals 6(7):788–812CrossRefPubMedPubMedCentralGoogle Scholar
  127. 127.
    Bogeski I, Kappl R, Kummerow C, Gulaboski R, Hoth M, Niemeyer BA (2011) Redox regulation of calcium ion channels: chemical and physiological aspects. Cell Calcium 50(5):407–423CrossRefPubMedGoogle Scholar
  128. 128.
    Nehrt A, Rodgers R, Shapiro S, Borgens R, Shi R (2007) The critical role of voltage-dependent calcium channel in axonal repair following mechanical trauma. Neuroscience 146(4):1504–1512CrossRefPubMedPubMedCentralGoogle Scholar
  129. 129.
    Dong Z, Shanmughapriya S, Tomar D, Siddiqui N, Lynch S, Nemani N, Breves SL, Zhang X, Tripathi A, Palaniappan P (2017) Mitochondrial Ca2+ uniporter is a mitochondrial luminal redox sensor that augments MCU channel activity. Mol Cell 65(6):1014–1028 (e1017) CrossRefPubMedPubMedCentralGoogle Scholar
  130. 130.
    Zhang X, Cheng X, Yu L, Yang J, Calvo R, Patnaik S, Hu X, Gao Q, Yang M, Lawas M (2016) MCOLN1 is a ROS sensor in lysosomes that regulates autophagy. Nat Commun 7:12109CrossRefPubMedPubMedCentralGoogle Scholar
  131. 131.
    Demers-Lamarche J, Guillebaud G, Tlili M, Todkar K, Bélanger N, Grondin M, Nguyen AP, Michel J, Germain M (2016) Loss of mitochondrial function impairs lysosomes. J Biol Chem 291(19):10263–10276CrossRefPubMedPubMedCentralGoogle Scholar
  132. 132.
    Coblentz J, Croix CS, Kiselyov K (2014) Loss of TRPML1 promotes production of reactive oxygen species: is oxidative damage a factor in mucolipidosis type IV? Biochem J 457(2):361–368CrossRefPubMedGoogle Scholar
  133. 133.
    Middel V, Zhou L, Takamiya M, Beil T, Shahid M, Roostalu U, Grabher C, Rastegar S, Reischl M, Nienhaus GU (2016) Dysferlin-mediated phosphatidylserine sorting engages macrophages in sarcolemma repair. Nat Commun 7:12875CrossRefPubMedPubMedCentralGoogle Scholar
  134. 134.
    Castro-Gomes T, Corrotte M, Tam C, Andrews NW (2016) Plasma membrane repair is regulated extracellularly by proteases released from lysosomes. PLoS One 11(3):e0152583CrossRefPubMedPubMedCentralGoogle Scholar
  135. 135.
    Bianco F, Perrotta C, Novellino L, Francolini M, Riganti L, Menna E, Saglietti L, Schuchman EH, Furlan R, Clementi E (2009) Acid sphingomyelinase activity triggers microparticle release from glial cells. EMBO J 28(8):1043–1054CrossRefPubMedPubMedCentralGoogle Scholar
  136. 136.
    Li X, Becker KA, Zhang Y (2010) Ceramide in redox signaling and cardiovascular diseases. Cell Physiol Biochem 26(1):41–48CrossRefPubMedGoogle Scholar
  137. 137.
    Asaoka Y, S-i Nakamura, Yoshida K, Nishizuka Y (1992) Protein kinase C, calcium and phospholipid degradation. Trends Biochem Sci 17(10):414–417CrossRefPubMedGoogle Scholar
  138. 138.
    Hoi-Ying EY, Bement WM (2007) Control of local actin assembly by membrane fusion-dependent compartment mixing. Nat Cell Biol 9(2):149CrossRefGoogle Scholar
  139. 139.
    Tran DT, Masedunskas A, Weigert R, Ten Hagen KG (2015) Arp2/3-mediated F-actin formation controls regulated exocytosis in vivo. Nat Commun 6:10098CrossRefPubMedPubMedCentralGoogle Scholar
  140. 140.
    Verboon JM, Parkhurst SM (2015) Rho family GTPases bring a familiar ring to cell wound repair. Small GTPases 6(1):1–7CrossRefPubMedPubMedCentralGoogle Scholar
  141. 141.
    Simon CM, Vaughan EM, Bement WM, Edelstein-Keshet L (2013) Pattern formation of Rho GTPases in single cell wound healing. Mol Biol Cell 24(3):421–432CrossRefPubMedPubMedCentralGoogle Scholar
  142. 142.
    Abreu-Blanco MT, Verboon JM, Parkhurst SM (2014) Coordination of Rho family GTPase activities to orchestrate cytoskeleton responses during cell wound repair. Curr Biol 24(2):144–155CrossRefPubMedPubMedCentralGoogle Scholar
  143. 143.
    Burkel BM, Benink HA, Vaughan EM, von Dassow G, Bement WM (2012) A Rho GTPase signal treadmill backs a contractile array. Dev Cell 23(2):384–396CrossRefPubMedPubMedCentralGoogle Scholar
  144. 144.
    Duman JG, Mulherkar S, Tu Y-K, Cheng JX, Tolias KF (2015) Mechanisms for spatiotemporal regulation of Rho-GTPase signaling at synapses. Neurosci Lett 601:4–10CrossRefPubMedPubMedCentralGoogle Scholar
  145. 145.
    Bement WM, Miller AL, von Dassow G (2006) Rho GTPase activity zones and transient contractile arrays. BioEssays 28(10):983–993CrossRefPubMedPubMedCentralGoogle Scholar
  146. 146.
    Vaughan EM, Miller AL, Hoi-Ying EY, Bement WM (2011) Control of local Rho GTPase crosstalk by Abr. Curr Biol 21(4):270–277CrossRefPubMedPubMedCentralGoogle Scholar
  147. 147.
    Nakamura M, Verboon JM, Parkhurst SM (2017) Prepatterning by RhoGEFs governs Rho GTPase spatiotemporal dynamics during wound repair. J Cell Biol 216:3959–3969CrossRefPubMedPubMedCentralGoogle Scholar
  148. 148.
    Godin LM, Vergen J, Prakash Y, Pagano RE, Hubmayr RD (2011) Spatiotemporal dynamics of actin remodeling and endomembrane trafficking in alveolar epithelial type I cell wound healing. Am J Physiol Lung Cell Mol Physiol 300(4):L615–L623CrossRefPubMedPubMedCentralGoogle Scholar
  149. 149.
    Illenberger D, Schwald F, Pimmer D, Binder W, Maier G, Dietrich A, Gierschik P (1998) Stimulation of phospholipase C-β2 by the Rho GTPases Cdc42Hs and Rac1. EMBO J 17(21):6241–6249CrossRefPubMedPubMedCentralGoogle Scholar
  150. 150.
    Wales P, Schuberth CE, Aufschnaiter R, Fels J, García-Aguilar I, Janning A, Dlugos CP, Schäfer-Herte M, Klingner C, Wälte M (2016) Calcium-mediated actin reset (CaAR) mediates acute cell adaptations. Elife 5:e19850CrossRefPubMedPubMedCentralGoogle Scholar
  151. 151.
    Zhou B, Yu P, Lin M-Y, Sun T, Chen Y, Sheng Z-H (2016) Facilitation of axon regeneration by enhancing mitochondrial transport and rescuing energy deficits. J Cell Biol 214:103–119CrossRefPubMedPubMedCentralGoogle Scholar
  152. 152.
    Han SM, Baig HS, Hammarlund M (2016) Mitochondria localize to injured axons to support regeneration. Neuron 92(6):1308–1323CrossRefPubMedPubMedCentralGoogle Scholar
  153. 153.
    Gurtner GC, Werner S, Barrandon Y, Longaker MT (2008) Wound repair and regeneration. Nature 453(7193):314CrossRefPubMedGoogle Scholar
  154. 154.
    Cordeiro JV, Jacinto A (2013) The role of transcription-independent damage signals in the initiation of epithelial wound healing. Nat Rev Mol Cell Biol 14(4):249CrossRefPubMedGoogle Scholar
  155. 155.
    Enyedi B, Niethammer P (2015) Mechanisms of epithelial wound detection. Trends Cell Biol 25(7):398–407CrossRefPubMedPubMedCentralGoogle Scholar
  156. 156.
    Cong X, Hubmayr RD, Li C, Zhao X (2017) Plasma membrane wounding and repair in pulmonary diseases. Am J Physiol Lung Cell Mol Physiol 312(3):L371–L391CrossRefPubMedPubMedCentralGoogle Scholar
  157. 157.
    Sonnemann KJ, Bement WM (2011) Wound repair: toward understanding and integration of single-cell and multicellular wound responses. Annu Rev Cell Dev Biol 27:237–263CrossRefPubMedPubMedCentralGoogle Scholar
  158. 158.
    Camussi G, Deregibus MC, Bruno S, Cantaluppi V, Biancone L (2010) Exosomes/microvesicles as a mechanism of cell-to-cell communication. Kidney Int 78(9):838–848CrossRefGoogle Scholar
  159. 159.
    Than UTT, Guanzon D, Leavesley D, Parker T (2017) Association of extracellular membrane vesicles with cutaneous wound healing. Int J Mol Sci 18(5):956CrossRefPubMedCentralGoogle Scholar
  160. 160.
    Hurley JH (2015) ESCRTs are everywhere. EMBO J 34(19):2398–2407CrossRefPubMedPubMedCentralGoogle Scholar
  161. 161.
    van Niel G, D’Angelo G, Raposo G (2018) Shedding light on the cell biology of extracellular vesicles. Nat Rev Mol Cell Biol 19:213–228CrossRefPubMedGoogle Scholar
  162. 162.
    Jaiswal JK, Nylandsted J (2015) S100 and annexin proteins identify cell membrane damage as the Achilles heel of metastatic cancer cells. Cell Cycle 14(4):502–509CrossRefPubMedPubMedCentralGoogle Scholar
  163. 163.
    Dalli J, Norling LV, Renshaw D, Cooper D, Leung K-Y, Perretti M (2008) Annexin 1 mediates the rapid anti-inflammatory effects of neutrophil-derived microparticles. Blood 112(6):2512–2519CrossRefPubMedGoogle Scholar
  164. 164.
    Leoni G, Neumann P-A, Kamaly N, Quiros M, Nishio H, Jones HR, Sumagin R, Hilgarth RS, Alam A, Fredman G (2015) Annexin A1—containing extracellular vesicles and polymeric nanoparticles promote epithelial wound repair. J Clin Investig 125(3):1215–1227CrossRefPubMedGoogle Scholar
  165. 165.
    Defour A, Medikayala S, Van der Meulen JH, Hogarth MW, Holdreith N, Malatras A, Duddy W, Boehler J, Nagaraju K, Jaiswal JK (2017) Annexin A2 links poor myofiber repair with inflammation and adipogenic replacement of the injured muscle. Hum Mol Genet 26(11):1979–1991CrossRefPubMedPubMedCentralGoogle Scholar
  166. 166.
    Hervera A, De Virgiliis F, Palmisano I, Zhou L, Tantardini E, Kong G, Hutson T, Danzi MC, Perry RB-T, Santos CX (2018) Reactive oxygen species regulate axonal regeneration through the release of exosomal NADPH oxidase 2 complexes into injured axons. Nat Cell Biol 20(3):307–319CrossRefPubMedGoogle Scholar
  167. 167.
    Niethammer P (2016) The early wound signals. Curr Opin Genet Dev 40:17–22CrossRefPubMedPubMedCentralGoogle Scholar
  168. 168.
    Razzell W, Evans IR, Martin P, Wood W (2013) Calcium flashes orchestrate the wound inflammatory response through DUOX activation and hydrogen peroxide release. Curr Biol 23(5):424–429CrossRefPubMedPubMedCentralGoogle Scholar
  169. 169.
    Shannon EK, Stevens A, Edrington W, Zhao Y, Jayasinghe AK, Page-McCaw A, Hutson MS (2017) Multiple mechanisms drive calcium signal dynamics around laser-induced epithelial wounds. Biophys J 113(7):1623–1635CrossRefPubMedGoogle Scholar
  170. 170.
    Aihara E, Hentz CL, Korman AM, Perry NP, Prasad V, Shull GE, Montrose MH (2013) In vivo epithelial wound repair requires mobilization of endogenous intracellular and extracellular calcium. J Biol Chem 288(47):33585–33597CrossRefPubMedPubMedCentralGoogle Scholar
  171. 171.
    Restrepo S, Basler K (2016) Drosophila wing imaginal discs respond to mechanical injury via slow InsP 3 R-mediated intercellular calcium waves. Nat Commun 7:12450CrossRefPubMedPubMedCentralGoogle Scholar
  172. 172.
    Xu S, Chisholm AD (2011) A Gα q-Ca2+ signaling pathway promotes actin-mediated epidermal wound closure in C. elegans. Curr Biol 21(23):1960–1967CrossRefPubMedPubMedCentralGoogle Scholar
  173. 173.
    Khakh BS, Burnstock G (2009) The double life of ATP. Sci Am 301(6):84–92CrossRefPubMedPubMedCentralGoogle Scholar
  174. 174.
    Boucher I, Rich C, Lee A, Marcincin M, Trinkaus-Randall V (2010) The P2Y2 receptor mediates the epithelial injury response and cell migration. Am J Physiol Cell Physiol 299(2):C411–C421CrossRefPubMedPubMedCentralGoogle Scholar
  175. 175.
    Sen CK, Roy S (2008) Redox signals in wound healing. Biochim Biophys Acta Gen Subj 1780(11):1348–1361CrossRefGoogle Scholar
  176. 176.
    Jiang F, Zhang Y, Dusting GJ (2011) NADPH oxidase-mediated redox signaling: roles in cellular stress response, stress tolerance, and tissue repair. Pharmacol Rev 63(1):218–242CrossRefPubMedGoogle Scholar
  177. 177.
    Mittal M, Siddiqui MR, Tran K, Reddy SP, Malik AB (2014) Reactive oxygen species in inflammation and tissue injury. Antioxid Redox Signal 20(7):1126–1167CrossRefPubMedPubMedCentralGoogle Scholar
  178. 178.
    Le Moal E, Pialoux V, Juban G, Groussard C, Zouhal H, Chazaud B, Mounier R (2017) Redox control of skeletal muscle regeneration. Antioxid Redox Signal 27(5):276–310CrossRefPubMedPubMedCentralGoogle Scholar
  179. 179.
    Niethammer P, Grabher C, Look AT, Mitchison TJ (2009) A tissue-scale gradient of hydrogen peroxide mediates rapid wound detection in zebrafish. Nature 459(7249):996CrossRefPubMedPubMedCentralGoogle Scholar
  180. 180.
    Love NR, Chen Y, Ishibashi S, Kritsiligkou P, Lea R, Koh Y, Gallop JL, Dorey K, Amaya E (2013) Amputation-induced reactive oxygen species are required for successful Xenopus tadpole tail regeneration. Nat Cell Biol 15(2):222CrossRefPubMedPubMedCentralGoogle Scholar
  181. 181.
    de Oliveira S, López-Muñoz A, Candel S, Pelegrín P, Calado Â, Mulero V (2014) ATP modulates acute inflammation in vivo through dual oxidase 1-derived H2O2 production and NF-κB activation. J Immunol 192(12):5710–5719CrossRefPubMedGoogle Scholar
  182. 182.
    Yoo SK, Starnes TW, Deng Q, Huttenlocher A (2011) Lyn is a redox sensor that mediates leukocyte wound attraction in vivo. Nature 480(7375):109CrossRefPubMedPubMedCentralGoogle Scholar
  183. 183.
    LeBert D, Squirrell JM, Freisinger C, Rindy J, Golenberg N, Frecentese G, Gibson A, Eliceiri KW, Huttenlocher A (2018) Damage-induced reactive oxygen species regulate vimentin and dynamic collagen-based projections to mediate wound repair. Elife 7:e30703CrossRefPubMedPubMedCentralGoogle Scholar
  184. 184.
    Loo AEK, Halliwell B (2012) Effects of hydrogen peroxide in a keratinocyte-fibroblast co-culture model of wound healing. Biochem Biophys Res Commun 423(2):253–258CrossRefPubMedGoogle Scholar
  185. 185.
    Vezzoli M, Castellani P, Corna G, Castiglioni A, Bosurgi L, Monno A, Brunelli S, Manfredi AA, Rubartelli A, Rovere-Querini P (2011) High-mobility group box 1 release and redox regulation accompany regeneration and remodeling of skeletal muscle. Antioxid Redox Signal 15(8):2161–2174CrossRefPubMedGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Center for Genetic Medicine ResearchChildren’s National Health SystemWashingtonUSA
  2. 2.Department of Genomics and Precision MedicineGeorge Washington University School of Medicine and Health SciencesWashingtonUSA

Personalised recommendations