Cellular and Molecular Life Sciences

, Volume 75, Issue 20, pp 3663–3681 | Cite as

Tryptophan metabolites kynurenine and serotonin regulate fibroblast activation and fibrosis

  • David M. Dolivo
  • Sara A. Larson
  • Tanja DominkoEmail author


Fibrosis is a pathological form of aberrant tissue repair, the complications of which account for nearly half of all deaths in the industrialized world. All tissues are susceptible to fibrosis under particular pathological sets of conditions. Though each type of fibrosis has characteristics and hallmarks specific to that particular condition, there appear to be common factors underlying fibrotic diseases. One of these ubiquitous factors is the paradigm of the activated myofibroblast in the promotion of fibrotic phenotypes. Recent research has implicated metabolic byproducts of the amino acid tryptophan, namely serotonin and kynurenines, in the pathology or potential pharmacologic therapy of fibrosis, in part through their effects on development of myofibroblast phenotypes. Here, we review literature underlying what is known mechanistically about the effects of these compounds and their respective pathways on fibrosis. Pharmacologic administration of kynurenine improves scarring outcomes in vivo likely not only through its well-characterized immunosuppressive properties but also via its demonstrated antagonism of fibroblast activation and of collagen deposition. In contrast, serotonin directly promotes activation of fibroblasts via activation of canonical TGF-β signaling, and overstimulation with serotonin leads to fibrotic outcomes in vivo. Recently discovered feedback inhibition between serotonin and kynurenine pathways also reveals more information about the cellular physiology of tryptophan metabolism and may also underlie possible paradigms for anti-fibrotic therapy. Together, understanding of the effects of tryptophan metabolism on modulation of fibrosis may lead to the development of new therapeutic avenues for treatment through exploitation of these effects.


Myofibroblast Fibrosis Serotonin Tryptophan Kynurenine 



This work was funded by a National Institutes of Health Award (NIH R01GM85456) to Tanja Dominko and a National Science Foundation Integrative Graduate Education and Research Traineeship (Grant number DGE 1144804) awarded to David Dolivo.

Compliance with ethical standards

Conflict of interest

The authors have no conflicts of interest to report.


  1. 1.
    Wynn TA (2007) Common and unique mechanisms regulate fibrosis in various fibroproliferative diseases. J Clin Investig 117:524–529CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Wynn TA (2008) Cellular and molecular mechanisms of fibrosis. J Pathol 214:199–210CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Walraven M, Hinz B (2018) Therapeutic approaches to control tissue repair and fibrosis: extracellular matrix as a game changer. Matrix Biol. CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Hinz B (2016) Myofibroblasts. Exp Eye Res 142:56–70CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Friedman SL, Sheppard D, Duffield JS, Violette S (2013) Therapy for fibrotic diseases: nearing the starting line. Sci Transl Med 5:167sr1CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Darby IA, Laverdet B, Bonté F, Desmoulière A (2014) Fibroblasts and myofibroblasts in wound healing. Clin Cosmet Investig Dermatol 7:301PubMedPubMedCentralGoogle Scholar
  7. 7.
    Klingberg F et al (2014) Prestress in the extracellular matrix sensitizes latent TGF-β1 for activation. J Cell Biol 207:283–297CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Froese AR et al (2016) Stretch-induced activation of transforming growth factor-β1 in pulmonary fibrosis. Am J Respir Crit Care Med 194:84–96CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Ploeger DT, Hosper NA, Schipper M, Koerts JA, de Rond S, Bank RA (2013) Cell plasticity in wound healing: paracrine factors of M1/M2 polarized macrophages influence the phenotypical state of dermal fibroblasts. Cell Commun Signal 11:29CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Wynn TA, Barron L (2010) Macrophages: master regulators of inflammation and fibrosis. Semin Liver Dis 30(3):245–257CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Klingberg F et al (2018) The ED-A domain enhances the capacity of fibronectin to store latent TGF-β binding protein-1 in the fibroblast matrix. J Cell Sci. CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Klingberg F et al (2018) The fibronectin ED-A domain enhances recruitment of latent TGF-β-binding protein-1 to the fibroblast matrix. J Cell Sci 131:jcs201293CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Reiter RJ (1991) Pineal melatonin: cell biology of its synthesis and of its physiological interactions. Endocr Rev 12:151–180CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Patel PD, Pontrello C, Burke S (2004) Robust and tissue-specific expression of TPH2 versus TPH1 in rat raphe and pineal gland. Biol Psychiatry 55:428–433CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Côté F et al (2003) Disruption of the nonneuronal tph1 gene demonstrates the importance of peripheral serotonin in cardiac function. Proc Natl Acad Sci 100:13525–13530CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Walther DJ, Bader M (2003) A unique central tryptophan hydroxylase isoform. Biochem Pharmacol 66:1673–1680CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Bertrand PP, Bertrand RL (2010) Serotonin release and uptake in the gastrointestinal tract. Auton Neurosci Basic Clin 153:47–57CrossRefGoogle Scholar
  18. 18.
    Imai S-I (2009) The NAD World: a new systemic regulatory network for metabolism and aging—Sirt1, systemic NAD biosynthesis, and their importance. Cell Biochem Biophys 53:65CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Badawy AA-B (2015) Tryptophan metabolism, disposition and utilization in pregnancy. Biosci Rep 35:e00261CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Pfefferkorn ER, Eckel M, Rebhun S (1986) Interferon-γ suppresses the growth of Toxoplasma gondii in human fibroblasts through starvation for tryptophan. Mol Biochem Parasitol 20:215–224CrossRefPubMedGoogle Scholar
  21. 21.
    Munn DH, Zhou M, Attwood JT, Bondarev I, Conway SJ, Marshall B, Brown C, Mellor AL (1998) Prevention of allogeneic fetal rejection by tryptophan catabolism. Science 281:1191–1193CrossRefPubMedGoogle Scholar
  22. 22.
    Badawy AA-B, Namboodiri AM, Moffett JR (2016) The end of the road for the tryptophan depletion concept in pregnancy and infection. Clin Sci 130:1327–1333CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Roman AC et al (2018) The aryl hydrocarbon receptor in the crossroad of signalling networks with therapeutic value. Pharmacol Ther 185:50–63CrossRefPubMedGoogle Scholar
  24. 24.
    Dere E, Lo R, Celius T, Matthews J, Zacharewski TR (2011) Integration of genome-wide computation DRE search, AhR ChIP-chip and gene expression analyses of TCDD-elicited responses in the mouse liver. BMC Genom 12:365CrossRefGoogle Scholar
  25. 25.
    Nguyen LP, Bradfield CA (2007) The search for endogenous activators of the aryl hydrocarbon receptor. Chem Res Toxicol 21:102–116CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Flaveny CA, Murray IA, Perdew GH (2009) Differential gene regulation by the human and mouse aryl hydrocarbon receptor. Toxicol Sci 114:217–225CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Flaveny C, Reen RK, Kusnadi A, Perdew GH (2008) The mouse and human Ah receptor differ in recognition of LXXLL motifs. Arch Biochem Biophys 471:215–223CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Beischlag TV et al (2008) The aryl hydrocarbon receptor complex and the control of gene expression. Crit Rev Eukar Gene Expr 18(3):207–250CrossRefGoogle Scholar
  29. 29.
    Opitz CA et al (2011) An endogenous tumour-promoting ligand of the human aryl hydrocarbon receptor. Nature 478:197–203CrossRefPubMedGoogle Scholar
  30. 30.
    DiNatale BC, Murray IA, Schroeder JC, Flaveny CA, Lahoti TS, Laurenzana EM, Omiecinski CJ, Perdew GH (2010) Kynurenic acid is a potent endogenous aryl hydrocarbon receptor ligand that synergistically induces interleukin-6 in the presence of inflammatory signaling. Toxicol Sci 115:89–97CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Veldhoen M, Hirota K, Westendorf AM, Buer J, Dumoutier L, Renauld J-C, Stockinger B (2008) The aryl hydrocarbon receptor links TH17-cell-mediated autoimmunity to environmental toxins. Nature 453:106CrossRefGoogle Scholar
  32. 32.
    Henry E, Bemis J, Henry O, Kende A, Gasiewicz T (2006) A potential endogenous ligand for the aryl hydrocarbon receptor has potent agonist activity in vitro and in vivo. Arch Biochem Biophys 450:67–77CrossRefGoogle Scholar
  33. 33.
    Lowe MM et al (2014) Identification of cinnabarinic acid as a novel endogenous aryl hydrocarbon receptor ligand that drives IL-22 production. PLoS One 9:e87877CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Poormasjedi-Meibod M-SS, Hartwell R, Kilani RT, Ghahary A (2014) Anti-scarring properties of different tryptophan derivatives. PloS one 9:e91955CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Poormasjedi-Meibod MS, Salimi Elizei S, Leung V, Baradar Jalili R, Ko F, Ghahary A (2016) Kynurenine modulates MMP-1 and type-I collagen expression via aryl hydrocarbon receptor activation in dermal fibroblasts. J Cell Physiol 231:2749–2760CrossRefGoogle Scholar
  36. 36.
    Poormasjedi-Meibod MS, Pakyari M, Jackson JK, Salimi Elizei S, Ghahary A (2016) Development of a nanofibrous wound dressing with an antifibrogenic properties in vitro and in vivo model. J Biomed Mater Res Part A 104:2334–2344CrossRefGoogle Scholar
  37. 37.
    Fukui S, Schwarcz R, Rapoport SI, Takada Y, Smith QR (1991) Blood–brain barrier transport of kynurenines: implications for brain synthesis and metabolism. J Neurochem 56:2007–2017CrossRefGoogle Scholar
  38. 38.
    Parrott J, Redus L, Santana-Coelho D, Morales J, Gao X, O’connor J (2016) Neurotoxic kynurenine metabolism is increased in the dorsal hippocampus and drives distinct depressive behaviors during inflammation. Transl Psychiatry 6:e918CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Meier TB et al (2016) Relationship between neurotoxic kynurenine metabolites and reductions in right medial prefrontal cortical thickness in major depressive disorder. Brain Behav Immun 53:39–48CrossRefGoogle Scholar
  40. 40.
    Birner A et al (2017) Increased breakdown of kynurenine towards its neurotoxic branch in bipolar disorder. PLoS One 12:e0172699CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Lovelace MD et al (2016) Current evidence for a role of the kynurenine pathway of tryptophan metabolism in multiple sclerosis. Front Immunol 7:246CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Chavez-Munoz C et al (2012) Application of an Indoleamine 2, 3-dioxygenase–expressing skin substitute improves scar formation in a fibrotic animal model. J Investig Dermatol 132:1501–1505CrossRefGoogle Scholar
  43. 43.
    Hartwell R, Poormasjedi-Meibod MS, Chavez-Munoz C, Jalili RB, Hossenini-Tabatabaei A, Ghahary A (2015) An in-situ forming skin substitute improves healing outcome in a hypertrophic scar model. Tissue Eng Part A. 18(21):1085–1094CrossRefGoogle Scholar
  44. 44.
    Liu H, Liu L, Fletcher BS, Visner GA (2006) Sleeping beauty-based gene therapy with indoleamine 2, 3-dioxygenase inhibits lung allograft fibrosis. FASEB J 20:2384–2386CrossRefGoogle Scholar
  45. 45.
    Li Y, Kilani RT, Rahmani-Neishaboor E, Jalili RB, Ghahary A (2014) Kynurenine increases matrix metalloproteinase-1 and -3 expression in cultured dermal fibroblasts and improves scarring in vivo. J Investig Dermatol 134:643–650CrossRefGoogle Scholar
  46. 46.
    Yu H et al (2014) The aryl hydrocarbon receptor suppresses osteoblast proliferation and differentiation through the activation of the ERK signaling pathway. Toxicol Appl Pharmacol 280:502–510CrossRefGoogle Scholar
  47. 47.
    Ye M et al (2018) Activation of the aryl hydrocarbon receptor leads to resistance to EGFR TKIs in non-small cell lung cancer by activating src-mediated bypass signaling. Clin Cancer Res 24:1227–1239CrossRefGoogle Scholar
  48. 48.
    Borlak J, Jenke HS (2008) Cross-talk between aryl hydrocarbon receptor and mitogen-activated protein kinase signaling pathway in liver cancer through c-raf transcriptional regulation. Mol Cancer Res 6:1326–1336CrossRefGoogle Scholar
  49. 49.
    Aguilera-Montilla N et al (2013) Aryl hydrocarbon receptor contributes to the MEK/ERK-dependent maintenance of the immature state of human dendritic cells. Blood 121:e108–e117CrossRefGoogle Scholar
  50. 50.
    Li D et al (2012) Effects of indoleamine 2, 3-dioxygenases in carbon tetrachloride-induced hepatitis model of rats. Cell Biochem Funct 30:309–314CrossRefGoogle Scholar
  51. 51.
    Ogiso H et al (2016) The deficiency of indoleamine 2, 3-dioxygenase aggravates the CCl4-induced liver fibrosis in mice. PLoS One 11:e0162183CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Giri SN, Hyde DM, Marafino BJ Jr (1986) Ameliorating effect of murine interferon gamma on bleomycin-induced lung collagen fibrosis in mice. Biochem Med Metab Biol 36:194–197CrossRefGoogle Scholar
  53. 53.
    Gurujeyalakshmi G, Giri S (1995) Molecular mechanisms of antifibrotic effect of interferon gamma in bleomycin-mouse model of lung fibrosis: downregulation of TGF-β and procollagen I and III gene expression. Exp Lung Res 21:791–808CrossRefGoogle Scholar
  54. 54.
    Baroni GS, D’Ambrosio L, Curto P, Casini A, Mancini R, Jezequel AM, Benedetti A (1996) Interferon gamma decreases hepatic stellate cell activation and extracellular matrix deposition in rat liver fibrosis. Hepatology 23:1189–1199CrossRefGoogle Scholar
  55. 55.
    Weng HL, Cai WM, Liu RH (2001) Animal experiment and clinical study of effect of gamma-interferon on hepatic fibrosis. World J Gastroenterol 7:42CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Lupher ML Jr, Gallatin WM (2006) Regulation of fibrosis by the immune system. Adv Immunol 89:245–288CrossRefGoogle Scholar
  57. 57.
    Young HA, Hardy KJ (1995) Role of interferon-γ in immune cell regulation. J Leukoc Biol 58:373–381CrossRefGoogle Scholar
  58. 58.
    Low S, Kitada S, Lee D (1991) Interferon-gamma inhibits collagen synthesis by human Tenon’s capsule fibroblasts in vitro. Investig Ophthalmol Vis Sci 32:2964–2969Google Scholar
  59. 59.
    Clark JG, Dedon T, Wayner E, Carter W (1989) Effects of interferon-gamma on expression of cell surface receptors for collagen and deposition of newly synthesized collagen by cultured human lung fibroblasts. J Clin Investig 83:1505–1511CrossRefGoogle Scholar
  60. 60.
    Ghosh AK, Bhattacharyya S, Mori Y, Varga J (2006) Inhibition of collagen gene expression by interferon-γ: novel role of the CCAAT/enhancer binding protein β (C/EBPβ). J Cell Physiol 207:251–260CrossRefGoogle Scholar
  61. 61.
    Eickelberg O et al (2001) Molecular mechanisms of TGF-β antagonism by interferon γ and cyclosporine A in lung fibroblasts. FASEB J 15:797–806CrossRefGoogle Scholar
  62. 62.
    Ulloa L, Doody J, Massagué J (1999) Inhibition of transforming growth factor-β/SMAD signalling by the interferon-γ/STAT pathway. Nature 397:710CrossRefGoogle Scholar
  63. 63.
    Amento EP, Ehsani N, Palmer H, Libby P (1991) Cytokines and growth factors positively and negatively regulate interstitial collagen gene expression in human vascular smooth muscle cells. Arterioscler Thromb Vasc Biol 11:1223–1230Google Scholar
  64. 64.
    Rezzonico R, Burger D, Dayer J-M (1998) Direct contact between T lymphocytes and human dermal fibroblasts or synoviocytes down-regulates types I and III collagen production via cell-associated cytokines. J Biol Chem 273:18720–18728CrossRefGoogle Scholar
  65. 65.
    Dai W, Gupta SL (1990) Regulation of indoleamine 2, 3-dioxygenase gene expression in human fibroblasts by interferon-gamma Upstream control region discriminates between interferon. J Biol Chem 265:19871–19877PubMedGoogle Scholar
  66. 66.
    Yadav MC, Burudi E, Alirezaei M, Flynn CC, Watry DD, Lanigan CM, Fox HS (2007) IFN-γ-induced IDO and WRS expression in microglia is differentially regulated by IL-4. Glia 55:1385–1396CrossRefPubMedPubMedCentralGoogle Scholar
  67. 67.
    Malone D, Dolan P, Brown R, Kalayoglu M, Arend R, Byrne G, Ozaki Y (1994) Interferon gamma induced production of indoleamine 2, 3 dioxygenase in cultured human synovial cells. J Rheumatol 21:1011–1019PubMedGoogle Scholar
  68. 68.
    MacKenzie C et al (1999) Cytokine mediated regulation of interferon-gamma-induced IDO activation. Tryptophan, serotonin, and melatonin. Springer, Boston, MA, pp 533–539Google Scholar
  69. 69.
    Jung ID, Lee C-M, Jeong Y-I, Lee JS, Park WS, Han J, Park Y-M (2007) Differential regulation of indoleamine 2, 3-dioxygenase by lipopolysaccharide and interferon gamma in murine bone marrow derived dendritic cells. FEBS Lett 581:1449–1456CrossRefGoogle Scholar
  70. 70.
    Sarkar SA, Wong R, Hackl SI, Moua O, Gill RG, Wiseman A, Davidson HW, Hutton JC (2007) Induction of indoleamine 2, 3-dioxygenase by interferon-γ in human islets. Diabetes 56:72–79CrossRefGoogle Scholar
  71. 71.
    Mittal D et al (2013) Indoleamine 2, 3-dioxygenase activity contributes to local immune suppression in the skin expressing human papillomavirus oncoprotein e7. J Investig Dermatol 133:2686–2694CrossRefGoogle Scholar
  72. 72.
    Sarkhosh K, Tredget EE, Karami A, Uludag H, Iwashina T, Kilani RT, Ghahary A (2003) Immune cell proliferation is suppressed by the interferon-γ-induced indoleamine 2, 3-dioxygenase expression of fibroblasts populated in collagen gel (FPCG). J Cell Biochem 90:206–217CrossRefGoogle Scholar
  73. 73.
    Ghahary A, Li Y, Tredget EE, Kilani RT, Iwashina T, Karami A, Lin X (2004) Expression of indoleamine 2, 3-dioxygenase in dermal fibroblasts functions as a local immunosuppressive factor. J Investig Dermatol 122:953–964CrossRefGoogle Scholar
  74. 74.
    Li Y, Tredget EE, Ghaffari A, Lin X, Kilani RT, Ghahary A (2006) Local expression of indoleamine 2, 3-dioxygenase protects engraftment of xenogeneic skin substitute. J Investig Dermatol 126:128–136CrossRefGoogle Scholar
  75. 75.
    Fernandez-Salguero P et al (1995) Immune system impairment and hepatic fibrosis in mice lacking the dioxin-binding Ah receptor. Science 268:722–726CrossRefGoogle Scholar
  76. 76.
    Peterson TC, Hodgson P, Fernandez-Salguero P, Neumeister M, Gonzalez FJ (2000) Hepatic fibrosis and cytochrome P450: experimental models of fibrosis compared to AHR knockout mice. Hepatol Res 17:112–125CrossRefGoogle Scholar
  77. 77.
    Corchero J, Martín-Partido G, Dallas SL, Fernández-Salguero PM (2004) Liver portal fibrosis in dioxin receptor-null mice that overexpress the latent transforming growth factor-β-binding protein-1. Int J Exp Pathol 85:295–302CrossRefPubMedPubMedCentralGoogle Scholar
  78. 78.
    Hemsworth-Peterson T (2013) Role of JNK signalling and ahr in fibrosis, implications for new therapeutics. Pancreat Disord Ther 3:2CrossRefGoogle Scholar
  79. 79.
    Monteleone I et al (2016) Aryl hydrocarbon receptor-driven signals inhibit collagen synthesis in the gut. Eur J Immunol 46:1047–1057CrossRefGoogle Scholar
  80. 80.
    Woeller CF, Roztocil E, Hammond CL, Feldon SE, Phipps RP (2016) The aryl hydrocarbon receptor and its ligands inhibit myofibroblast formation and activation: implications for thyroid eye disease. Am J Pathol 186:3189–3202CrossRefPubMedPubMedCentralGoogle Scholar
  81. 81.
    Lehmann GM et al (2011) The aryl hydrocarbon receptor ligand ITE inhibits TGFβ1-induced human myofibroblast differentiation. Am J Pathol 178:1556–1567CrossRefPubMedPubMedCentralGoogle Scholar
  82. 82.
    Murai M, Tsuji G, Hashimoto-Hachiya A, Kawakami Y, Furue M, Mitoma C (2018) An endogenous tryptophan photo-product, FICZ, is potentially involved in photo-aging by reducing TGF-β-regulated collagen homeostasis. J Dermatol Sci 89:19–26CrossRefPubMedPubMedCentralGoogle Scholar
  83. 83.
    Wrighton KH, Lin X, Feng X-H (2009) Phospho-control of TGF-β superfamily signaling. Cell Res 19:8CrossRefPubMedPubMedCentralGoogle Scholar
  84. 84.
    Wang G, Matsuura I, He D, Liu F (2009) Transforming growth factor-β-inducible phosphorylation of Smad3. J Biol Chem 284:9663–9673CrossRefPubMedPubMedCentralGoogle Scholar
  85. 85.
    Hough C, Radu M, Doré JJ (2012) Tgf-beta induced Erk phosphorylation of smad linker region regulates smad signaling. PLoS One 7:e42513CrossRefPubMedPubMedCentralGoogle Scholar
  86. 86.
    Hayashida T, Decaestecker M, Schnaper HW (2003) Cross-talk between ERK MAP kinase and Smad signaling pathways enhances TGF-β-dependent responses in human mesangial cells. FASEB J 17:1576–1578CrossRefPubMedPubMedCentralGoogle Scholar
  87. 87.
    Engel ME, McDonnell MA, Law BK, Moses HL (1999) Interdependent SMAD and JNK signaling in transforming growth factor-β-mediated transcription. J Biol Chem 274:37413–37420CrossRefPubMedPubMedCentralGoogle Scholar
  88. 88.
    Mori S et al (2004) TGF-β and HGF transmit the signals through JNK-dependent Smad2/3 phosphorylation at the linker regions. Oncogene 23:7416CrossRefPubMedPubMedCentralGoogle Scholar
  89. 89.
    Alarcón C et al (2009) Nuclear CDKs drive Smad transcriptional activation and turnover in BMP and TGF-β pathways. Cell 139:757–769CrossRefPubMedPubMedCentralGoogle Scholar
  90. 90.
    Kamaraju AK, Roberts AB (2005) Role of Rho/ROCK and p38 MAP kinase pathways in transforming growth factor-β-mediated Smad-dependent growth inhibition of human breast carcinoma cells in vivo. J Biol Chem 280:1024–1036CrossRefPubMedGoogle Scholar
  91. 91.
    Rostam MA, Kamato D, Piva TJ, Zheng W, Little PJ, Osman N (2016) The role of specific Smad linker region phosphorylation in TGF-β mediated expression of glycosaminoglycan synthesizing enzymes in vascular smooth muscle. Cell Signal 28:956–966CrossRefPubMedGoogle Scholar
  92. 92.
    Nishida M, Okumura Y, Sato H, Hamaoka K (2008) Delayed inhibition of p38 mitogen-activated protein kinase ameliorates renal fibrosis in obstructive nephropathy. Nephrol Dial Transplant 23:2520–2524CrossRefPubMedGoogle Scholar
  93. 93.
    Stambe C, Atkins RC, Tesch GH, Masaki T, Schreiner GF, Nikolic-Paterson DJ (2004) The role of p38α mitogen-activated protein kinase activation in renal fibrosis. J Am Soc Nephrol 15:370–379CrossRefPubMedGoogle Scholar
  94. 94.
    Akhmetshina A et al (2012) Activation of canonical Wnt signalling is required for TGF-β-mediated fibrosis. Nat Commun 3:735CrossRefPubMedPubMedCentralGoogle Scholar
  95. 95.
    Xu L et al (2017) Activation of Wnt/β-catenin signalling is required for TGF-β/Smad2/3 signalling during myofibroblast proliferation. J Cell Mol Med 21:1545–1554CrossRefPubMedPubMedCentralGoogle Scholar
  96. 96.
    Baarsma HA et al (2011) Activation of WNT/β-catenin signaling in pulmonary fibroblasts by TGF-β1 is increased in chronic obstructive pulmonary disease. PLoS One 6:e25450CrossRefPubMedPubMedCentralGoogle Scholar
  97. 97.
    Ihn H, Yamane K, Tamaki K (2005) Increased phosphorylation and activation of mitogen-activated protein kinase p38 in scleroderma fibroblasts. J Gen Intern Med 20:247–255Google Scholar
  98. 98.
    Dolivo D, Larson S, Dominko T (2017) FGF2-mediated attenuation of myofibroblast activation is modulated by distinct MAPK signaling pathways in human dermal fibroblasts. J Dermatol Sci 88:339–348CrossRefGoogle Scholar
  99. 99.
    Molkentin JD et al (2017) Fibroblast-specific genetic manipulation of p38 MAPK in vivo reveals its central regulatory role in fibrosis. Circulation CIRCULATIONAHA 116:026238Google Scholar
  100. 100.
    Choi SY et al (2016) Piceatannol attenuates renal fibrosis induced by unilateral ureteral obstruction via downregulation of histone deacetylase 4/5 or p38-MAPK signaling. PLoS One 11:e0167340CrossRefPubMedPubMedCentralGoogle Scholar
  101. 101.
    Sugiyama N, Kohno M, Yokoyama T (2011) Inhibition of the p38 MAPK pathway ameliorates renal fibrosis in an NPHP2 mouse model. Nephrol Dial Transplant 27(4):1351–1358CrossRefPubMedGoogle Scholar
  102. 102.
    See F, Thomas W, Way K, Tzanidis A, Kompa A, Lewis D, Itescu S, Krum H (2004) p38 mitogen-activated protein kinase inhibition improves cardiac function and attenuates left ventricular remodeling following myocardial infarction in the rat. J Am Coll Cardiol 44:1679–1689CrossRefPubMedGoogle Scholar
  103. 103.
    Matysik-Woźniak A, Paduch R, Turski WA, Maciejewski R, Jünemann AG, Rejdak R (2017) Effects of tryptophan, kynurenine and kynurenic acid exerted on human reconstructed corneal epithelium in vitro. Pharmacol Rep 69:722–729CrossRefPubMedGoogle Scholar
  104. 104.
    Morita T et al (1999) l-tryptophan-kynurenine pathway metabolite 3-hydroxyanthranilic acid induces apoptosis in macrophage-derived cells under pathophysiological conditions, tryptophan, serotonin, and melatonin. Springer, Boston, MA, pp 559–563Google Scholar
  105. 105.
    Poormasjedi-Meibod M-S, Jalili RB, Hosseini-Tabatabaei A, Hartwell R, Ghahary A (2013) Immuno-regulatory function of indoleamine 2, 3 dioxygenase through modulation of innate immune responses. PLoS One 8:e71044CrossRefPubMedPubMedCentralGoogle Scholar
  106. 106.
    Fallarino F et al (2003) T cell apoptosis by kynurenines. Developments in tryptophan and serotonin metabolism. Springer, Boston, MA, pp 183–190CrossRefGoogle Scholar
  107. 107.
    Dagenais-Lussier X, Aounallah M, Mehraj V, El-Far M, Tremblay C, Sekaly R-P, Routy J-P, Van Grevenynghe J (2016) Kynurenine reduces memory CD4 T-cell survival by interfering with interleukin-2 signaling early during HIV-1 infection. J Virol 90:7967–7979CrossRefPubMedPubMedCentralGoogle Scholar
  108. 108.
    Belladonna ML et al (2006) Kynurenine pathway enzymes in dendritic cells initiate tolerogenesis in the absence of functional IDO. J Immunol 177:130–137CrossRefPubMedGoogle Scholar
  109. 109.
    Terness P, Bauer TM, Röse L, Dufter C, Watzlik A, Simon H, Opelz G (2002) Inhibition of allogeneic T cell proliferation by indoleamine 2, 3-dioxygenase–expressing dendritic cells: mediation of suppression by tryptophan metabolites. J Exp Med 196:447–457CrossRefPubMedPubMedCentralGoogle Scholar
  110. 110.
    Morita T et al (2001) 3-Hydroxyanthranilic acid, an l-tryptophan metabolite, induces apoptosis in monocyte-derived cells stimulated by interferon-γ. Ann Clin Biochem 38:242–251CrossRefGoogle Scholar
  111. 111.
    Khalil N, Corne S, Whitman C, Yacyshyn H (1996) Plasmin regulates the activation of cell-associated latent TGF-beta 1 secreted by rat alveolar macrophages after in vivo bleomycin injury. Am J Respir Cell Mol Biol 15:252–259CrossRefGoogle Scholar
  112. 112.
    Fadok VA, Bratton DL, Konowal A, Freed PW, Westcott JY, Henson PM (1998) Macrophages that have ingested apoptotic cells in vitro inhibit proinflammatory cytokine production through autocrine/paracrine mechanisms involving TGF-beta, PGE2, and PAF. J Clin Investig 101:890–898CrossRefGoogle Scholar
  113. 113.
    Song E, Ouyang N, Hörbelt M, Antus B, Wang M, Exton MS (2000) Influence of alternatively and classically activated macrophages on fibrogenic activities of human fibroblasts. Cell Immunol 204:19–28CrossRefGoogle Scholar
  114. 114.
    Duffield JS et al (2005) Selective depletion of macrophages reveals distinct, opposing roles during liver injury and repair. J Clin Investig 115:56–65CrossRefGoogle Scholar
  115. 115.
    Wynn TA (2004) Fibrotic disease and the TH1/TH2 paradigm. Nat Rev Immunol 4:583CrossRefPubMedPubMedCentralGoogle Scholar
  116. 116.
    Mann DA, Oakley F (2013) Serotonin paracrine signaling in tissue fibrosis. Biochimica et Biophysica Acta (BBA) Mol Basis Dis 1832:905–910CrossRefGoogle Scholar
  117. 117.
    Kushnir-Sukhov NM, Gilfillan AM, Coleman JW, Brown JM, Bruening S, Toth M, Metcalfe DD (2006) 5-Hydroxytryptamine induces mast cell adhesion and migration. J Immunol 177:6422–6432CrossRefGoogle Scholar
  118. 118.
    Boehme SA, Lio FM, Sikora L, Pandit TS, Lavrador K, Rao SP, Sriramarao P (2004) Cutting edge: serotonin is a chemotactic factor for eosinophils and functions additively with eotaxin. J Immunol 173:3599–3603CrossRefGoogle Scholar
  119. 119.
    Li N, Ghia J-E, Wang H, McClemens J, Cote F, Suehiro Y, Mallet J, Khan WI (2011) Serotonin activates dendritic cell function in the context of gut inflammation. Am J Pathol 178:662–671CrossRefPubMedPubMedCentralGoogle Scholar
  120. 120.
    Müller T et al (2009) 5-hydroxytryptamine modulates migration, cytokine and chemokine release and T-cell priming capacity of dendritic cells in vitro and in vivo. PLoS One 4:e6453CrossRefPubMedPubMedCentralGoogle Scholar
  121. 121.
    Idzko M et al (2004) The serotoninergic receptors of human dendritic cells: identification and coupling to cytokine release. J Immunol 172:6011–6019CrossRefPubMedPubMedCentralGoogle Scholar
  122. 122.
    Soga F, Katoh N, Inoue T, Kishimoto S (2007) Serotonin activates human monocytes and prevents apoptosis. J Investig Dermatol 127:1947–1955CrossRefPubMedPubMedCentralGoogle Scholar
  123. 123.
    Dürk T et al (2005) 5-Hydroxytryptamine modulates cytokine and chemokine production in LPS-primed human monocytes via stimulation of different 5-HTR subtypes. Int Immunol 17:599–606CrossRefPubMedPubMedCentralGoogle Scholar
  124. 124.
    Rosenberg T, Lattimer R, Montgomery P, Wiens C, Levy L (2017) The relationship of ssrI and snrI usage with interstitial lung disease and bronchiectasis in an elderly population: a case–control study. Clin Interv Aging 12:1977CrossRefPubMedPubMedCentralGoogle Scholar
  125. 125.
    Thornton C, Maher TM, Hansell D, Nicholson AG, Wells AU (2009) Pulmonary fibrosis associated with psychotropic drug therapy: a case report. J Med Case Rep 3:126CrossRefPubMedPubMedCentralGoogle Scholar
  126. 126.
    Beretta L, Cossu M, Marchini M, Cappiello F, Artoni A, Motta G, Scorza R (2008) A polymorphism in the human serotonin 5-HT 2A receptor gene may protect against systemic sclerosis by reducing platelet aggregation. Arthritis Res Ther 10:R103CrossRefPubMedPubMedCentralGoogle Scholar
  127. 127.
    Beretta L, Scorza R (2009) 5HT 2A polymorphism His452Tyr in a German Caucasian systemic sclerosis population–authors’ response. Arthritis Res Ther 11:404CrossRefGoogle Scholar
  128. 128.
    Kirsten H, Burkhardt J, Hantmann H, Hunzelmann N, Vaith P, Ahnert P, Melchers I (2009) 5HT 2A polymorphism His452Tyr in a German Caucasian systemic sclerosis population. Arthritis Res Ther 11:403CrossRefPubMedPubMedCentralGoogle Scholar
  129. 129.
    Hazelwood LA, Sanders-Bush E (2004) His452Tyr polymorphism in the human 5-HT2A receptor destabilizes the signaling conformation. Mol Pharmacol 66:1293–1300PubMedPubMedCentralGoogle Scholar
  130. 130.
    Asselin J, Gibbins JM, Achison M, Lee YH, Morton LF, Farndale RW, Barnes MJ, Watson SP (1997) A collagen-like peptide stimulates tyrosine phosphorylation of syk and phospholipase Cγ2 in platelets independent of the integrin α2β1. Blood 89:1235–1242PubMedPubMedCentralGoogle Scholar
  131. 131.
    Blake RA, Schieven GL, Watson SP (1994) Collagen stimulates tyrosine phosphorylation of phospholipase C-γ2 but not phospholipase C-γ1 in human platelets. FEBS Lett 353:212–216CrossRefGoogle Scholar
  132. 132.
    Mackenzie LS, Lymn JS, Hughes AD (2013) Linking phospholipase C isoforms with differentiation function in human vascular smooth muscle cells. Biochimica et Biophysica Acta (BBA) Mol Cell Res 1833:3006–3012CrossRefGoogle Scholar
  133. 133.
    Zhu X et al (2017) Phospholipase Cε deficiency delays the early stage of cutaneous wound healing and attenuates scar formation in mice. Biochem Biophys Res Commun 484:144–151CrossRefGoogle Scholar
  134. 134.
    Mekontso-Dessap A et al (2006) Deficiency of the 5-hydroxytryptamine transporter gene leads to cardiac fibrosis and valvulopathy in mice. Circulation 113:81–89CrossRefGoogle Scholar
  135. 135.
    Gustafsson BI et al (2005) Long-term serotonin administration induces heart valve disease in rats. Circulation 111:1517–1522CrossRefGoogle Scholar
  136. 136.
    Dees C et al (2011) Platelet-derived serotonin links vascular disease and tissue fibrosis. J Exp Med 208:961–972 (jem. 20101629) CrossRefPubMedPubMedCentralGoogle Scholar
  137. 137.
    Königshoff M et al (2010) Increased expression of 5-hydroxytryptamine2A/B receptors in idiopathic pulmonary fibrosis: a rationale for therapeutic intervention. Thorax thx. 2009:134353Google Scholar
  138. 138.
    Janssen W et al (2015) 5-HT2B receptor antagonists inhibit fibrosis and protect from RV heart failure. BioMed Res Int 2015:1–8Google Scholar
  139. 139.
    Elaidy SM, Essawy SS (2016) The antifibrotic effects of alveolar macrophages 5-HT2C receptors blockade on bleomycin-induced pulmonary fibrosis in rats. Pharmacol Rep 68:1244–1253CrossRefGoogle Scholar
  140. 140.
    Tawfik MK, Makary S (2017) 5-HT7 receptor antagonism (SB-269970) attenuates bleomycin-induced pulmonary fibrosis in rats via downregulating oxidative burden and inflammatory cascades and ameliorating collagen deposition: comparison to terguride. Eur J Pharmacol 814:114–123CrossRefGoogle Scholar
  141. 141.
    Löfdahl A et al (2016) 5‐HT2B receptor antagonists attenuate myofibroblast differentiation and subsequent fibrotic responses in vitro and in vivo. Physiol Rep 4Google Scholar
  142. 142.
    Jaffré F, Callebert J, Sarre A, Etienne N, Nebigil CG, Launay J-M, Maroteaux L, Monassier L (2004) Involvement of the serotonin 5-HT2B receptor in cardiac hypertrophy linked to sympathetic stimulation: control of interleukin-6, interleukin-1β, and tumor necrosis factor-α cytokine production by ventricular fibroblasts. Circulation 110:969–974CrossRefGoogle Scholar
  143. 143.
    Frey N, Olson E (2003) Cardiac hypertrophy: the good, the bad, and the ugly. Annu Rev Physiol 65:45–79CrossRefGoogle Scholar
  144. 144.
    Jaffré F et al (2009) Serotonin and angiotensin receptors in cardiac fibroblasts coregulate adrenergic-dependent cardiac hypertrophy. Circ Res 104:113–123CrossRefGoogle Scholar
  145. 145.
    Ruddell RG, Oakley F, Hussain Z, Yeung I, Bryan-Lluka LJ, Ramm GA, Mann DA (2006) A role for serotonin (5-HT) in hepatic stellate cell function and liver fibrosis. Am J Pathol 169:861–876CrossRefPubMedPubMedCentralGoogle Scholar
  146. 146.
    Yabanoglu S, Akkiki M, Seguelas M-H, Mialet-Perez J, Parini A, Pizzinat N (2009) Platelet derived serotonin drives the activation of rat cardiac fibroblasts by 5-HT2A receptors. J Mol Cell Cardiol 46:518–525CrossRefGoogle Scholar
  147. 147.
    Chen C et al (2014) Serotonin drives the activation of pulmonary artery adventitial fibroblasts and TGF-β1/Smad3-mediated fibrotic responses through 5-HT2A receptors. Mol Cell Biochem 397:267–276CrossRefGoogle Scholar
  148. 148.
    Moreno AC, Clara RO, Coimbra JB, Júlio AR (2013) The expanding roles of 1-methyl-tryptophan (1-MT): in addition to inhibiting kynurenine production, 1-MT activates the synthesis of melatonin in skin cells. FEBS J 280(19):4782–4792CrossRefGoogle Scholar
  149. 149.
    Li Y, Hu N, Yang D, Oxenkrug G, Yang Q (2017) Regulating the balance between the kynurenine and serotonin pathways of tryptophan metabolism. FEBS J 284:948–966CrossRefGoogle Scholar
  150. 150.
    Slominski A, Pisarchik A, Zbytek B, Tobin DJ, Kauser S, Wortsman J (2003) Functional activity of serotoninergic and melatoninergic systems expressed in the skin. J Cell Physiol 196:144–153CrossRefGoogle Scholar
  151. 151.
    Slominski A et al (2002) Serotoninergic and melatoninergic systems are fully expressed in human skin. FASEB J 16:896–898CrossRefGoogle Scholar
  152. 152.
    Sheipouri D, Grant R, Bustamante S, Lovejoy D, Guillemin GJ, Braidy N (2015) Characterisation of the kynurenine pathway in skin-derived fibroblasts and keratinocytes. J Cell Biochem 116:903–922CrossRefGoogle Scholar
  153. 153.
    Sheipouri D, Braidy N, Guillemin GJ (2012) Kynurenine pathway in skin cells: Implications for UV-induced skin damage. Int J Tryptophan Res 5:IJTR. S9835CrossRefGoogle Scholar
  154. 154.
    Papp A, Hartwell R, Evans M, Ghahary A (2018) The safety and tolerability of topically delivered kynurenic acid in humans. A phase 1 randomized double-blind clinical trial. J Pharm Sci 107:1572–1576CrossRefGoogle Scholar
  155. 155.
    BirchBioMed (2018) Birchbiomed is cleared to begin first-of-its-kind phase II clinical trial for ground-breaking anti-scarring drug. In: Elliott S (eds) BirchBioMed, Vancouver, BC, pp 1–3Google Scholar
  156. 156.
    Eickelberg O, Pansky A, Mussmann R, Bihl M, Tamm M, Hildebrand P, Perruchoud AP, Roth M (1999) Transforming growth factor-β1 induces interleukin-6 expression via activating protein-1 consisting of JunD homodimers in primary human lung fibroblasts. J Biol Chem 274:12933–12938CrossRefGoogle Scholar
  157. 157.
    Yao Z et al (2010) TGF-β IL-6 axis mediates selective and adaptive mechanisms of resistance to molecular targeted therapy in lung cancer. Proc Natl Acad Sci 107:15535–15540CrossRefGoogle Scholar
  158. 158.
    Elias J, Lentz V, Cummings P (1991) Transforming growth factor-beta regulation of IL-6 production by unstimulated and IL-1-stimulated human fibroblasts. J Immunol 146:3437–3443PubMedGoogle Scholar
  159. 159.
    Seong GJ, Hong S, Jung S-A, Lee J-J, Lim E, Kim S-J, Lee JH (2009) TGF-β-induced interleukin-6 participates in transdifferentiation of human Tenon’s fibroblasts to myofibroblasts. Mol Vis 15:2123PubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • David M. Dolivo
    • 1
  • Sara A. Larson
    • 1
  • Tanja Dominko
    • 1
    Email author
  1. 1.Biology and Biotechnology DepartmentWorcester Polytechnic InstituteWorcesterUSA

Personalised recommendations