Advertisement

Trans-spliced long non-coding RNA: an emerging regulator of pluripotency

Review

Abstract

With dual capacities for unlimited self-renewal and pluripotent differentiation, pluripotent stem cells (PSCs) give rise to many cell types in our body and PSC culture systems provide an unparalleled opportunity to study early human development and disease. Accumulating evidence indicates that the molecular mechanisms underlying pluripotency maintenance in PSCs involve many factors. Among these regulators, recent studies have shown that long non-coding RNAs (lncRNAs) can affect the pluripotency circuitry by cooperating with master pluripotency-associated factors. Additionally, trans-spliced RNAs, which are generated by combining two or more pre-mRNA transcripts to produce a chimeric RNA, have been identified as regulators of various biological processes, including human pluripotency. In this review, we summarize and discuss current knowledge about the roles of lncRNAs, including trans-spliced lncRNAs, in controlling pluripotency.

Keywords

Trans-spliced RNA Pluripotency Human embryonic stem cells Long non-coding RNAs Induced pluripotent stem cells 

Notes

Acknowledgements

This work was supported by Grants from Academia Sinica (Thematic Project, AS-104-TP-B09 and AS-103-TP-B10) and the Ministry of Science and Technology (MOST104-0210-01-09-02/105-0210-01-13-01/106-0210-01-15-02/106-2321-B-001-049-MY3) and National Health Research Institutes (HRI-EX104-10320SI).

References

  1. 1.
    Thomson JA, Itskovitz-Eldor J, Shapiro SS, Waknitz MA, Swiergiel JJ, Marshall VS, Jones JM (1998) Embryonic stem cell lines derived from human blastocysts. Science 282:1145–1147PubMedCrossRefGoogle Scholar
  2. 2.
    Sunwoo H, Dinger ME, Wilusz JE, Amaral PP, Mattick JS, Spector DL (2009) MEN epsilon/beta nuclear-retained non-coding RNAs are up-regulated upon muscle differentiation and are essential components of paraspeckles. Genome Res 19:347–359.  https://doi.org/10.1101/gr.087775.108 PubMedPubMedCentralCrossRefGoogle Scholar
  3. 3.
    Luo S, Lu JY, Liu L, Yin Y, Chen C, Han X, Wu B, Xu R, Liu W, Yan P, Shao W, Lu Z, Li H, Na J, Tang F, Wang J, Zhang YE, Shen X (2016) Divergent lncRNAs regulate gene expression and lineage differentiation in pluripotent cells. Cell Stem Cell 18:637–652.  https://doi.org/10.1016/j.stem.2016.01.024 PubMedCrossRefGoogle Scholar
  4. 4.
    Hawkins PG, Morris KV (2010) Transcriptional regulation of Oct4 by a long non-coding RNA antisense to Oct4-pseudogene 5. Transcription 1:165–175.  https://doi.org/10.4161/trns.1.3.13332 PubMedPubMedCentralCrossRefGoogle Scholar
  5. 5.
    Wu CS, Yu CY, Chuang CY, Hsiao M, Kao CF, Kuo HC, Chuang TJ (2014) Integrative transcriptome sequencing identifies trans-splicing events with important roles in human embryonic stem cell pluripotency. Genome Res 24:25–36.  https://doi.org/10.1101/gr.159483.113 PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    Mondal T, Subhash S, Vaid R, Enroth S, Uday S, Reinius B, Mitra S, Mohammed A, James AR, Hoberg E, Moustakas A, Gyllensten U, Jones SJ, Gustafsson CM, Sims AH, Westerlund F, Gorab E, Kanduri C (2015) MEG3 long noncoding RNA regulates the TGF-beta pathway genes through formation of RNA-DNA triplex structures. Nat Commun 6:7743.  https://doi.org/10.1038/ncomms8743 PubMedPubMedCentralCrossRefGoogle Scholar
  7. 7.
    Chen LL, Carmichael GG (2009) Altered nuclear retention of mRNAs containing inverted repeats in human embryonic stem cells: functional role of a nuclear noncoding RNA. Mol Cell 35:467–478.  https://doi.org/10.1016/j.molcel.2009.06.027 PubMedPubMedCentralCrossRefGoogle Scholar
  8. 8.
    Wang Y, Xu Z, Jiang J, Xu C, Kang J, Xiao L, Wu M, Xiong J, Guo X, Liu H (2013) Endogenous miRNA sponge lincRNA-RoR regulates Oct4, Nanog, and Sox2 in human embryonic stem cell self-renewal. Dev Cell 25:69–80.  https://doi.org/10.1016/j.devcel.2013.03.002 PubMedCrossRefGoogle Scholar
  9. 9.
    Loewer S, Cabili MN, Guttman M, Loh YH, Thomas K, Park IH, Garber M, Curran M, Onder T, Agarwal S, Manos PD, Datta S, Lander ES, Schlaeger TM, Daley GQ, Rinn JL (2010) Large intergenic non-coding RNA-RoR modulates reprogramming of human induced pluripotent stem cells. Nat Genet 42:1113–1117.  https://doi.org/10.1038/ng.710 PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    Stadtfeld M, Apostolou E, Akutsu H, Fukuda A, Follett P, Natesan S, Kono T, Shioda T, Hochedlinger K (2010) Aberrant silencing of imprinted genes on chromosome 12qF1 in mouse induced pluripotent stem cells. Nature 465:175–181.  https://doi.org/10.1038/nature09017 PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    Schulz EG, Meisig J, Nakamura T, Okamoto I, Sieber A, Picard C, Borensztein M, Saitou M, Bluthgen N, Heard E (2014) The two active X chromosomes in female ESCs block exit from the pluripotent state by modulating the ESC signaling network. Cell Stem Cell 14:203–216.  https://doi.org/10.1016/j.stem.2013.11.022 PubMedCrossRefGoogle Scholar
  12. 12.
    Wang KC, Chang HY (2011) Molecular mechanisms of long noncoding RNAs. Mol Cell 43:904–914.  https://doi.org/10.1016/j.molcel.2011.08.018 PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    Rinn JL, Chang HY (2012) Genome regulation by long noncoding RNAs. Annu Rev Biochem 81:145–166.  https://doi.org/10.1146/annurev-biochem-051410-092902 PubMedCrossRefGoogle Scholar
  14. 14.
    Ghosal S, Das S, Chakrabarti J (2013) Long noncoding RNAs: new players in the molecular mechanism for maintenance and differentiation of pluripotent stem cells. Stem Cells Dev 22:2240–2253.  https://doi.org/10.1089/scd.2013.0014 PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Horiuchi T, Aigaki T (2006) Alternative trans-splicing: a novel mode of pre-mRNA processing. Biol Cell 98:135–140.  https://doi.org/10.1042/BC20050002 PubMedCrossRefGoogle Scholar
  16. 16.
    Gingeras TR (2009) Implications of chimaeric non-co-linear transcripts. Nature 461:206–211.  https://doi.org/10.1038/nature08452 PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    Sutton RE, Boothroyd JC (1986) Evidence for trans splicing in trypanosomes. Cell 47:527–535PubMedCrossRefGoogle Scholar
  18. 18.
    Hastings KE (2005) SL trans-splicing: easy come or easy go? Trends Genet 21:240–247.  https://doi.org/10.1016/j.tig.2005.02.005 PubMedCrossRefGoogle Scholar
  19. 19.
    Nilsen TW (2001) Evolutionary origin of SL-addition trans-splicing: still an enigma. Trends Genet 17:678–680PubMedCrossRefGoogle Scholar
  20. 20.
    Krause M, Hirsh D (1987) A trans-spliced leader sequence on actin mRNA in C. elegans. Cell 49:753–761PubMedCrossRefGoogle Scholar
  21. 21.
    Nilsen TW (1993) Trans-splicing of nematode premessenger RNA. Annu Rev Microbiol 47:413–440.  https://doi.org/10.1146/annurev.mi.47.100193.002213 PubMedCrossRefGoogle Scholar
  22. 22.
    Zaslaver A, Baugh LR, Sternberg PW (2011) Metazoan operons accelerate recovery from growth-arrested states. Cell 145:981–992.  https://doi.org/10.1016/j.cell.2011.05.013 PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Dorn R, Reuter G, Loewendorf A (2001) Transgene analysis proves mRNA trans-splicing at the complex mod(mdg4) locus in Drosophila. Proc Natl Acad Sci USA 98:9724–9729.  https://doi.org/10.1073/pnas.151268698 PubMedCrossRefGoogle Scholar
  24. 24.
    Horiuchi T, Giniger E, Aigaki T (2003) Alternative trans-splicing of constant and variable exons of a Drosophila axon guidance gene, lola. Genes Dev 17:2496–2501.  https://doi.org/10.1101/gad.1137303 PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Li H, Wang J, Mor G, Sklar J (2008) A neoplastic gene fusion mimics trans-splicing of RNAs in normal human cells. Science 321:1357–1361.  https://doi.org/10.1126/science.1156725 PubMedCrossRefGoogle Scholar
  26. 26.
    Takahashi K, Yamanaka S (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126:663–676.  https://doi.org/10.1016/j.cell.2006.07.024 PubMedCrossRefGoogle Scholar
  27. 27.
    Dimos JT, Rodolfa KT, Niakan KK, Weisenthal LM, Mitsumoto H, Chung W, Croft GF, Saphier G, Leibel R, Goland R, Wichterle H, Henderson CE, Eggan K (2008) Induced pluripotent stem cells generated from patients with ALS can be differentiated into motor neurons. Science 321:1218–1221.  https://doi.org/10.1126/science.1158799 PubMedCrossRefGoogle Scholar
  28. 28.
    Nakagawa M, Koyanagi M, Tanabe K, Takahashi K, Ichisaka T, Aoi T, Okita K, Mochiduki Y, Takizawa N, Yamanaka S (2008) Generation of induced pluripotent stem cells without Myc from mouse and human fibroblasts. Nat Biotechnol 26:101–106.  https://doi.org/10.1038/nbt1374 PubMedCrossRefGoogle Scholar
  29. 29.
    Park IH, Lerou PH, Zhao R, Huo H, Daley GQ (2008) Generation of human-induced pluripotent stem cells. Nat Protoc 3:1180–1186.  https://doi.org/10.1038/nprot.2008.92 PubMedCrossRefGoogle Scholar
  30. 30.
    Zaret KS (2008) Genetic programming of liver and pancreas progenitors: lessons for stem-cell differentiation. Nat Rev Genet 9:329–340.  https://doi.org/10.1038/nrg2318 PubMedCrossRefGoogle Scholar
  31. 31.
    Boheler KR, Czyz J, Tweedie D, Yang HT, Anisimov SV, Wobus AM (2002) Differentiation of pluripotent embryonic stem cells into cardiomyocytes. Circ Res 91:189–201PubMedCrossRefGoogle Scholar
  32. 32.
    Zeng H, Guo M, Martins-Taylor K, Wang X, Zhang Z, Park JW, Zhan S, Kronenberg MS, Lichtler A, Liu HX, Chen FP, Yue L, Li XJ, Xu RH (2010) Specification of region-specific neurons including forebrain glutamatergic neurons from human induced pluripotent stem cells. PLoS One 5:e11853.  https://doi.org/10.1371/journal.pone.0011853 PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Xi J, Liu Y, Liu H, Chen H, Emborg ME, Zhang SC (2012) Specification of midbrain dopamine neurons from primate pluripotent stem cells. Stem Cells 30:1655–1663.  https://doi.org/10.1002/stem.1152 PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    David L, Polo JM (2014) Phases of reprogramming. Stem Cell Res 12:754–761.  https://doi.org/10.1016/j.scr.2014.03.007 PubMedCrossRefGoogle Scholar
  35. 35.
    Scholer HR, Hatzopoulos AK, Balling R, Suzuki N, Gruss P (1989) A family of octamer-specific proteins present during mouse embryogenesis: evidence for germline-specific expression of an Oct factor. EMBO J 8:2543–2550PubMedPubMedCentralGoogle Scholar
  36. 36.
    Mitsui K, Tokuzawa Y, Itoh H, Segawa K, Murakami M, Takahashi K, Maruyama M, Maeda M, Yamanaka S (2003) The homeoprotein Nanog is required for maintenance of pluripotency in mouse epiblast and ES cells. Cell 113:631–642PubMedCrossRefGoogle Scholar
  37. 37.
    Boyer LA, Lee TI, Cole MF, Johnstone SE, Levine SS, Zucker JP, Guenther MG, Kumar RM, Murray HL, Jenner RG, Gifford DK, Melton DA, Jaenisch R, Young RA (2005) Core transcriptional regulatory circuitry in human embryonic stem cells. Cell 122:947–956.  https://doi.org/10.1016/j.cell.2005.08.020 PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Avilion AA, Nicolis SK, Pevny LH, Perez L, Vivian N, Lovell-Badge R (2003) Multipotent cell lineages in early mouse development depend on SOX2 function. Genes Dev 17:126–140.  https://doi.org/10.1101/gad.224503 PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    Nichols J, Zevnik B, Anastassiadis K, Niwa H, Klewe-Nebenius D, Chambers I, Scholer H, Smith A (1998) Formation of pluripotent stem cells in the mammalian embryo depends on the POU transcription factor Oct4. Cell 95:379–391PubMedCrossRefGoogle Scholar
  40. 40.
    Silva J, Nichols J, Theunissen TW, Guo G, van Oosten AL, Barrandon O, Wray J, Yamanaka S, Chambers I, Smith A (2009) Nanog is the gateway to the pluripotent ground state. Cell 138:722–737.  https://doi.org/10.1016/j.cell.2009.07.039 PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Masui S, Nakatake Y, Toyooka Y, Shimosato D, Yagi R, Takahashi K, Okochi H, Okuda A, Matoba R, Sharov AA, Ko MS, Niwa H (2007) Pluripotency governed by Sox2 via regulation of Oct3/4 expression in mouse embryonic stem cells. Nat Cell Biol 9:625–635.  https://doi.org/10.1038/ncb1589 PubMedCrossRefGoogle Scholar
  42. 42.
    Zhao S, Nichols J, Smith AG, Li M (2004) SoxB transcription factors specify neuroectodermal lineage choice in ES cells. Mol Cell Neurosci 27:332–342.  https://doi.org/10.1016/j.mcn.2004.08.002 PubMedCrossRefGoogle Scholar
  43. 43.
    Niwa H, Miyazaki J, Smith AG (2000) Quantitative expression of Oct-3/4 defines differentiation, dedifferentiation or self-renewal of ES cells. Nat Genet 24:372–376.  https://doi.org/10.1038/74199 PubMedCrossRefGoogle Scholar
  44. 44.
    Hay DC, Sutherland L, Clark J, Burdon T (2004) Oct-4 knockdown induces similar patterns of endoderm and trophoblast differentiation markers in human and mouse embryonic stem cells. Stem Cells 22:225–235.  https://doi.org/10.1634/stemcells.22-2-225 PubMedCrossRefGoogle Scholar
  45. 45.
    Zafarana G, Avery SR, Avery K, Moore HD, Andrews PW (2009) Specific knockdown of OCT4 in human embryonic stem cells by inducible short hairpin RNA interference. Stem Cells 27:776–782.  https://doi.org/10.1002/stem.5 PubMedPubMedCentralCrossRefGoogle Scholar
  46. 46.
    Aksoy I, Jauch R, Chen J, Dyla M, Divakar U, Bogu GK, Teo R, Leng Ng CK, Herath W, Lili S, Hutchins AP, Robson P, Kolatkar PR, Stanton LW (2013) Oct4 switches partnering from Sox2 to Sox17 to reinterpret the enhancer code and specify endoderm. EMBO J 32:938–953.  https://doi.org/10.1038/emboj.2013.31 PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    Wang Z, Oron E, Nelson B, Razis S, Ivanova N (2012) Distinct lineage specification roles for NANOG, OCT4, and SOX2 in human embryonic stem cells. Cell Stem Cell 10:440–454.  https://doi.org/10.1016/j.stem.2012.02.016 PubMedCrossRefGoogle Scholar
  48. 48.
    Okumura-Nakanishi S, Saito M, Niwa H, Ishikawa F (2005) Oct-3/4 and Sox2 regulate Oct-3/4 gene in embryonic stem cells. J Biol Chem 280:5307–5317.  https://doi.org/10.1074/jbc.M410015200 PubMedCrossRefGoogle Scholar
  49. 49.
    Rodda DJ, Chew JL, Lim LH, Loh YH, Wang B, Ng HH, Robson P (2005) Transcriptional regulation of nanog by OCT4 and SOX2. J Biol Chem 280:24731–24737.  https://doi.org/10.1074/jbc.M502573200 PubMedCrossRefGoogle Scholar
  50. 50.
    Loh YH, Wu Q, Chew JL, Vega VB, Zhang W, Chen X, Bourque G, George J, Leong B, Liu J, Wong KY, Sung KW, Lee CW, Zhao XD, Chiu KP, Lipovich L, Kuznetsov VA, Robson P, Stanton LW, Wei CL, Ruan Y, Lim B, Ng HH (2006) The Oct4 and Nanog transcription network regulates pluripotency in mouse embryonic stem cells. Nat Genet 38:431–440.  https://doi.org/10.1038/ng1760 PubMedCrossRefGoogle Scholar
  51. 51.
    Kuroda T, Tada M, Kubota H, Kimura H, Hatano SY, Suemori H, Nakatsuji N, Tada T (2005) Octamer and Sox elements are required for transcriptional cis regulation of Nanog gene expression. Mol Cell Biol 25:2475–2485.  https://doi.org/10.1128/MCB.25.6.2475-2485.2005 PubMedPubMedCentralCrossRefGoogle Scholar
  52. 52.
    Chew JL, Loh YH, Zhang W, Chen X, Tam WL, Yeap LS, Li P, Ang YS, Lim B, Robson P, Ng HH (2005) Reciprocal transcriptional regulation of Pou5f1 and Sox2 via the Oct4/Sox2 complex in embryonic stem cells. Mol Cell Biol 25:6031–6046.  https://doi.org/10.1128/MCB.25.14.6031-6046.2005 PubMedPubMedCentralCrossRefGoogle Scholar
  53. 53.
    Niwa H, Burdon T, Chambers I, Smith A (1998) Self-renewal of pluripotent embryonic stem cells is mediated via activation of STAT3. Genes Dev 12:2048–2060PubMedPubMedCentralCrossRefGoogle Scholar
  54. 54.
    Ying QL, Nichols J, Chambers I, Smith A (2003) BMP induction of Id proteins suppresses differentiation and sustains embryonic stem cell self-renewal in collaboration with STAT3. Cell 115:281–292PubMedCrossRefGoogle Scholar
  55. 55.
    Vallier L, Alexander M, Pedersen RA (2005) Activin/Nodal and FGF pathways cooperate to maintain pluripotency of human embryonic stem cells. J Cell Sci 118:4495–4509.  https://doi.org/10.1242/jcs.02553 PubMedCrossRefGoogle Scholar
  56. 56.
    Shin M, Alev C, Wu Y, Nagai H, Sheng G (2011) Activin/TGF-beta signaling regulates Nanog expression in the epiblast during gastrulation. Mech Dev 128:268–278.  https://doi.org/10.1016/j.mod.2011.03.001 PubMedCrossRefGoogle Scholar
  57. 57.
    Xu RH, Sampsell-Barron TL, Gu F, Root S, Peck RM, Pan G, Yu J, Antosiewicz-Bourget J, Tian S, Stewart R, Thomson JA (2008) NANOG is a direct target of TGFbeta/activin-mediated SMAD signaling in human ESCs. Cell Stem Cell 3:196–206.  https://doi.org/10.1016/j.stem.2008.07.001 PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    Martin GR (1981) Isolation of a pluripotent cell line from early mouse embryos cultured in medium conditioned by teratocarcinoma stem cells. Proc Natl Acad Sci USA 78:7634–7638PubMedCrossRefGoogle Scholar
  59. 59.
    Tesar PJ, Chenoweth JG, Brook FA, Davies TJ, Evans EP, Mack DL, Gardner RL, McKay RD (2007) New cell lines from mouse epiblast share defining features with human embryonic stem cells. Nature 448:196–199.  https://doi.org/10.1038/nature05972 PubMedCrossRefGoogle Scholar
  60. 60.
    Evans MJ, Kaufman MH (1981) Establishment in culture of pluripotential cells from mouse embryos. Nature 292:154–156PubMedCrossRefGoogle Scholar
  61. 61.
    Brons IG, Smithers LE, Trotter MW, Rugg-Gunn P, Sun B, de Sousa Chuva, Lopes SM, Howlett SK, Clarkson A, Ahrlund-Richter L, Pedersen RA, Vallier L (2007) Derivation of pluripotent epiblast stem cells from mammalian embryos. Nature 448:191–195.  https://doi.org/10.1038/nature05950 PubMedCrossRefGoogle Scholar
  62. 62.
    Ludwig TE, Levenstein ME, Jones JM, Berggren WT, Mitchen ER, Frane JL, Crandall LJ, Daigh CA, Conard KR, Piekarczyk MS, Llanas RA, Thomson JA (2006) Derivation of human embryonic stem cells in defined conditions. Nat Biotechnol 24:185–187.  https://doi.org/10.1038/nbt1177 PubMedCrossRefGoogle Scholar
  63. 63.
    Candia AF, Watabe T, Hawley SH, Onichtchouk D, Zhang Y, Derynck R, Niehrs C, Cho KW (1997) Cellular interpretation of multiple TGF-beta signals: intracellular antagonism between activin/BVg1 and BMP-2/4 signaling mediated by Smads. Development 124:4467–4480PubMedGoogle Scholar
  64. 64.
    Singh AM, Reynolds D, Cliff T, Ohtsuka S, Mattheyses AL, Sun Y, Menendez L, Kulik M, Dalton S (2012) Signaling network crosstalk in human pluripotent cells: a Smad2/3-regulated switch that controls the balance between self-renewal and differentiation. Cell Stem Cell 10:312–326.  https://doi.org/10.1016/j.stem.2012.01.014 PubMedPubMedCentralCrossRefGoogle Scholar
  65. 65.
    McLean AB, D’Amour KA, Jones KL, Krishnamoorthy M, Kulik MJ, Reynolds DM, Sheppard AM, Liu H, Xu Y, Baetge EE, Dalton S (2007) Activin a efficiently specifies definitive endoderm from human embryonic stem cells only when phosphatidylinositol 3-kinase signaling is suppressed. Stem Cells 25:29–38.  https://doi.org/10.1634/stemcells.2006-0219 PubMedCrossRefGoogle Scholar
  66. 66.
    Avery S, Zafarana G, Gokhale PJ, Andrews PW (2010) The role of SMAD4 in human embryonic stem cell self-renewal and stem cell fate. Stem Cells 28:863–873.  https://doi.org/10.1002/stem.409 PubMedCrossRefGoogle Scholar
  67. 67.
    Kretzschmar M, Doody J, Massague J (1997) Opposing BMP and EGF signalling pathways converge on the TGF-beta family mediator Smad1. Nature 389:618–622.  https://doi.org/10.1038/39348 PubMedCrossRefGoogle Scholar
  68. 68.
    Bengoa-Vergniory N, Kypta RM (2015) Canonical and noncanonical Wnt signaling in neural stem/progenitor cells. Cell Mol Life Sci 72:4157–4172.  https://doi.org/10.1007/s00018-015-2028-6 PubMedCrossRefGoogle Scholar
  69. 69.
    ten Berge D, Kurek D, Blauwkamp T, Koole W, Maas A, Eroglu E, Siu RK, Nusse R (2011) Embryonic stem cells require Wnt proteins to prevent differentiation to epiblast stem cells. Nat Cell Biol 13:1070–1075.  https://doi.org/10.1038/ncb2314 PubMedPubMedCentralCrossRefGoogle Scholar
  70. 70.
    Sato N, Meijer L, Skaltsounis L, Greengard P, Brivanlou AH (2004) Maintenance of pluripotency in human and mouse embryonic stem cells through activation of Wnt signaling by a pharmacological GSK-3-specific inhibitor. Nat Med 10:55–63.  https://doi.org/10.1038/nm979 PubMedCrossRefGoogle Scholar
  71. 71.
    Bone HK, Nelson AS, Goldring CE, Tosh D, Welham MJ (2011) A novel chemically directed route for the generation of definitive endoderm from human embryonic stem cells based on inhibition of GSK-3. J Cell Sci 124:1992–2000.  https://doi.org/10.1242/jcs.081679 PubMedPubMedCentralCrossRefGoogle Scholar
  72. 72.
    Nakanishi M, Kurisaki A, Hayashi Y, Warashina M, Ishiura S, Kusuda-Furue M, Asashima M (2009) Directed induction of anterior and posterior primitive streak by Wnt from embryonic stem cells cultured in a chemically defined serum-free medium. FASEB J 23:114–122.  https://doi.org/10.1096/fj.08-111203 PubMedCrossRefGoogle Scholar
  73. 73.
    Ullmann U, Gilles C, De Rycke M, Van de Velde H, Sermon K, Liebaers I (2008) GSK-3-specific inhibitor-supplemented hESC medium prevents the epithelial-mesenchymal transition process and the up-regulation of matrix metalloproteinases in hESCs cultured in feeder-free conditions. Mol Hum Reprod 14:169–179.  https://doi.org/10.1093/molehr/gan001 PubMedCrossRefGoogle Scholar
  74. 74.
    Dravid G, Ye Z, Hammond H, Chen G, Pyle A, Donovan P, Yu X, Cheng L (2005) Defining the role of Wnt/beta-catenin signaling in the survival, proliferation, and self-renewal of human embryonic stem cells. Stem Cells 23:1489–1501.  https://doi.org/10.1634/stemcells.2005-0034 PubMedCrossRefGoogle Scholar
  75. 75.
    Cai L, Ye Z, Zhou BY, Mali P, Zhou C, Cheng L (2007) Promoting human embryonic stem cell renewal or differentiation by modulating Wnt signal and culture conditions. Cell Res 17:62–72.  https://doi.org/10.1038/sj.cr.7310138 PubMedCrossRefGoogle Scholar
  76. 76.
    Axelrod JD (2009) Progress and challenges in understanding planar cell polarity signaling. Semin Cell Dev Biol 20:964–971.  https://doi.org/10.1016/j.semcdb.2009.08.001 PubMedCrossRefGoogle Scholar
  77. 77.
    Kikuchi A, Yamamoto H, Sato A, Matsumoto S (2011) New insights into the mechanism of Wnt signaling pathway activation. Int Rev Cell Mol Biol 291:21–71.  https://doi.org/10.1016/B978-0-12-386035-4.00002-1 PubMedCrossRefGoogle Scholar
  78. 78.
    Simons M, Mlodzik M (2008) Planar cell polarity signaling: from fly development to human disease. Annu Rev Genet 42:517–540.  https://doi.org/10.1146/annurev.genet.42.110807.091432 PubMedPubMedCentralCrossRefGoogle Scholar
  79. 79.
    Niehrs C (2012) The complex world of WNT receptor signalling. Nat Rev Mol Cell Biol 13:767–779.  https://doi.org/10.1038/nrm3470 PubMedCrossRefGoogle Scholar
  80. 80.
    De A (2011) Wnt/Ca2+ signaling pathway: a brief overview. Acta Biochim Biophys Sin (Shanghai) 43:745–756.  https://doi.org/10.1093/abbs/gmr079 CrossRefGoogle Scholar
  81. 81.
    Penny GD, Kay GF, Sheardown SA, Rastan S, Brockdorff N (1996) Requirement for Xist in X chromosome inactivation. Nature 379:131–137.  https://doi.org/10.1038/379131a0 PubMedCrossRefGoogle Scholar
  82. 82.
    Bartolomei MS, Zemel S, Tilghman SM (1991) Parental imprinting of the mouse H19 gene. Nature 351:153–155.  https://doi.org/10.1038/351153a0 PubMedCrossRefGoogle Scholar
  83. 83.
    Ng SY, Johnson R, Stanton LW (2012) Human long non-coding RNAs promote pluripotency and neuronal differentiation by association with chromatin modifiers and transcription factors. EMBO J 31:522–533.  https://doi.org/10.1038/emboj.2011.459 PubMedCrossRefGoogle Scholar
  84. 84.
    Feng J, Bi C, Clark BS, Mady R, Shah P, Kohtz JD (2006) The Evf-2 noncoding RNA is transcribed from the Dlx-5/6 ultraconserved region and functions as a Dlx-2 transcriptional coactivator. Genes Dev 20:1470–1484.  https://doi.org/10.1101/gad.1416106 PubMedPubMedCentralCrossRefGoogle Scholar
  85. 85.
    Martianov I, Ramadass A, Serra Barros A, Chow N, Akoulitchev A (2007) Repression of the human dihydrofolate reductase gene by a non-coding interfering transcript. Nature 445:666–670.  https://doi.org/10.1038/nature05519 PubMedCrossRefGoogle Scholar
  86. 86.
    Willingham AT, Orth AP, Batalov S, Peters EC, Wen BG, Aza-Blanc P, Hogenesch JB, Schultz PG (2005) A strategy for probing the function of noncoding RNAs finds a repressor of NFAT. Science 309:1570–1573.  https://doi.org/10.1126/science.1115901 PubMedCrossRefGoogle Scholar
  87. 87.
    Mao YS, Sunwoo H, Zhang B, Spector DL (2011) Direct visualization of the co-transcriptional assembly of a nuclear body by noncoding RNAs. Nat Cell Biol 13:95–101.  https://doi.org/10.1038/ncb2140 PubMedCrossRefGoogle Scholar
  88. 88.
    Dinger ME, Amaral PP, Mercer TR, Pang KC, Bruce SJ, Gardiner BB, Askarian-Amiri ME, Ru K, Solda G, Simons C, Sunkin SM, Crowe ML, Grimmond SM, Perkins AC, Mattick JS (2008) Long noncoding RNAs in mouse embryonic stem cell pluripotency and differentiation. Genome Res 18:1433–1445.  https://doi.org/10.1101/gr.078378.108 PubMedPubMedCentralCrossRefGoogle Scholar
  89. 89.
    Sheik Mohamed J, Gaughwin PM, Lim B, Robson P, Lipovich L (2010) Conserved long noncoding RNAs transcriptionally regulated by Oct4 and Nanog modulate pluripotency in mouse embryonic stem cells. RNA 16:324–337.  https://doi.org/10.1261/rna.1441510 PubMedPubMedCentralCrossRefGoogle Scholar
  90. 90.
    Durruthy-Durruthy J, Sebastiano V, Wossidlo M, Cepeda D, Cui J, Grow EJ, Davila J, Mall M, Wong WH, Wysocka J, Au KF, Reijo Pera RA (2016) The primate-specific noncoding RNA HPAT5 regulates pluripotency during human preimplantation development and nuclear reprogramming. Nat Genet 48:44–52.  https://doi.org/10.1038/ng.3449 PubMedCrossRefGoogle Scholar
  91. 91.
    Xu C, Zhang Y, Wang Q, Xu Z, Jiang J, Gao Y, Gao M, Kang J, Wu M, Xiong J, Ji K, Yuan W, Wang Y, Liu H (2016) Long non-coding RNA GAS5 controls human embryonic stem cell self-renewal by maintaining NODAL signalling. Nat Commun 7:13287.  https://doi.org/10.1038/ncomms13287 PubMedPubMedCentralCrossRefGoogle Scholar
  92. 92.
    Lin N, Chang KY, Li Z, Gates K, Rana ZA, Dang J, Zhang D, Han T, Yang CS, Cunningham TJ, Head SR, Duester G, Dong PD, Rana TM (2014) An evolutionarily conserved long noncoding RNA TUNA controls pluripotency and neural lineage commitment. Mol Cell 53:1005–1019.  https://doi.org/10.1016/j.molcel.2014.01.021 PubMedPubMedCentralCrossRefGoogle Scholar
  93. 93.
    Yu CY, Kuo HC (2016) The trans-spliced long noncoding RNA tsRMST impedes human embryonic stem cell differentiation through WNT5A-mediated inhibition of the epithelial-to-mesenchymal transition. Stem Cells 34:2052–2062.  https://doi.org/10.1002/stem.2386 PubMedCrossRefGoogle Scholar
  94. 94.
    Wongtrakoongate P, Riddick G, Fucharoen S, Felsenfeld G (2015) Association of the long non-coding RNA steroid receptor RNA activator (SRA) with TrxG and PRC2 complexes. PLoS Genet 11:e1005615.  https://doi.org/10.1371/journal.pgen.1005615 PubMedPubMedCentralCrossRefGoogle Scholar
  95. 95.
    Deng C, Li Y, Zhou L, Cho J, Patel B, Terada N, Li Y, Bungert J, Qiu Y, Huang S (2016) HoxBlinc RNA recruits Set1/MLL complexes to activate hox gene expression patterns and mesoderm lineage development. Cell Rep 14:103–114.  https://doi.org/10.1016/j.celrep.2015.12.007 PubMedCrossRefGoogle Scholar
  96. 96.
    Bao X, Wu H, Zhu X, Guo X, Hutchins AP, Luo Z, Song H, Chen Y, Lai K, Yin M, Xu L, Zhou L, Chen J, Wang D, Qin B, Frampton J, Tse HF, Pei D, Wang H, Zhang B, Esteban MA (2015) The p53-induced lincRNA-p21 derails somatic cell reprogramming by sustaining H3K9me3 and CpG methylation at pluripotency gene promoters. Cell Res 25:80–92.  https://doi.org/10.1038/cr.2014.165 PubMedCrossRefGoogle Scholar
  97. 97.
    Flynn RA, Chang HY (2014) Long noncoding RNAs in cell-fate programming and reprogramming. Cell Stem Cell 14:752–761.  https://doi.org/10.1016/j.stem.2014.05.014 PubMedPubMedCentralCrossRefGoogle Scholar
  98. 98.
    Boothroyd JC, Cross GA (1982) Transcripts coding for variant surface glycoproteins of Trypanosoma brucei have a short, identical exon at their 5′ end. Gene 20:281–289PubMedCrossRefGoogle Scholar
  99. 99.
    De Lange T, Berkvens TM, Veerman HJ, Frasch AC, Barry JD, Borst P (1984) Comparison of the genes coding for the common 5′ terminal sequence of messenger RNAs in three trypanosome species. Nucleic Acids Res 12:4431–4443PubMedPubMedCentralCrossRefGoogle Scholar
  100. 100.
    Parsons M, Nelson RG, Watkins KP, Agabian N (1984) Trypanosome mRNAs share a common 5′ spliced leader sequence. Cell 38:309–316PubMedCrossRefGoogle Scholar
  101. 101.
    Bektesh S, Van Doren K, Hirsh D (1988) Presence of the Caenorhabditis elegans spliced leader on different mRNAs and in different genera of nematodes. Genes Dev 2:1277–1283PubMedCrossRefGoogle Scholar
  102. 102.
    Van Doren K, Hirsh D (1988) Trans-spliced leader RNA exists as small nuclear ribonucleoprotein particles in Caenorhabditis elegans. Nature 335:556–559.  https://doi.org/10.1038/335556a0 PubMedCrossRefGoogle Scholar
  103. 103.
    Solnick D (1985) Trans splicing of mRNA precursors. Cell 42:157–164PubMedCrossRefGoogle Scholar
  104. 104.
    Konarska MM, Padgett RA, Sharp PA (1985) Trans splicing of mRNA precursors in vitro. Cell 42:165–171PubMedCrossRefGoogle Scholar
  105. 105.
    Buchner K, Roth P, Schotta G, Krauss V, Saumweber H, Reuter G, Dorn R (2000) Genetic and molecular complexity of the position effect variegation modifier mod(mdg4) in Drosophila. Genetics 155:141–157PubMedPubMedCentralGoogle Scholar
  106. 106.
    Dorn R, Krauss V (2003) The modifier of mdg4 locus in Drosophila: functional complexity is resolved by trans splicing. Genetica 117:165–177PubMedCrossRefGoogle Scholar
  107. 107.
    Goeke S, Greene EA, Grant PK, Gates MA, Crowner D, Aigaki T, Giniger E (2003) Alternative splicing of lola generates 19 transcription factors controlling axon guidance in Drosophila. Nat Neurosci 6:917–924.  https://doi.org/10.1038/nn1105 PubMedCrossRefGoogle Scholar
  108. 108.
    Kong Y, Zhou H, Yu Y, Chen L, Hao P, Li X (2015) The evolutionary landscape of intergenic trans-splicing events in insects. Nat Commun 6:8734.  https://doi.org/10.1038/ncomms9734 PubMedPubMedCentralCrossRefGoogle Scholar
  109. 109.
    Li H, Wang J, Mor G, Sklar J (2008) A neoplastic gene fusion mimics trans-splicing of RNAs in normal human cells. Science 321:5Google Scholar
  110. 110.
    Schoenfelder S, Clay I, Fraser P (2010) The transcriptional interactome: gene expression in 3D. Curr Opin Genet Dev 20:127–133.  https://doi.org/10.1016/j.gde.2010.02.002 PubMedCrossRefGoogle Scholar
  111. 111.
    Kannan K, Wang L, Wang J, Ittmann MM, Li W, Yen L (2011) Recurrent chimeric RNAs enriched in human prostate cancer identified by deep sequencing. Proc Natl Acad Sci USA 108:9172–9177.  https://doi.org/10.1073/pnas.1100489108 PubMedCrossRefGoogle Scholar
  112. 112.
    Li N, Zheng J, Li H, Deng J, Hu M, Wu H, Li W, Li F, Lan X, Lu J, Zhou Y (2014) Identification of chimeric TSNAX–DISC1 resulting from intergenic splicing in endometrial carcinoma through high-throughput RNA sequencing. Carcinogenesis 35:2687–2697.  https://doi.org/10.1093/carcin/bgu201 PubMedCrossRefGoogle Scholar
  113. 113.
    Flouriot G, Brand H, Seraphin B, Gannon F (2002) Natural trans-spliced mRNAs are generated from the human estrogen receptor-alpha (hER alpha) gene. J Biol Chem 277:26244–26251.  https://doi.org/10.1074/jbc.M203513200 PubMedCrossRefGoogle Scholar
  114. 114.
    Takahara T, Kanazu SI, Yanagisawa S, Akanuma H (2000) Heterogeneous Sp1 mRNAs in human HepG2 cells include a product of homotypic trans-splicing. J Biol Chem 275:38067–38072.  https://doi.org/10.1074/jbc.M002010200 PubMedCrossRefGoogle Scholar
  115. 115.
    Chatterjee TK, Fisher RA (2000) Novel alternative splicing and nuclear localization of human RGS12 gene products. J Biol Chem 275:29660–29671.  https://doi.org/10.1074/jbc.M000330200 PubMedCrossRefGoogle Scholar
  116. 116.
    Linardic CM (2008) PAX3–FOXO1 fusion gene in rhabdomyosarcoma. Cancer Lett 270:10–18.  https://doi.org/10.1016/j.canlet.2008.03.035 PubMedPubMedCentralCrossRefGoogle Scholar
  117. 117.
    Yuan H, Qin F, Movassagh M, Park H, Golden W, Xie Z, Zhang P, Sklar J, Li H (2013) A chimeric RNA characteristic of rhabdomyosarcoma in normal myogenesis process. Cancer Discov 3:1394–1403.  https://doi.org/10.1158/2159-8290.CD-13-0186 PubMedCrossRefGoogle Scholar
  118. 118.
    Kawakami M, Ishikawa R, Amano Y, Sunohara M, Watanabe K, Ohishi N, Yatomi Y, Nakajima J, Fukayama M, Nagase T, Takai D (2013) Detection of novel paraja ring finger 2-fer tyrosine kinase mRNA chimeras is associated with poor postoperative prognosis in non-small cell lung cancer. Cancer Sci 104:1447–1454.  https://doi.org/10.1111/cas.12250 PubMedCrossRefGoogle Scholar
  119. 119.
    Fang W, Wei Y, Kang Y, Landweber LF (2012) Detection of a common chimeric transcript between human chromosomes 7 and 16. Biol Direct 7:49.  https://doi.org/10.1186/1745-6150-7-49 PubMedPubMedCentralCrossRefGoogle Scholar
  120. 120.
    Kowarz E, Merkens J, Karas M, Dingermann T, Marschalek R (2011) Premature transcript termination, trans-splicing and DNA repair: a vicious path to cancer. Am J Blood Res 1:1–12PubMedPubMedCentralGoogle Scholar
  121. 121.
    Finta C, Zaphiropoulos PG (2002) Intergenic mRNA molecules resulting from trans-splicing. J Biol Chem 277:5882–5890.  https://doi.org/10.1074/jbc.M109175200 PubMedCrossRefGoogle Scholar
  122. 122.
    Guerra E, Trerotola M, Dell’ Arciprete R, Bonasera V, Palombo B, El-Sewedy T, Ciccimarra T, Crescenzi C, Lorenzini F, Rossi C, Vacca G, Lattanzio R, Piantelli M, Alberti S (2008) A bicistronic CYCLIN D1-TROP2 mRNA chimera demonstrates a novel oncogenic mechanism in human cancer. Cancer Res 68:8113–8121.  https://doi.org/10.1158/0008-5472.CAN-07-6135 PubMedCrossRefGoogle Scholar
  123. 123.
    Brooks YS, Wang G, Yang Z, Smith KK, Bieberich E, Ko L (2009) Functional pre-mRNA trans-splicing of coactivator CoAA and corepressor RBM4 during stem/progenitor cell differentiation. J Biol Chem 284:18033–18046.  https://doi.org/10.1074/jbc.M109.006999 PubMedPubMedCentralCrossRefGoogle Scholar
  124. 124.
    Jehan Z, Vallinayagam S, Tiwari S, Pradhan S, Singh L, Suresh A, Reddy HM, Ahuja YR, Jesudasan RA (2007) Novel noncoding RNA from human Y distal heterochromatic block (Yq12) generates testis-specific chimeric CDC2L2. Genome Res 17:433–440.  https://doi.org/10.1101/gr.5155706 PubMedPubMedCentralCrossRefGoogle Scholar
  125. 125.
    Breen MA, Ashcroft SJ (1997) A truncated isoform of Ca2+/calmodulin-dependent protein kinase II expressed in human islets of Langerhans may result from trans-splicing. FEBS Lett 409:375–379PubMedCrossRefGoogle Scholar
  126. 126.
    Hu GJ, Chen J, Zhao XN, Xu JJ, Guo DQ, Lu M, Zhu M, Xiong Y, Li Q, Chang CC, Song BL, Chang TY, Li BL (2013) Production of ACAT1 56-kDa isoform in human cells via trans-splicing involving the ampicillin resistance gene. Cell Res 23:1007–1024.  https://doi.org/10.1038/cr.2013.86 PubMedPubMedCentralCrossRefGoogle Scholar
  127. 127.
    Yu C, Chen J, Lin S, Liu J, Chang CC, Chang TY (1999) Human acyl-CoA:cholesterol acyltransferase-1 is a homotetrameric enzyme in intact cells and in vitro. J Biol Chem 274:36139–36145PubMedCrossRefGoogle Scholar
  128. 128.
    Yang L, Lee O, Chen J, Chen J, Chang CC, Zhou P, Wang ZZ, Ma HH, Sha HF, Feng JX, Wang Y, Yang XY, Wang L, Dong R, Ornvold K, Li BL, Chang TY (2004) Human acyl-coenzyme A:cholesterol acyltransferase 1 (acat1) sequences located in two different chromosomes (7 and 1) are required to produce a novel ACAT1 isoenzyme with additional sequence at the N terminus. J Biol Chem 279:46253–46262.  https://doi.org/10.1074/jbc.M408155200 PubMedCrossRefGoogle Scholar
  129. 129.
    Chan AS, Thorner PS, Squire JA, Zielenska M (2002) Identification of a novel gene NCRMS on chromosome 12q21 with differential expression between rhabdomyosarcoma subtypes. Oncogene 21:3029–3037.  https://doi.org/10.1038/sj.onc.1205460 PubMedCrossRefGoogle Scholar
  130. 130.
    Uhde CW, Vives J, Jaeger I, Li M (2010) Rmst is a novel marker for the mouse ventral mesencephalic floor plate and the anterior dorsal midline cells. PLoS One 5:e8641.  https://doi.org/10.1371/journal.pone.0008641 PubMedPubMedCentralCrossRefGoogle Scholar
  131. 131.
    Ng SY, Bogu GK, Soh BS, Stanton LW (2013) The long noncoding RNA RMST interacts with SOX2 to regulate neurogenesis. Mol Cell 51:349–359.  https://doi.org/10.1016/j.molcel.2013.07.017 PubMedCrossRefGoogle Scholar
  132. 132.
    Kong L, Zhang Y, Ye ZQ, Liu XQ, Zhao SQ, Wei L, Gao G (2007) CPC: assess the protein-coding potential of transcripts using sequence features and support vector machine. Nucleic Acids Res 35:W345–W349.  https://doi.org/10.1093/nar/gkm391 PubMedPubMedCentralCrossRefGoogle Scholar
  133. 133.
    Conn SJ, Pillman KA, Toubia J, Conn VM, Salmanidis M, Phillips CA, Roslan S, Schreiber AW, Gregory PA, Goodall GJ (2015) The RNA binding protein quaking regulates formation of circRNAs. Cell 160:1125–1134.  https://doi.org/10.1016/j.cell.2015.02.014 PubMedCrossRefGoogle Scholar
  134. 134.
    Ashwal-Fluss R, Meyer M, Pamudurti NR, Ivanov A, Bartok O, Hanan M, Evantal N, Memczak S, Rajewsky N, Kadener S (2014) circRNA biogenesis competes with pre-mRNA splicing. Mol Cell 56:55–66.  https://doi.org/10.1016/j.molcel.2014.08.019 PubMedCrossRefGoogle Scholar
  135. 135.
    Jeck WR, Sorrentino JA, Wang K, Slevin MK, Burd CE, Liu J, Marzluff WF, Sharpless NE (2013) Circular RNAs are abundant, conserved, and associated with ALU repeats. RNA 19:141–157.  https://doi.org/10.1261/rna.035667.112 PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Chun-Ying Yu
    • 1
  • Ching-Yu Chuang
    • 2
  • Hung-Chih Kuo
    • 1
    • 2
    • 3
  1. 1.Institute of Cellular and Organismic BiologyAcademia SinicaTaipeiTaiwan
  2. 2.Genomics Research CenterAcademia SinicaTaipeiTaiwan
  3. 3.College of Medicine, Graduate Institute of Medical Genomics and ProteomicsNational Taiwan UniversityTaipeiTaiwan

Personalised recommendations