Advertisement

Cellular and Molecular Life Sciences

, Volume 75, Issue 21, pp 4021–4040 | Cite as

Megalin mediates plasma membrane to mitochondria cross-talk and regulates mitochondrial metabolism

  • Qingtian Li
  • Fan Lei
  • Yi Tang
  • Jenny Szu-Chin Pan
  • Qiang Tong
  • Yuxiang Sun
  • David Sheikh-HamadEmail author
Original Article

Abstract

Mitochondrial intracrines are extracellular signaling proteins, targeted to the mitochondria. The pathway for mitochondrial targeting of mitochondrial intracrines and actions in the mitochondria remains unknown. Megalin/LRP2 mediates the uptake of vitamins and proteins, and is critical for clearance of amyloid-β protein from the brain. Megalin mutations underlie the pathogenesis of Donnai–Barrow and Lowe syndromes, characterized by brain defects and kidney dysfunction; megalin was not previously known to reside in the mitochondria. Here, we show megalin is present in the mitochondria and associates with mitochondrial anti-oxidant proteins SIRT3 and stanniocalcin-1 (STC1). Megalin shuttles extracellularly-applied STC1, angiotensin II and TGF-β to the mitochondria through the retrograde early endosome-to-Golgi transport pathway and Rab32. Megalin knockout in cultured cells impairs glycolytic and respiratory capacities. Thus, megalin is critical for mitochondrial biology; mitochondrial intracrine signaling is a continuum of the retrograde early endosome-to-Golgi-Rab32 pathway and defects in this pathway may underlie disease processes in many systems.

Keywords

Proteinuria ApoE Vitamin D OCRL1 PIKfyve Sonic hedgehog 

Abbreviations

STC1

Stanniocalcin-1

KO

Knockout

AMPK

AMP-activated kinase

megalin/Lrp2

Low-density lipoprotein-related protein-2

UCP

Uncoupling protein

Sirt3

Sirtuin 3

PT

Proximal tubule

TKPTS

Mouse proximal tubule cells

HEK293T

Human embryonic kidney

Raw264.7

Murine macrophage-like

C2C12

Murine muscle

CRISPR

Clustered regularly-interspaced short palindromic repeats

Cas9

CRISPR-associated protein 9

Golgi 97

Golgi-associated protein 97

FLAG

DYKDDDDK epitope tag

Mito-Red

Red-fluorescent dye

RAB7

Rab GTPase 7 regulates late endocytic trafficking downstream of multivesicular body

CID1067700

An inhibitor of Rab7

E-64D

Lysosome inhibitor

ROS

Reactive oxygen species

OCRL1

Inositol polyphosphate 5-phosphatase

NAD

Nicotinamide adenine dinucleotide

PIKfyve

Fyve-type zinc finger-containing phosphoinositide kinase

YM201636

PIKfyve inhibitor

PtdIns3P

Phosphatidylinositol 3-phosphate

OCR

Oxygen consumption rate

ECAR

Extracellular acidification rate

LHRH

Luteinizing hormone-releasing hormone

TRH

Thyrotropin-releasing hormone

IGF-1

Insulin-like growth factor-1

IL-33

Interleukin-33

INF-α and -γ

Interferon-α and -γ

PLA2-I

Phospholipase A2

VIP

Vasoactive intestinal peptide

ANP

Atrial natriuretic peptide

Wnt 13

Wingless/integrated 13

AT1

Angiotensin II type 1

GLUT4

Glucose transporter 4

Atg9

Autophagy-related protein 9

EGFR

Epidermal growth factor receptor

FCCP

Carbonyl cyanide-4-(trifluoromethoxy)phenylhydrazone

HSP60

Heat shock protein 60

Vdac1

Voltage-dependent anion-selective channel 1

VPS

Vacuolar protein sorting

IHC

Immunohistochemistry

Mia40/Erv1

Disulfide relay system that drives the import of cysteine-rich proteins into the inter-mitochondrial space

Mitoblock-6

An inhibitor of Mia40/Erv1

TOM40

Subunit of the mitochondrial outer membrane translocase

Rab32

Ras-related protein, anchors the regulatory subunit of protein kinase A to the mitochondria

Notes

Acknowledgements

This work was supported by Grants from: The Veteran Administration (BX002006 and IK2 BX002912); National Institute of Diabetes and Digestive and Kidney Diseases at the National Institutes of Health (R01 DK080306); USDA CRIS 3092-5-001-059, and a generous gift from Dr. and Mrs. Harold Selzman. This project was also supported by the Pathology and Histology Core at Baylor College of Medicine, with funding from the NIH (NCI P30-CA125123), and the expert assistance of Michael Ittmann, M.D., Ph.D. We thank Dr. Stuart Dryer for critical reading of the manuscript. Imaging for this project was supported by the Integrated Microscopy Core at Baylor College of Medicine with funding from NIH (DK56338, and CA125123), CPRIT (RP150578), the Dan L. Duncan Comprehensive Cancer Center, and the John S. Dunn Gulf Coast Consortium for Chemical Genomics.

Author contributions

QL: design, cloning, carried out experiments, prepared figures and edited manuscript; LF: carried out experiments; YT: carried out experiments; JSCP: carried out experiments and edited manuscript; QT: generation of SIRT3 plasmids; YS: design and edited manuscript; DSH: conception, design, manuscript writing and figures preparation, communication.

Compliance with ethical standards

Conflict of interest

No financial interests to disclose.

Supplementary material

18_2018_2847_MOESM1_ESM.docx (1.9 mb)
Supplementary material 1 (DOCX 1903 kb)

References

  1. 1.
    Nunnari J, Suomalainen A (2012) Mitochondria: in sickness and in health. Cell 148:1145–1159CrossRefGoogle Scholar
  2. 2.
    Re RN, Cook JL (2010) The mitochondrial component of intracrine action. Am J Physiol Heart Circ Physiol 299:H577–H583CrossRefGoogle Scholar
  3. 3.
    Nielsen R, Christensen EI, Birn H (2016) Megalin and cubilin in proximal tubule protein reabsorption: from experimental models to human disease. Kidney Int 89:58–67CrossRefGoogle Scholar
  4. 4.
    Marzolo MP, Farfan P (2011) New insights into the roles of megalin/LRP2 and the regulation of its functional expression. Biol Res 44:89–105CrossRefGoogle Scholar
  5. 5.
    Birn H, Verroust PJ, Nexo E, Hager H, Jacobsen C, Christensen EI, Moestrup SK (1997) Characterization of an epithelial approximately 460-kDa protein that facilitates endocytosis of intrinsic factor-vitamin B12 and binds receptor-associated protein. J Biol Chem 272:26497–26504CrossRefGoogle Scholar
  6. 6.
    Kantarci S, Al-Gazali L, Hill RS, Donnai D, Black GC, Bieth E, Chassaing N, Lacombe D, Devriendt K, Teebi A, Loscertales M, Robson C, Liu T, MacLaughlin DT, Noonan KM, Russell MK, Walsh CA, Donahoe PK, Pober BR (2007) Mutations in LRP2, which encodes the multiligand receptor megalin, cause Donnai–Barrow and facio-oculo-acoustico-renal syndromes. Nat Genet 39:957–959CrossRefGoogle Scholar
  7. 7.
    Storm T, Tranebjaerg L, Frykholm C, Birn H, Verroust PJ, Neveus T, Sundelin B, Hertz JM, Holmstrom G, Ericson K, Christensen EI, Nielsen R (2013) Renal phenotypic investigations of megalin-deficient patients: novel insights into tubular proteinuria and albumin filtration. Nephrol Dial Transplant 28:585–591CrossRefGoogle Scholar
  8. 8.
    Pober BR, Longoni M, Noonan KM (2009) A review of Donnai–Barrow and facio-oculo-acoustico-renal (DB/FOAR) syndrome: clinical features and differential diagnosis. Birth Defects Res A Clin Mol Teratol 85:76–81CrossRefGoogle Scholar
  9. 9.
    Hou X, Hagemann N, Schoebel S, Blankenfeldt W, Goody RS, Erdmann KS, Itzen A (2011) A structural basis for Lowe syndrome caused by mutations in the Rab-binding domain of OCRL1. EMBO J 30:1659–1670CrossRefGoogle Scholar
  10. 10.
    Choudhury R, Diao A, Zhang F, Eisenberg E, Saint-Pol A, Williams C, Konstantakopoulos A, Lucocq J, Johannes L, Rabouille C, Greene LE, Lowe M (2005) Lowe syndrome protein OCRL1 interacts with clathrin and regulates protein trafficking between endosomes and the trans-Golgi network. Mol Biol Cell 16:3467–3479CrossRefGoogle Scholar
  11. 11.
    Willnow TE, Hilpert J, Armstrong SA, Rohlmann A, Hammer RE, Burns DK, Herz J (1996) Defective forebrain development in mice lacking gp330/megalin. Proc Natl Acad Sci USA 93:8460–8464CrossRefGoogle Scholar
  12. 12.
    Kur E, Mecklenburg N, Cabrera RM, Willnow TE, Hammes A (2014) LRP2 mediates folate uptake in the developing neural tube. J Cell Sci 127:2261–2268CrossRefGoogle Scholar
  13. 13.
    Spoelgen R, Hammes A, Anzenberger U, Zechner D, Andersen OM, Jerchow B, Willnow TE (2005) LRP2/megalin is required for patterning of the ventral telencephalon. Development 132:405–414CrossRefGoogle Scholar
  14. 14.
    Gonzalez-Villalobos R, Klassen RB, Allen PL, Navar LG, Hammond TG (2005) Megalin binds and internalizes angiotensin II. Am J Physiol Ren Physiol 288:F420–F427CrossRefGoogle Scholar
  15. 15.
    Gonzalez-Villalobos R, Klassen RB, Allen PL, Johanson K, Baker CB, Kobori H, Navar LG, Hammond TG (2006) Megalin binds and internalizes angiotensin-(1-7). Am J Physiol Ren Physiol 290:F1270–F1275CrossRefGoogle Scholar
  16. 16.
    Li XC, Zhuo JL (2014) Mechanisms of AT1a receptor-mediated uptake of angiotensin II by proximal tubule cells: a novel role of the multiligand endocytic receptor megalin. Am J Physiol Ren Physiol 307:F222–F233CrossRefGoogle Scholar
  17. 17.
    Pohl M, Kaminski H, Castrop H, Bader M, Himmerkus N, Bleich M, Bachmann S, Theilig F (2010) Intrarenal renin angiotensin system revisited: role of megalin-dependent endocytosis along the proximal nephron. J Biol Chem 285:41935–41946CrossRefGoogle Scholar
  18. 18.
    Leheste JR, Melsen F, Wellner M, Jansen P, Schlichting U, Renner-Muller I, Andreassen TT, Wolf E, Bachmann S, Nykjaer A, Willnow TE (2003) Hypocalcemia and osteopathy in mice with kidney-specific megalin gene defect. FASEB J 17:247–249CrossRefGoogle Scholar
  19. 19.
    Klassen RB, Crenshaw K, Kozyraki R, Verroust PJ, Tio L, Atrian S, Allen PL, Hammond TG (2004) Megalin mediates renal uptake of heavy metal metallothionein complexes. Am J Physiol Ren Physiol 287:F393–F403CrossRefGoogle Scholar
  20. 20.
    Shaw G, Morse S, Ararat M, Graham FL (2002) Preferential transformation of human neuronal cells by human adenoviruses and the origin of HEK 293 cells. FASEB J 16:869–871CrossRefGoogle Scholar
  21. 21.
    Lin YC, Boone M, Meuris L, Lemmens I, Van RN, Soete A, Reumers J, Moisse M, Plaisance S, Drmanac R, Chen J, Speleman F, Lambrechts D, Van de Peer Y, Tavernier J, Callewaert N (2014) Genome dynamics of the human embryonic kidney 293 lineage in response to cell biology manipulations. Nat Commun 5:4767CrossRefGoogle Scholar
  22. 22.
    Cooper HM, Spelbrink JN (2008) The human SIRT3 protein deacetylase is exclusively mitochondrial. Biochem J 411:279–285CrossRefGoogle Scholar
  23. 23.
    Schwer B, North BJ, Frye RA, Ott M, Verdin E (2002) The human silent information regulator (Sir)2 homologue hSIRT3 is a mitochondrial nicotinamide adenine dinucleotide-dependent deacetylase. J Cell Biol 158:647–657CrossRefGoogle Scholar
  24. 24.
    Bause AS, Haigis MC (2013) SIRT3 regulation of mitochondrial oxidative stress. Exp Gerontol 48:634–639CrossRefGoogle Scholar
  25. 25.
    McCudden CR, James KA, Hasilo C, Wagner GF (2002) Characterization of mammalian stanniocalcin receptors mitochondrial targeting of ligand and receptor for regulation of cellular metabolism. J Biol Chem 277:45249–45258CrossRefGoogle Scholar
  26. 26.
    Pan JS, Huang L, Belousova T, Lu L, Yang Y, Reddel R, Chang A, Ju H, Dimattia G, Tong Q, Sheikh-Hamad D (2015) Stanniocalcin-1 inhibits renal ischemia/reperfusion injury via an AMP-activated protein kinase-dependent pathway. J Am Soc Nephrol 26:364–378CrossRefGoogle Scholar
  27. 27.
    Huang L, Belousova T, Pan JS, Du J, Ju H, Lu L, Zhang P, Truong LD, Nuotio-Antar A, Sheikh-Hamad D (2014) AKI after conditional and kidney-specific knockdown of stanniocalcin-1. J Am Soc Nephrol 25(10):2303–2315CrossRefGoogle Scholar
  28. 28.
    Varghese R, Gagliardi AD, Bialek PE, Yee SP, Wagner GF, DiMattia GE (2002) Overexpression of human stanniocalcin affects growth and reproduction in transgenic mice. Endocrinology 143:868–876CrossRefGoogle Scholar
  29. 29.
    Huang L, Belousova T, Chen M, Dimattia G, Liu D, Sheikh-Hamad D (2012) Overexpression of stanniocalcin-1 inhibits reactive oxygen species and renal ischemia/reperfusion injury in mice. Kidney Int 82(8):867–877CrossRefGoogle Scholar
  30. 30.
    Brand MD, Esteves TC (2005) Physiological functions of the mitochondrial uncoupling proteins UCP2 and UCP3. Cell Metab 2:85–93CrossRefGoogle Scholar
  31. 31.
    Yang Y, Hubbard BP, Sinclair DA, Tong Q (2010) Characterization of murine SIRT3 transcript variants and corresponding protein products. J Cell Biochem 111:1051–1058CrossRefGoogle Scholar
  32. 32.
    Yang Y, Chen KY, Tong Q (2011) Murine Sirt3 protein isoforms have variable half-lives. Gene 488:46–51CrossRefGoogle Scholar
  33. 33.
    Jin L, Galonek H, Israelian K, Choy W, Morrison M, Xia Y, Wang X, Xu Y, Yang Y, Smith JJ, Hoffmann E, Carney DP, Perni RB, Jirousek MR, Bemis JE, Milne JC, Sinclair DA, Westphal CH (2009) Biochemical characterization, localization, and tissue distribution of the longer form of mouse SIRT3. Protein Sci 18:514–525CrossRefGoogle Scholar
  34. 34.
    Heine UI, Burmester JK, Flanders KC, Danielpour D, Munoz EF, Roberts AB, Sporn MB (1991) Localization of transforming growth factor-beta 1 in mitochondria of murine heart and liver. Cell Regul 2:467–477CrossRefGoogle Scholar
  35. 35.
    Abadir PM, Foster DB, Crow M, Cooke CA, Rucker JJ, Jain A, Smith BJ, Burks TN, Cohn RD, Fedarko NS, Carey RM, O’Rourke B, Walston JD (2011) Identification and characterization of a functional mitochondrial angiotensin system. Proc Natl Acad Sci USA 108:14849–14854CrossRefGoogle Scholar
  36. 36.
    Bucci C, Thomsen P, Nicoziani P, McCarthy J, van Deurs B (2000) Rab7: a key to lysosome biogenesis. Mol Biol Cell 11:467–480CrossRefGoogle Scholar
  37. 37.
    Wassmer T, Attar N, Harterink M, van Weering JR, Traer CJ, Oakley J, Goud B, Stephens DJ, Verkade P, Korswagen HC, Cullen PJ (2009) The retromer coat complex coordinates endosomal sorting and dynein-mediated transport, with carrier recognition by the trans-Golgi network. Dev Cell 17:110–122CrossRefGoogle Scholar
  38. 38.
    Bu G, Schwartz AL (1998) RAP, a novel type of ER chaperone. Trends Cell Biol 8:272–276CrossRefGoogle Scholar
  39. 39.
    Rutherford AC, Traer C, Wassmer T, Pattni K, Bujny MV, Carlton JG, Stenmark H, Cullen PJ (2006) The mammalian phosphatidylinositol 3-phosphate 5-kinase (PIKfyve) regulates endosome-to-TGN retrograde transport. J Cell Sci 119:3944–3957CrossRefGoogle Scholar
  40. 40.
    Kost TA, Condreay JP, Jarvis DL (2005) Baculovirus as versatile vectors for protein expression in insect and mammalian cells. Nat Biotechnol 23:567–575CrossRefGoogle Scholar
  41. 41.
    Kaneko H, Suzuki H, Abe T, Miyano-Kurosaki N, Takaku H (2006) Inhibition of HIV-1 replication by vesicular stomatitis virus envelope glycoprotein pseudotyped baculovirus vector-transduced ribozyme in mammalian cells. Biochem Biophys Res Commun 349:1220–1227CrossRefGoogle Scholar
  42. 42.
    Zeng J, Du J, Lin J, Bak XY, Wu C, Wang S (2009) High-efficiency transient transduction of human embryonic stem cell-derived neurons with baculoviral vectors. Mol Ther 17:1585–1593CrossRefGoogle Scholar
  43. 43.
    Dabir DV, Hasson SA, Setoguchi K, Johnson ME, Wongkongkathep P, Douglas CJ, Zimmerman J, Damoiseaux R, Teitell MA, Koehler CM (2013) A small molecule inhibitor of redox-regulated protein translocation into mitochondria. Dev Cell 25:81–92CrossRefGoogle Scholar
  44. 44.
    Arasaki K, Shimizu H, Mogari H, Nishida N, Hirota N, Furuno A, Kudo Y, Baba M, Baba N, Cheng J, Fujimoto T, Ishihara N, Ortiz-Sandoval C, Barlow LD, Raturi A, Dohmae N, Wakana Y, Inoue H, Tani K, Dacks JB, Simmen T, Tagaya M (2015) A role for the ancient SNARE syntaxin 17 in regulating mitochondrial division. Dev Cell 32:304–317CrossRefGoogle Scholar
  45. 45.
    Ortiz-Sandoval CG, Hughes SC, Dacks JB, Simmen T (2014) Interaction with the effector dynamin-related protein 1 (Drp1) is an ancient function of Rab32 subfamily proteins. Cell Logist 4:e986399CrossRefGoogle Scholar
  46. 46.
    Waschbusch D, Michels H, Strassheim S, Ossendorf E, Kessler D, Gloeckner CJ, Barnekow A (2014) LRRK2 transport is regulated by its novel interacting partner Rab32. PLoS One 9:e111632CrossRefGoogle Scholar
  47. 47.
    Wasmeier C, Romao M, Plowright L, Bennett DC, Raposo G, Seabra MC (2006) Rab38 and Rab32 control post-Golgi trafficking of melanogenic enzymes. J Cell Biol 175:271–281CrossRefGoogle Scholar
  48. 48.
    Oh JY, Ko JH, Lee HJ, Yu JM, Choi H, Kim MK, Wee WR, Prockop DJ (2014) Mesenchymal stem/stromal cells inhibit the NLRP3 inflammasome by decreasing mitochondrial reactive oxygen species. Stem Cells 32:1553–1563CrossRefGoogle Scholar
  49. 49.
    Mohammadipoor A, Lee RH, Prockop DJ, Bartosh TJ (2016) Stanniocalcin-1 attenuates ischemic cardiac injury and response of differentiating monocytes/macrophages to inflammatory stimuli. Transl Res 117:127–142CrossRefGoogle Scholar
  50. 50.
    Roddy GW, Rosa JR Jr, Youn OJ, Ylostalo JH, Bartosh TJ Jr, Choi H, Lee RH, Yasumura D, Ahern K, Nielsen G, Matthes MT, Lavail MM, Prockop DJ (2012) Stanniocalcin-1 rescued photoreceptor degeneration in two rat models of inherited retinal degeneration. Mol Ther 20(4):788–797CrossRefGoogle Scholar
  51. 51.
    Westberg JA, Serlachius M, Lankila P, Andersson LC (2007) Hypoxic preconditioning induces elevated expression of stanniocalcin-1 in the heart. Am J Physiol Heart Circ Physiol 293:H1766–H1771CrossRefGoogle Scholar
  52. 52.
    Westberg JA, Serlachius M, Lankila P, Penkowa M, Hidalgo J, Andersson LC (2007) Hypoxic preconditioning induces neuroprotective stanniocalcin-1 in brain via IL-6 signaling. Stroke 38:1025–1030CrossRefGoogle Scholar
  53. 53.
    Huang L, Zhang L, Ju H, Li Q, Pan JS, Al-Lawati Z, Sheikh-Hamad D (2015) Stanniocalcin-1 inhibits thrombin-induced signaling and protects from bleomycin-induced lung injury. Sci Rep 5:18117CrossRefGoogle Scholar
  54. 54.
    Liu D, Huang L, Wang Y, Wang W, Wehrens XH, Belousova T, Abdelrahim M, Dimattia G, Sheikh-Hamad D (2012) Human stanniocalcin-1 suppresses angiotensin II-induced superoxide generation in cardiomyocytes through UCP3-mediated anti-oxidant pathway. PLoS One 7:e36994CrossRefGoogle Scholar
  55. 55.
    Inagami T (2011) Mitochondrial angiotensin receptors and aging. Circ Res 109:1323–1324CrossRefGoogle Scholar
  56. 56.
    Casalena G, Daehn I, Bottinger E (2012) Transforming growth factor-beta, bioenergetics, and mitochondria in renal disease. Semin Nephrol 32:295–303CrossRefGoogle Scholar
  57. 57.
    Johannes L, Popoff V (2008) Tracing the retrograde route in protein trafficking. Cell 135:1175–1187CrossRefGoogle Scholar
  58. 58.
    Christensen EI, Birn H (2002) Megalin and cubilin: multifunctional endocytic receptors. Nat Rev Mol Cell Biol 3:256–266CrossRefGoogle Scholar
  59. 59.
    Perez Bay AE, Schreiner R, Benedicto I, Paz MM, Banfelder J, Weinstein AM, Rodriguez-Boulan EJ (2016) The fast-recycling receptor megalin defines the apical recycling pathway of epithelial cells. Nat Commun 7:11550CrossRefGoogle Scholar
  60. 60.
    Rice WL, Van Hoek AN, Paunescu TG, Huynh C, Goetze B, Singh B, Scipioni L, Stern LA, Brown D (2013) High resolution helium ion scanning microscopy of the rat kidney. PLoS One 8:e57051CrossRefGoogle Scholar
  61. 61.
    Vedovelli L, Rothermel JT, Finberg KE, Wagner CA, Azroyan A, Hill E, Breton S, Brown D, Paunescu TG (2013) Altered V-ATPase expression in renal intercalated cells isolated from B1 subunit-deficient mice by fluorescence-activated cell sorting. Am J Physiol Ren Physiol 304:F522–F532CrossRefGoogle Scholar
  62. 62.
    Saito N, Konishi K, Takeda H, Kato M, Sugiyama T, Asaka M (2003) Antigen retrieval trial for post-embedding immunoelectron microscopy by heating with several unmasking solutions. J Histochem Cytochem 51:989–994CrossRefGoogle Scholar

Copyright information

© This is a U.S. Government work and not under copyright protection in the US; foreign copyright protection may apply 2018

Authors and Affiliations

  1. 1.Division of Nephrology, Department of Medicine, Selzman Institute for Kidney HealthBaylor College of MedicineHoustonUSA
  2. 2.Renmin Hospital of Wuhan UniversityWuhanPeople’s Republic of China
  3. 3.West China Medical Center of Sichuan UniversityChengduPeople’s Republic of China
  4. 4.Children’s Nutrition Research CenterBaylor College of MedicineHoustonUSA
  5. 5.Department of Nutrition and Food Science (NFSC)Texas A&M UniversityCollege StationUSA

Personalised recommendations