Cellular and Molecular Life Sciences

, Volume 75, Issue 21, pp 3991–4005 | Cite as

Maternal eating behavior is a major synchronizer of fetal and postnatal peripheral clocks in mice

  • Laurence CanapleEmail author
  • Aline Gréchez-Cassiau
  • Franck Delaunay
  • Ouria Dkhissi-Benyahya
  • Jacques SamarutEmail author
Original Article


Most living organisms show circadian rhythms in physiology and behavior. These oscillations are generated by endogenous circadian clocks, present in virtually all cells where they control key biological processes. To study peripheral clocks in vivo, we developed an original model, the Rev-Luc mouse to follow noninvasively and longitudinally Rev-Luc oscillations in peripheral clocks using in vivo bioluminescence imaging. We found in vitro and in vivo a robust diurnal rhythm of Rev-Luc, mainly in liver, intestine, kidney and adipose tissues. We further confirmed in vivo that Rev-Luc peripheral tissues are food-entrainable oscillators, not affected by age or sex. These data strongly support the relevance of the Rev-Luc model for circadian studies, especially to investigate in vivo the establishment and the entrainment of the rhythm throughout ontogenesis. We then showed that Rev-Luc expression develops dynamically and gradually, both in amplitude and in phase, during fetal and postnatal development. We also demonstrate for the first time that the immature peripheral circadian system of offspring in utero is mainly entrained by maternal cues from feeding regimen. The prenatal entrainment will also differentially determine the Rev-Luc expression in pups before weaning underlining the importance of the maternal chrononutrition on the circadian system entrainment of the offspring.


Rev-erbα Bioluminescent imaging In utero Ontogenesis Feeding cues Circadian clock 



We acknowledge the contribution of the SFR Biosciences UMS3444 animal facility PBES. We gratefully thank N. Aguilera and C. Coutanson for their technical assistance and K. Gauthier for her manuscript comments. This work was supported by the European Commission Grants FP6 CRESCENDO LSHM-CT-2005-01865 (JS, FD); the Agence Nationale de la Recherche; CHRONOMET Project ANR-12-BSV1-0014-01 (FD) and LABEX SIGNALIFE program ANR-11-LABX-0028-01 (FD).

Author contributions

LC designed, performed and analyzed all the experiments. AGC and FD designed the vector and performed the experiment (Fig. 1b). ODB performed the experiment (Fig. 1e) and the cosinor analyses. JS supervised the work. LC, ODB and JS wrote the manuscript.

Compliance with ethical standards

Conflict of interest

The authors declare no competing financial interests.

Supplementary material

18_2018_2845_MOESM1_ESM.pptx (4.9 mb)
Supplementary material 1 (PPTX 5019 kb)


  1. 1.
    Reppert SM, Weaver DR (2002) Coordination of circadian timing in mammals. Nature 418(901):935–941CrossRefGoogle Scholar
  2. 2.
    Takahashi JS, Hong H-K, Ko CH, McDearmon EL (2008) The genetics of mammalian circadian order and disorder: implications for physiology and disease. Nat Rev Genet 9(10):764–775CrossRefGoogle Scholar
  3. 3.
    Damiola F, Le Minh N, Preitner N, Kornmann B, Fleury-Olela F, Schibler U (2000) Restricted feeding uncouples circadian oscillators in peripheral tissues from the central pacemaker in the suprachiasmatic nucleus. Genes Dev 14(23):2950–2961CrossRefGoogle Scholar
  4. 4.
    Stokkan KA, Yamazaki S, Tei H, Sakaki Y, Menaker M (2001) Entrainment of the circadian clock in the liver by feeding. Science 291(5503):490–493CrossRefGoogle Scholar
  5. 5.
    Le Minh N, Damiola F, Tronche F, Schütz G, Schibler U (2001) Glucocorticoid hormones inhibit food-induced phase-shifting of peripheral circadian oscillators. EMBO J 20(24):7128–7136CrossRefGoogle Scholar
  6. 6.
    Panda S (2016) Circadian physiology of metabolism. Science 354:1008–1014CrossRefGoogle Scholar
  7. 7.
    Zhao X, Cho H, Yu RT, Atkins AR, Downes M, Evans RM (2014) Nuclear receptors rock around the clock. EMBO Rep 15:518–528CrossRefGoogle Scholar
  8. 8.
    Duez H, Staels B (2010) Nuclear receptors linking circadian rhythms and cardiometabolic control. Arterioscler Thromb Vasc Biol 30(8):1529–1534CrossRefGoogle Scholar
  9. 9.
    Teboul M, Grechez-Cassiau A, Guillaumond F, Delaunay F (2009) How nuclear receptors tell time. J Appl Physiol 107:1965–1971CrossRefGoogle Scholar
  10. 10.
    Preitner N, Damiola F, Lopez-Molina L, Zakany J, Duboule D, Albrecht U, Schibler U (2002) The orphan nuclear receptor REV-ERB alpha controls circadian transcription within the positive limb of the mammalian circadian oscillator. Cell 110:251–260CrossRefGoogle Scholar
  11. 11.
    Crumbley C, Burris TP (2011) Direct regulation of CLOCK expression by REV-ERB. PLoS One 6(3):e17290CrossRefGoogle Scholar
  12. 12.
    Zhang Y, Fang B, Damle M, Guan D, Li Z, Kim YH, Lazar MA (2016) HNF6 and Rev-erbα integrate hepatic lipid metabolism by overlapping and distinct transcriptional mechanisms. Genes Dev 30(14):1636–1644CrossRefGoogle Scholar
  13. 13.
    Cho H, Zhao X, Hatori M, Yu RT, Barish GD, Lam MT, Evans RM (2012) Regulation of circadian behavior and metabolism by Rev-erbα and Rev-erbβ. Nature 485(7396):123–127CrossRefGoogle Scholar
  14. 14.
    Li X, Xu M, Wang F, Ji Y, Davidson WS, Li Z, Tso P (2015) Interaction of ApoA-IV with NR4A1 and NR1D1 represses G6Pase and PEPCK transcription: nuclear receptor-mediated downregulation of hepatic gluconeogenesis in mice and a human hepatocyte cell line. PLoS One 10(11):e0142098CrossRefGoogle Scholar
  15. 15.
    Yoo SH, Yamazaki S, Lowrey PL, Shimomura K, Ko CH, Buhr ED, Takahashi JS (2004) PERIOD2:LUCIFERASE real-time reporting of circadian dynamics reveals persistent circadian oscillations in mouse peripheral tissues. Proc Natl Acad Sci USA 101(15):5339–5346CrossRefGoogle Scholar
  16. 16.
    Nishide SY, Honma S, Nakajima Y, Ikeda M, Baba KY, Ohmiya K, Honma K (2006) New reporter system for Per1 and Bmal1 expressions revealed self-sustained circadian rhythms in peripheral tissues. Genes Cells 11:1173–1182CrossRefGoogle Scholar
  17. 17.
    Tahara Y, Kuroda H, Saito K, Nakajima Y, Kubo Y, Ohnishi N, Seo Y, Otsuka M, Fuse Y, Ohura Y et al (2012) In vivo monitoring of peripheral circadian clocks in the mouse. Curr Biol 22(11):1029–1034CrossRefGoogle Scholar
  18. 18.
    Balsalobre A, Damiola F, Schibler U (1998) A serum shock induces circadian gene expression in mammalian tissue culture cells. Cell 93:929–937CrossRefGoogle Scholar
  19. 19.
    Rogers S, Wells R, Rechsteiner M (1986) Amino acid sequences common to rapidly degraded proteins: the PEST hypothesis. Science 234(4774):364–368CrossRefGoogle Scholar
  20. 20.
    Rechsteiner M, Rogers SW (1996) PEST sequences and regulation by proteolysis. Trends Biochem Sci 21(7):267–271CrossRefGoogle Scholar
  21. 21.
    Bugge A, Feng D, Everett LJ, Briggs ER, Mullican SE, Wang F, Jager J, Lazar MA (2012) Rev-erbα and Rev-erbβ coordinately protect the circadian clock and normal metabolic function. Genes Dev 26:657–667CrossRefGoogle Scholar
  22. 22.
    Yamazaki S, Takahashi JS (2005) Real-time luminescence reporting of circadian gene expression in mammals. Methods Enzymol 393:288–301CrossRefGoogle Scholar
  23. 23.
    Dkhissi-Benyahya O, Coutanson C, Knoblauch K, Lahouaoui H, Leviel V, Rey C, Bennis M, Cooper HM (2013) The absence of melanopsin alters retinal clock function and dopamine regulation by light. Cell Mol Life Sci 70:3435–3447CrossRefGoogle Scholar
  24. 24.
    DeBruyne JP, Baggs JE, Sato TK, Hogenesch JB (2015) Ubiquitin ligase Siah2 regulates RevErbα degradation and the mammalian circadian clock. Proc Natl Acad Sci USA 112(40):12420–12425CrossRefGoogle Scholar
  25. 25.
    Pagani L, Schmitt K, Meier F, Izakovic J, Roemer K, Viola A, Cajochen C, Wirz-Justice A, Brown SA, Eckert A (2011) Serum factors in older individuals change cellular clock properties. Proc Natl Acad Sci USA 108(17):7218–7223CrossRefGoogle Scholar
  26. 26.
    Lee SK, Achieng E, Maddox C, Chen SC, Iuvone PM, Fukuhara C (2011) Extracellular low pH affects circadian rhythm expression in human primary fibroblasts. Biochem Biophys Res Commun 416(3–4):337–342CrossRefGoogle Scholar
  27. 27.
    Noguchi T, Wang CW, Pan H, Welsh DK (2012) Fibroblast circadian rhythms of PER2 expression depend on membrane potential and intracellular calcium. Chronobiol Int 29(6):653–664CrossRefGoogle Scholar
  28. 28.
    Torra IP, Tsibulsky V, Delaunay F, Saladin R, Laudet V, Fruchart JC, Kosykh V, Staels B et al (2000) Circadian and glucocorticoid regulation of Rev-erbα expression in liver. Endocrinology 141(10):3799–3806CrossRefGoogle Scholar
  29. 29.
    Bookout AL, Jeong Y, Downes M, Yu RT, Evans RM, Mangelsdorf DJ (2006) Anatomical profiling of nuclear receptor expression reveals a hierarchical transcriptional network. Cell 126:789–799CrossRefGoogle Scholar
  30. 30.
    Mazzoccoli G, Cai Y, Liu S, Francavilla M, Giuliani F, Piepoli A, Pazienza V, Vinciguerra M, Yamamoto T, Takumi T (2012) REV-ERB alpha and the clock gene machinery in mouse peripheral tissues: a possible role as a synchronizing hinge. J Biol Regul Homeost Agents 26:265–276PubMedGoogle Scholar
  31. 31.
    Balsalobre A, Brown SA, Marcacci L, Tronche F, Kellendonk C, Reichardt HM, Schütz G, Schibler U (2000) Resetting of circadian time in peripheral tissues by glucocorticoid signaling. Science 289(5488):2344–2347CrossRefGoogle Scholar
  32. 32.
    Nagoshi E, Saini C, Bauer C, Laroche T, Naef F, Schibler U (2004) Circadian gene expression in individual fibroblasts: cell-autonomous and self-sustained oscillators pass time to daughter cells. Cell 119(5):693–705CrossRefGoogle Scholar
  33. 33.
    Yoshikawa T, Yamazaki S, Menaker M (2005) Effects of preparation time on phase of cultured tissues reveal complexity of circadian organization. J Biol Rhythms 20(6):500–512CrossRefGoogle Scholar
  34. 34.
    Kobayashi H, Oishi K, Hanai S, Ishida N (2004) Effect of feeding on peripheral circadian rhythms and behaviour in mammals. Genes Cells 9(9):857–864CrossRefGoogle Scholar
  35. 35.
    Panda S, Antoch MP, Miller BH, Su AI, Schook AB, Straume M, Hogenesch JB (2002) Coordinated transcription of key pathways in the mouse by the circadian clock. Cell 109(3):307–320CrossRefGoogle Scholar
  36. 36.
    Yang X, Downes M, Yu RT, Bookout AL, He W, Straume M, Mangelsdorf DJ (2006) Nuclear receptor expression links the circadian clock to metabolism. Cell 126:801–810CrossRefGoogle Scholar
  37. 37.
    Albers HE (1981) Gonadal hormones organize and modulate the circadian system of the rat. Am J Physiol 241(1):R62–R66PubMedGoogle Scholar
  38. 38.
    Morin LP, Cummings LA (1981) Effect of surgical or photoperiodic castration testosterone replacement or pinealectomy on male hamster running rhythmicity. Physiol Behav 26(5):825–838CrossRefGoogle Scholar
  39. 39.
    Ochi M, Sono S, Sei H, Oishi K, Kobayashi H, Morita Y, Ishida N (2003) Sex difference in circadian period of body temperature in Clock mutant mice with Jcl/ICR background. Neurosci Lett 347:163–166CrossRefGoogle Scholar
  40. 40.
    Aujard F, Dkhissi-Benyahya O, Fournier I, Claustrat B, Schilling A, Cooper HM, Perret M (2001) Artificially accelerated aging by shortened photoperiod alters early gene expression (Fos) in the suprachiasmatic nucleus and sulfatoxymelatonin excretion in a small primate Microcebus murinus. Neuroscience 105:403–412CrossRefGoogle Scholar
  41. 41.
    Froy O (2011) Circadian rhythms aging and life span in mammals. Physiology 26(4):225–235CrossRefGoogle Scholar
  42. 42.
    Tevy MF, Giebultowicz J, Pincus Z, Mazzoccoli G, Vinciguerra M (2013) Aging signaling pathways and circadian clock-dependent metabolic derangements. Trends Endocrinol Metab 24(5):229–237CrossRefGoogle Scholar
  43. 43.
    Du Pré BC, Van Veen TA, Young ME, Vos MA, Doevendans PA, Van Laake LW (2014) Circadian rhythms in cell maturation. Physiology 29(1):72–83CrossRefGoogle Scholar
  44. 44.
    Meszaros K, Pruess L, Szabo AJ, Gondan M, Ritz E, Schaefer F (2014) Development of the circadian clockwork in the kidney. Kidney Int 86(5):915–922CrossRefGoogle Scholar
  45. 45.
    Dolatshad H, Cary AJ, Davis FC (2010) Differential expression of the circadian clock in maternal and embryonic tissues of mice. PLoS One 5(3):e9855CrossRefGoogle Scholar
  46. 46.
    Sládek M, Jindráková Z, Bendová Z, Sumová A (2007) Postnatal ontogenesis of the circadian clock within the rat liver. Am J Physiol Regul Integr Comp Physiol 292(3):R1224–R1229CrossRefGoogle Scholar
  47. 47.
    Saxena MT, Aton SJ, Hildebolt C, Prior JL, Abraham U, Piwnica-Worms D, Herzog ED (2007) Bioluminescence imaging of period1 gene expression in utero. Mol Imaging 6(1):68–72CrossRefGoogle Scholar
  48. 48.
    Ratajczak CK, Herzog ED, Muglia LJ (2010) Clock gene expression in gravid uterus and extra-embryonic tissues during late gestation in the mouse. Reprod Fertil Dev 22(5):743–750CrossRefGoogle Scholar
  49. 49.
    Li C, Yu S, Zhong X, Wu J, Li X (2012) Transcriptome comparison between fetal and adult mouse livers: implications for circadian clock mechanisms. PLoS One 7(2):e31292CrossRefGoogle Scholar
  50. 50.
    Huang J, Lu C, Chen S, Hua L, Qian R (2010) Postnatal ontogenesis of clock genes in mouse suprachiasmatic nucleus and heart. Lipids Health Dis 9:22CrossRefGoogle Scholar
  51. 51.
    Dehorter N, Vinay L, Hammond C, Ben-Ari Y (2012) Timing of developmental sequences in different brain structures: physiological and pathological implications. Eur J Neurosci 35:1846–1856CrossRefGoogle Scholar
  52. 52.
    Ohta H, Xu S, Moriya T, Iigo M, Watanabe T, Nakahata N, Chisaka H, Hanita T, Matsuda T, Ohura T et al (2008) Maternal feeding controls fetal biological clock. PLoS One 3(7):e2601CrossRefGoogle Scholar
  53. 53.
    Saini C, Liani A, Curie T, Gos P, Kreppel F, Emmenegger Y, Schibler U (2013) Real-time recording of circadian liver gene expression in freely moving mice reveals the phase-setting behavior of hepatocyte clocks. Genes Dev 27(13):1526–1536CrossRefGoogle Scholar
  54. 54.
    Zvonic S, Ptitsyn AA, Conrad SA, Scott LK, Floyd ZE, Kilroy G, Wu X, Goh BC, Mynatt RL, Gimble JM (2006) Characterization of peripheral circadian clocks in adipose tissues. Diabetes 55:962–970CrossRefGoogle Scholar
  55. 55.
    Feillet CA, Ripperger JA, Magnone MC, Dulloo A, Albrecht U, Challet E (2006) Lack of food anticipation in per2 mutant mice. Curr Biol 16(20):2016–2022CrossRefGoogle Scholar
  56. 56.
    Duez H, Staels B (2008) The nuclear receptors Rev-erbs and RORs integrate circadian rhythms and metabolism. Diabetes Vasc Dis Res 5:82–88CrossRefGoogle Scholar
  57. 57.
    Yang X, Zhang Y-KJ, Esterly N, Klaassen CD, Wan Y-JY (2009) Gender disparity of hepatic lipid homoeostasis regulated by the circadian clock. J Biochem 145(5):609–623CrossRefGoogle Scholar
  58. 58.
    Yamazaki S, Straume M, Tei H, Sakaki Y, Menaker M, Block GD (2002) Effects of aging on central and peripheral mammalian clocks. Proc Natl Acad Sci USA 99:10801–10806CrossRefGoogle Scholar
  59. 59.
    Sellix MT, Evans JA, Leise TL, Castañón-Cervantes O, Hill DD, DeLisser P, Block GD, Menaker M, Davidson AJ (2012) Aging differentially affects the re-entrainment response of central and peripheral circadian oscillators. J Neurosci 32:16193–16202CrossRefGoogle Scholar
  60. 60.
    Davidson AJ, Yamazaki S, Arble DM, Menaker M, Block GD (2008) Resetting of central and peripheral circadian oscillators in aged rats. Neurobiol Aging 2:471–477CrossRefGoogle Scholar
  61. 61.
    Kolker DE, Fukuyama H, Huang DS, Takahashi JS, Horton TH, Turek FW (2003) Aging alters circadian and light-induced expression of clock genes in golden hamsters. J Biol Rhythms 8:159–169CrossRefGoogle Scholar
  62. 62.
    Wyse CA, Coogan AN (2010) Impact of aging on diurnal expression patterns of CLOCK and BMAL1 in the mouse brain. Brain Res 1337:21–31CrossRefGoogle Scholar
  63. 63.
    Bunger MK, Wilsbacher LD, Moran SM, Clendenin C, Radcliffe LA, Hogenesch JB, Simon MC, Takahashi JS, Bradfield CA (2000) Mop3 is an essential component of the master circadian pacemaker in mammals. Cell 103(7):1009–1017CrossRefGoogle Scholar
  64. 64.
    Kondratov RV, Kondratova AA, Gorbacheva VY, Vykhovanets OV, Antoch MP (2006) Early aging and age-related pathologies in mice deficient in BMAL1 the core component of the circadian clock. Genes Dev 20:1868–1873CrossRefGoogle Scholar
  65. 65.
    Dubrovsky YV, Samsa WE, Kondratov RV (2010) Deficiency of circadian protein CLOCK reduces lifespan and increases age-related cataract development in mice. Aging (Albany NY) 2(12):936–944CrossRefGoogle Scholar
  66. 66.
    Chomez P, Neveu I, Mansén A, Kiesler E, Larsson L, Vennström B, Arenas E (2000) Increased cell death and delayed development in the cerebellum of mice lacking the rev-erbA(alpha) orphan receptor. Development 127:1489–1498PubMedGoogle Scholar
  67. 67.
    Polidarová L, Olejníková L, Paušlyová L, Sládek M, Soták M, Pácha J, Sumová A (2014) Development and entrainment of the colonic circadian clock during ontogenesis. Am J Physiol Gastrointest Liver Physiol 306:G346–G356CrossRefGoogle Scholar
  68. 68.
    Akiyama S, Ohta H, Watanabe S, Moriya T, Hariu A, Nakahata N, Chisaka H, Matsuda T, Kimura Y, Tsuchiya S et al (2010) The uterus sustains stable biological clock during pregnancy. Tohoku J Exp Med 221:287–298CrossRefGoogle Scholar
  69. 69.
    Olejníková L, Polidarová L, Paušlyová L, Sládek M, Sumová A (2015) Diverse development and higher sensitivity of the circadian clocks to changes in maternal-feeding regime in a rat model of cardio-metabolic disease. Chronobiol Int 32:531–547CrossRefGoogle Scholar
  70. 70.
    Landgraf D, Achten C, Dallmann F, Oster H (2015) Embryonic development and maternal regulation of murine circadian clock function. Chronobiol Int 32:416–427CrossRefGoogle Scholar
  71. 71.
    Houdek P, Sumová A (2014) In vivo initiation of clock gene expression rhythmicity in fetal rat suprachiasmatic nuclei. PLoS One 9(9):e107360CrossRefGoogle Scholar
  72. 72.
    Mateju K, Bendova Z, El-Hennamy R, Sladek M, Sosniyenko S, Sumová A (2009) Development of the light sensitivity of the clock genes Period1 and Period2 and immediate-early gene c-fos within the rat suprachiasmatic nucleus. Eur J Neurosci 29:490–501CrossRefGoogle Scholar
  73. 73.
    Sládek M, Sumová A, Kováciková Z, Bendová Z, Laurinová K, Illnerová H (2004) Insight into molecular core clock mechanism of embryonic and early postnatal rat suprachiasmatic nucleus. Proc Natl Acad Sci USA 101(16):6231–6236CrossRefGoogle Scholar
  74. 74.
    Nováková M, Sládek M, Sumová A (2010) Exposure of pregnant rats to restricted feeding schedule synchronizes the SCN clocks of their fetuses under constant light but not under a light-dark regime. J Biol Rhythms 25(5):350–360CrossRefGoogle Scholar
  75. 75.
    Serón-Ferré M, Valenzuela GJ, Torres-Farfan C (2007) Circadian clocks during embryonic and fetal development. Birth Defects Res C Embryo Today 81(3):204–214CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Université de Lyon, Université Claude Bernard Lyon 1, Ecole Normale Supérieure de Lyon; CNRS UMR 5242, Institut de Génomique Fonctionnelle de LyonLyonFrance
  2. 2.Université Côte d’Azur, CNRS UMR7277, INSERM U1091, Institut de Biologie Valrose, Bâtiment de Sciences NaturellesNice Cedex 2France
  3. 3.Université de Lyon, Université Claude Bernard Lyon 1, Inserm, Stem Cell and Brain Research Institute U1208BronFrance

Personalised recommendations