Advertisement

Cellular and Molecular Life Sciences

, Volume 75, Issue 18, pp 3297–3312 | Cite as

Why the impact of mechanical stimuli on stem cells remains a challenge

  • Roman Goetzke
  • Antonio Sechi
  • Laura De Laporte
  • Sabine Neuss
  • Wolfgang Wagner
Review

Abstract

Mechanical stimulation affects growth and differentiation of stem cells. This may be used to guide lineage-specific cell fate decisions and therefore opens fascinating opportunities for stem cell biology and regenerative medicine. Several studies demonstrated functional and molecular effects of mechanical stimulation but on first sight these results often appear to be inconsistent. Comparison of such studies is hampered by a multitude of relevant parameters that act in concert. There are notorious differences between species, cell types, and culture conditions. Furthermore, the utilized culture substrates have complex features, such as surface chemistry, elasticity, and topography. Cell culture substrates can vary from simple, flat materials to complex 3D scaffolds. Last but not least, mechanical forces can be applied with different frequency, amplitude, and strength. It is therefore a prerequisite to take all these parameters into consideration when ascribing their specific functional relevance—and to only modulate one parameter at the time if the relevance of this parameter is addressed. Such research questions can only be investigated by interdisciplinary cooperation. In this review, we focus particularly on mesenchymal stem cells and pluripotent stem cells to discuss relevant parameters that contribute to the kaleidoscope of mechanical stimulation of stem cells.

Keywords

Biomaterials Epigenetic Embryonic stem cells Hydrogels Induced pluripotent stem cells iPSC Matrix Mesenchymal stromal cells Mechanobiology Soft 

Notes

Acknowledgements

This work was supported by the German Ministry of Education and Research (WW: OBELICS, 01KU1402B), by the RWTH Aachen University within ERS Seed Fund projects (WW and RG: OPSF433; SN: OPBF071), and by the Interdisciplinary Center for Clinical Research (IZKF) within the faculty of Medicine at the RWTH Aachen University (WW: T11-2).

Compliance with ethical standards

Conflict of interest

The authors declare no competing financial interests.

References

  1. 1.
    Macqueen L, Sun Y, Simmons CA (2013) Mesenchymal stem cell mechanobiology and emerging experimental platforms. J R Soc Interface 10(84):20130179PubMedPubMedCentralCrossRefGoogle Scholar
  2. 2.
    Vining KH, Mooney DJ (2017) Mechanical forces direct stem cell behaviour in development and regeneration. Nat Rev Mol Cell Biol 18(12):728–742PubMedPubMedCentralCrossRefGoogle Scholar
  3. 3.
    Rosenbaum AJ, Grande DA, Dines JS (2008) The use of mesenchymal stem cells in tissue engineering: a global assessment. Organogenesis 4(1):23–27PubMedPubMedCentralCrossRefGoogle Scholar
  4. 4.
    Ho AD, Wagner W, Franke W (2008) Heterogeneity of mesenchymal stromal cell preparations. Cytotherapy 10(4):320–330PubMedCrossRefGoogle Scholar
  5. 5.
    Neuss S, Apel C, Buttler P, Denecke B, Dhanasingh A, Ding X, Grafahrend D, Groger A, Hemmrich K, Herr A, Jahnen-Dechent W, Mastitskaya S, Perez-Bouza A, Rosewick S, Salber J, Woltje M, Zenke M (2008) Assessment of stem cell/biomaterial combinations for stem cell-based tissue engineering. Biomaterials 29(3):302–313PubMedCrossRefGoogle Scholar
  6. 6.
    Phinney DG, Kopen G, Righter W, Webster S, Tremain N, Prockop DJ (1999) Donor variation in the growth properties and osteogenic potential of human marrow stromal cells. J Cell Biochem 75(3):424–436PubMedCrossRefGoogle Scholar
  7. 7.
    Wagner W, Wein F, Seckinger A, Frankhauser M, Wirkner U, Krause U, Blake J, Schwager C, Eckstein V, Ansorge W, Ho AD (2005) Comparative characteristics of mesenchymal stem cells from human bone marrow, adipose tissue, and umbilical cord blood. Exp Hematol 33(11):1402–1416PubMedCrossRefGoogle Scholar
  8. 8.
    Wagner W, Ho AD, Zenke M (2010) Different facets of aging in human mesenchymal stem cells. Tissue Eng Part B Rev 16(4):445–453PubMedCrossRefGoogle Scholar
  9. 9.
    De Almeida DC, Ferreira MR, Franzen J, Weidner CI, Frobel J, Zenke M, Costa IG, Wagner W (2016) Epigenetic classification of human mesenchymal stromal cells. Stem Cell Rep 6(2):168–175CrossRefGoogle Scholar
  10. 10.
    Wray J, Kalkan T, Smith AG (2010) The ground state of pluripotency. Biochem Soc Trans 38(4):1027–1032PubMedCrossRefGoogle Scholar
  11. 11.
    Koch CM, Reck K, Shao K, Lin Q, Joussen S, Ziegler P, Walenda G, Drescher W, Opalka B, May T, Brummendorf T, Zenke M, Saric T, Wagner W (2013) Pluripotent stem cells escape from senescence-associated DNA methylation changes. Genome Res 23(2):248–259PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    Weidner CI, Lin Q, Koch CM, Eisele L, Beier F, Ziegler P, Bauerschlag DO, Jockel KH, Erbel R, Muhleisen TW, Zenke M, Brummendorf TH, Wagner W (2014) Aging of blood can be tracked by DNA methylation changes at just three CpG sites. Genome Biol 15(2):R24PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    Shao Y, Sang J, Fu J (2015) On human pluripotent stem cell control: the rise of 3D bioengineering and mechanobiology. Biomaterials 52:26–43PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    Ren G, Su J, Zhang L, Zhao X, Ling W, L’huillie A, Zhang J, Lu Y, Roberts AI, Ji W, Zhang H, Rabson AB, Shi Y (2009) Species variation in the mechanisms of mesenchymal stem cell-mediated immunosuppression. Stem Cells 27(8):1954–1962PubMedCrossRefGoogle Scholar
  15. 15.
    Yu J, Thomson JA (2008) Pluripotent stem cell lines. Genes Dev 22(15):1987–1997PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Lund P, Pilgaard L, Duroux M, Fink T, Zachar V (2009) Effect of growth media and serum replacements on the proliferation and differentiation of adipose-derived stem cells. Cytotherapy 11(2):189–197PubMedCrossRefGoogle Scholar
  17. 17.
    Prakash Bangalore M, Adhikarla S, Mukherjee O, Panicker MM (2017) Genotoxic effects of culture media on human pluripotent stem cells. Sci Rep 7:42222PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    Anderson DG, Levenberg S, Langer R (2004) Nanoliter-scale synthesis of arrayed biomaterials and application to human embryonic stem cells. Nat Biotechnol 22(7):863–866PubMedCrossRefGoogle Scholar
  19. 19.
    Anderson DG, Putnam D, Lavik EB, Mahmood TA, Langer R (2005) Biomaterial microarrays: rapid, microscale screening of polymer-cell interaction. Biomaterials 26(23):4892–4897PubMedCrossRefGoogle Scholar
  20. 20.
    Flaim CJ, Chien S, Bhatia SN (2005) An extracellular matrix microarray for probing cellular differentiation. Nat Methods 2(2):119–125PubMedCrossRefGoogle Scholar
  21. 21.
    Hammad M, Rao W, Smith JG, Anderson DG, Langer R, Young LE, Barrett DA, Davies MC, Denning C, Alexander MR (2016) Identification of polymer surface adsorbed proteins implicated in pluripotent human embryonic stem cell expansion. Biomater Sci 4(9):1381–1391PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Epa VC, Yang J, Mei Y, Hook AL, Langer R, Anderson DG, Davies MC, Alexander MR, Winkler DA (2012) Modelling human embryoid body cell adhesion to a combinatorial library of polymer surfaces. J Mater Chem 22(39):20902–20906PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Hemeda H, Giebel B, Wagner W (2014) Evaluation of human platelet lysate versus fetal bovine serum for culture of mesenchymal stromal cells. Cytotherapy 16(2):170–180PubMedCrossRefGoogle Scholar
  24. 24.
    Mei Y, Saha K, Bogatyrev SR, Yang J, Hook AL, Kalcioglu ZI, Cho SW, Mitalipova M, Pyzocha N, Rojas F, Van Vliet KJ, Davies MC, Alexander MR, Langer R, Jaenisch R, Anderson DG (2010) Combinatorial development of biomaterials for clonal growth of human pluripotent stem cells. Nat Mater 9(9):768–778PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Hoss M, Apel C, Dhanasingh A, Suschek CV, Hemmrich K, Salber J, Zenke M, Neuss S (2013) Integrin alpha4 impacts on differential adhesion of preadipocytes and stem cells on synthetic polymers. J Tissue Eng Regen Med 7(4):312–323PubMedCrossRefGoogle Scholar
  26. 26.
    Guilak F, Cohen DM, Estes BT, Gimble JM, Liedtke W, Chen CS (2009) Control of stem cell fate by physical interactions with the extracellular matrix. Cell Stem Cell 5(1):17–26PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Li Y, Kilian KA (2015) Bridging the Gap: from 2D Cell Culture to 3D Microengineered Extracellular Matrices. Adv Healthc Mater 4(18):2780–2796PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Chan BP, Leong KW (2008) Scaffolding in tissue engineering: general approaches and tissue-specific considerations. Eur Spine J 17(Suppl 4):467–479PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    El-Sherbiny IM (2013) Yacoub MH (2013) Hydrogel scaffolds for tissue engineering: progress and challenges. Glob Cardiol Sci Pract 3:316–342Google Scholar
  30. 30.
    Slaughter BV, Khurshid SS, Fisher OZ, Khademhosseini A, Peppas NA (2009) Hydrogels in regenerative medicine. Adv Mater 21(32–33):3307–3329PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Rice JJ, Martino MM, De Laporte L, Tortelli F, Briquez PS, Hubbell JA (2013) Engineering the regenerative microenvironment with biomaterials. Adv Healthc Mater 2(1):57–71PubMedCrossRefGoogle Scholar
  32. 32.
    Discher DE, Janmey P, Wang YL (2005) Tissue cells feel and respond to the stiffness of their substrate. Science 310(5751):1139–1143PubMedCrossRefGoogle Scholar
  33. 33.
    Mckinnon DD, Domaille DW, Cha JN, Anseth KS (2014) Biophysically defined and cytocompatible covalently adaptable networks as viscoelastic 3D cell culture systems. Adv Mater 26(6):865–872PubMedCrossRefGoogle Scholar
  34. 34.
    Kouwer PH, Koepf M, Le Sage VA, Jaspers M, Van Buul AM, Eksteen-Akeroyd ZH, Woltinge T, Schwartz E, Kitto HJ, Hoogenboom R, Picken SJ, Nolte RJ, Mendes E, Rowan AE (2013) Responsive biomimetic networks from polyisocyanopeptide hydrogels. Nature 493(7434):651–655PubMedCrossRefGoogle Scholar
  35. 35.
    Baker BM, Trappmann B, Wang WY, Sakar MS, Kim IL, Shenoy VB, Burdick JA, Chen CS (2015) Cell-mediated fibre recruitment drives extracellular matrix mechanosensing in engineered fibrillar microenvironments. Nat Mater 14(12):1262–1268PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    Patterson J, Hubbell JA (2010) Enhanced proteolytic degradation of molecularly engineered PEG hydrogels in response to MMP-1 and MMP-2. Biomaterials 31(30):7836–7845PubMedCrossRefGoogle Scholar
  37. 37.
    Dadsetan M, Hefferan TE, Szatkowski JP, Mishra PK, Macura SI, Lu L, Yaszemski MJ (2008) Effect of hydrogel porosity on marrow stromal cell phenotypic expression. Biomaterials 29(14):2193–2202PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Murphy CM, O’brien FJ (2010) Understanding the effect of mean pore size on cell activity in collagen-glycosaminoglycan scaffolds. Cell Adhes Migr 4(3):377–381CrossRefGoogle Scholar
  39. 39.
    Keaveny TM, Morgan EF, Niebur GL, Yeh OC (2001) Biomechanics of trabecular bone. Annu Rev Biomed Eng 3:307–333PubMedCrossRefGoogle Scholar
  40. 40.
    Lo YP, Liu YS, Rimando MG, Ho JH, Lin KH, Lee OK (2016) Three-dimensional spherical spatial boundary conditions differentially regulate osteogenic differentiation of mesenchymal stromal cells. Sci Rep 6:21253PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Chen H, Huang X, Zhang M, Damanik F, Baker MB, Leferink A, Yuan H, Truckenmuller R, Van Blitterswijk C, Moroni L (2017) Tailoring surface nanoroughness of electrospun scaffolds for skeletal tissue engineering. Acta Biomater 59:82–93PubMedCrossRefGoogle Scholar
  42. 42.
    Chen H, Malheiro A, Van Blitterswijk C, Mota C, Wieringa PA, Moroni L (2017) Direct writing electrospinning of scaffolds with multidimensional fiber architecture for hierarchical tissue engineering. ACS Appl Mater Interfaces 9(44):38187–38200PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Neves SC, Mota C, Longoni A, Barrias CC, Granja PL, Moroni L (2016) Additive manufactured polymeric 3D scaffolds with tailored surface topography influence mesenchymal stromal cells activity. Biofabrication 8(2):025012PubMedCrossRefGoogle Scholar
  44. 44.
    Schellenberg A, Joussen S, Moser K, Hampe N, Hersch N, Hemeda H, Schnitker J, Denecke B, Lin Q, Pallua N, Zenke M, Merkel R, Hoffmann B, Wagner W (2014) Matrix elasticity, replicative senescence and DNA methylation patterns of mesenchymal stem cells. Biomaterials 35(24):6351–6358PubMedCrossRefGoogle Scholar
  45. 45.
    Omidinia-Anarkoli A, Boesveld S, Tuvshindorj U, Rose JC, Haraszti T, De Laporte L (2017) An injectable hybrid hydrogel with oriented short fibers induces unidirectional growth of functional nerve cells. Small 13(36):1702207CrossRefGoogle Scholar
  46. 46.
    Zhang S, Liu X, Barreto-Ortiz SF, Yu Y, Ginn BP, Desantis NA, Hutton DL, Grayson WL, Cui FZ, Korgel BA, Gerecht S, Mao HQ (2014) Creating polymer hydrogel microfibres with internal alignment via electrical and mechanical stretching. Biomaterials 35(10):3243–3251PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    Prasopthum A, Shakesheff KM, Yang J (2018) Direct three-dimensional printing of polymeric scaffolds with nanofibrous topography. Biofabrication 10(2):025002PubMedCrossRefGoogle Scholar
  48. 48.
    Xu R, Taskin MB, Rubert M, Seliktar D, Besenbacher F, Chen M (2015) hiPS-MSCs differentiation towards fibroblasts on a 3D ECM mimicking scaffold. Sci Rep 5:8480PubMedPubMedCentralCrossRefGoogle Scholar
  49. 49.
    Taskin MB, Xu R, Gregersen H, Nygaard JV, Besenbacher F, Chen M (2016) Three-dimensional polydopamine functionalized coiled microfibrous scaffolds enhance human mesenchymal stem cells colonization and mild myofibroblastic differentiation. ACS Appl Mater Interfaces 8(25):15864–15873PubMedCrossRefGoogle Scholar
  50. 50.
    Gilbert PM, Havenstrite KL, Magnusson KE, Sacco A, Leonardi NA, Kraft P, Nguyen NK, Thrun S, Lutolf MP, Blau HM (2010) Substrate elasticity regulates skeletal muscle stem cell self-renewal in culture. Science 329(5995):1078–1081PubMedPubMedCentralCrossRefGoogle Scholar
  51. 51.
    Discher DE, Mooney DJ, Zandstra PW (2009) Growth factors, matrices, and forces combine and control stem cells. Science 324(5935):1673–1677PubMedPubMedCentralCrossRefGoogle Scholar
  52. 52.
    Engler AJ, Sen S, Sweeney HL, Discher DE (2006) Matrix elasticity directs stem cell lineage specification. Cell 126(4):677–689PubMedCrossRefGoogle Scholar
  53. 53.
    Chen YM, Chen LH, Li MP, Li HF, Higuchi A, Kumar SS, Ling QD, Alarfaj AA, Munusamy MA, Chang Y, Benelli G, Murugan K, Umezawa A (2017) Xeno-free culture of human pluripotent stem cells on oligopeptide-grafted hydrogels with various molecular designs. Sci Rep 7:45146PubMedPubMedCentralCrossRefGoogle Scholar
  54. 54.
    Zhang R, Mjoseng HK, Hoeve MA, Bauer NG, Pells S, Besseling R, Velugotla S, Tourniaire G, Kishen RE, Tsenkina Y, Armit C, Duffy CR, Helfen M, Edenhofer F, De Sousa PA, Bradley M (2013) A thermoresponsive and chemically defined hydrogel for long-term culture of human embryonic stem cells. Nat Commun 4:1335PubMedPubMedCentralCrossRefGoogle Scholar
  55. 55.
    Caiazzo M, Okawa Y, Ranga A, Piersigilli A, Tabata Y, Lutolf MP (2016) Defined three-dimensional microenvironments boost induction of pluripotency. Nat Mater 15(3):344–352PubMedCrossRefGoogle Scholar
  56. 56.
    Dixon JE, Shah DA, Rogers C, Hall S, Weston N, Parmenter CD, Mcnally D, Denning C, Shakesheff KM (2014) Combined hydrogels that switch human pluripotent stem cells from self-renewal to differentiation. Proc Natl Acad Sci USA 111(15):5580–5585PubMedCrossRefGoogle Scholar
  57. 57.
    Zhu R, Blazeski A, Poon E, Costa KD, Tung L, Boheler KR (2014) Physical developmental cues for the maturation of human pluripotent stem cell-derived cardiomyocytes. Stem Cell Res Ther 5(5):117PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    Pellett S, Schwartz MP, Tepp WH, Josephson R, Scherf JM, Pier CL, Thomson JA, Murphy WL, Johnson EA (2015) Human induced pluripotent stem cell derived neuronal cells cultured on chemically-defined hydrogels for sensitive in vitro detection of botulinum neurotoxin. Sci Rep 5:14566PubMedPubMedCentralCrossRefGoogle Scholar
  59. 59.
    Zhang ZN, Freitas BC, Qian H, Lux J, Acab A, Trujillo CA, Herai RH, Nguyen Huu VA, Wen JH, Joshi-Barr S, Karpiak JV, Engler AJ, Fu XD, Muotri AR, Almutairi A (2016) Layered hydrogels accelerate iPSC-derived neuronal maturation and reveal migration defects caused by MeCP2 dysfunction. Proc Natl Acad Sci USA 113(12):3185–3190PubMedCrossRefGoogle Scholar
  60. 60.
    Wang B, Jakus AE, Baptista PM, Soker S, Soto-Gutierrez A, Abecassis MM, Shah RN, Wertheim JA (2016) Functional maturation of induced pluripotent stem cell hepatocytes in extracellular matrix-a comparative analysis of bioartificial liver microenvironments. Stem Cells Transl Med 5(9):1257–1267PubMedPubMedCentralCrossRefGoogle Scholar
  61. 61.
    Goetzke R, Franzen J, Ostrowska A, Vogt M, Blaeser A, Klein G, Rath B, Fischer H, Zenke M, Wagner W (2018) Does soft really matter? Differentiation of induced pluripotent stem cells into mesenchymal stromal cells is not influenced by soft hydrogels. Biomaterials 156:147–158PubMedCrossRefGoogle Scholar
  62. 62.
    Walenda G, Hemeda H, Schneider RK, Merkel R, Hoffmann B, Wagner W (2012) Human platelet lysate gel provides a novel 3D-matrix for enhanced culture expansion of mesenchymal stromal cells. Tissue Eng Part C. Methods 18(12):924–934PubMedCrossRefGoogle Scholar
  63. 63.
    Gobaa S, Hoehnel S, Roccio M, Negro A, Kobel S, Lutolf MP (2011) Artificial niche microarrays for probing single stem cell fate in high throughput. Nat Methods 8(11):949–955PubMedCrossRefGoogle Scholar
  64. 64.
    Ranga A, Gobaa S, Okawa Y, Mosiewicz K, Negro A, Lutolf MP (2014) 3D niche microarrays for systems-level analyses of cell fate. Nat Commun 5:4324PubMedPubMedCentralCrossRefGoogle Scholar
  65. 65.
    Chaudhuri O, Gu L, Darnell M, Klumpers D, Bencherif SA, Weaver JC, Huebsch N, Mooney DJ (2015) Substrate stress relaxation regulates cell spreading. Nat Commun 6:6364PubMedPubMedCentralCrossRefGoogle Scholar
  66. 66.
    Huebsch N, Arany PR, Mao AS, Shvartsman D, Ali OA, Bencherif SA, Rivera-Feliciano J, Mooney DJ (2010) Harnessing traction-mediated manipulation of the cell/matrix interface to control stem-cell fate. Nat Mater 9(6):518–526PubMedPubMedCentralCrossRefGoogle Scholar
  67. 67.
    Chaudhuri O, Gu L, Klumpers D, Darnell M, Bencherif SA, Weaver JC, Huebsch N, Lee HP, Lippens E, Duda GN, Mooney DJ (2016) Hydrogels with tunable stress relaxation regulate stem cell fate and activity. Nat Mater 15(3):326–334PubMedCrossRefGoogle Scholar
  68. 68.
    Talele NP, Fradette J, Davies JE, Kapus A, Hinz B (2015) Expression of alpha-smooth muscle actin determines the fate of mesenchymal stromal cells. Stem Cell Reports 4(6):1016–1030PubMedPubMedCentralCrossRefGoogle Scholar
  69. 69.
    Ishihara S, Inman DR, Li WJ, Ponik SM, Keely PJ (2017) Mechano-signal transduction in mesenchymal stem cells induces prosaposin secretion to drive the proliferation of breast cancer cells. Cancer Res 77(22):6179–6189PubMedCrossRefGoogle Scholar
  70. 70.
    Trappmann B, Gautrot JE, Connelly JT, Strange DG, Li Y, Oyen ML, Cohen Stuart MA, Boehm H, Li B, Vogel V, Spatz JP, Watt FM, Huck WT (2012) Extracellular-matrix tethering regulates stem-cell fate. Nat Mater 11(7):642–649PubMedCrossRefGoogle Scholar
  71. 71.
    Abagnale G, Steger M, Nguyen VH, Hersch N, Sechi A, Joussen S, Denecke B, Merkel R, Hoffmann B, Dreser A, Schnakenberg U, Gillner A, Wagner W (2015) Surface topography enhances differentiation of mesenchymal stem cells towards osteogenic and adipogenic lineages. Biomaterials 61:316–326PubMedCrossRefGoogle Scholar
  72. 72.
    Murphy WL, Mcdevitt TC, Engler AJ (2014) Materials as stem cell regulators. Nat Mater 13(6):547–557PubMedPubMedCentralCrossRefGoogle Scholar
  73. 73.
    Kilian KA, Bugarija B, Lahn BT, Mrksich M (2010) Geometric cues for directing the differentiation of mesenchymal stem cells. Proc Natl Acad Sci USA 107(11):4872–4877PubMedCrossRefGoogle Scholar
  74. 74.
    Mcbeath R, Pirone DM, Nelson CM, Bhadriraju K, Chen CS (2004) Cell shape, cytoskeletal tension, and RhoA regulate stem cell lineage commitment. Dev Cell 6(4):483–495PubMedCrossRefGoogle Scholar
  75. 75.
    Werner M, Blanquer SB, Haimi SP, Korus G, Dunlop JW, Duda GN, Grijpma DW, Petersen A (2017) Surface curvature differentially regulates stem cell migration and differentiation via altered attachment morphology and nuclear deformation. Adv Sci (Weinh) 4(2):1600347CrossRefGoogle Scholar
  76. 76.
    Hulshof FFB, Zhao Y, Vasilevich A, Beijer NRM, De Boer M, Papenburg BJ, Van Blitterswijk C, Stamatialis D, De Boer J (2017) NanoTopoChip: high-throughput nanotopographical cell instruction. Acta Biomater 62:188–198PubMedCrossRefGoogle Scholar
  77. 77.
    Markert LD, Lovmand J, Foss M, Lauridsen RH, Lovmand M, Fuchtbauer EM, Fuchtbauer A, Wertz K, Besenbacher F, Pedersen FS, Duch M (2009) Identification of distinct topographical surface microstructures favoring either undifferentiated expansion or differentiation of murine embryonic stem cells. Stem Cells Dev 18(9):1331–1342PubMedCrossRefGoogle Scholar
  78. 78.
    Unadkat HV, Hulsman M, Cornelissen K, Papenburg BJ, Truckenmuller RK, Carpenter AE, Wessling M, Post GF, Uetz M, Reinders MJ, Stamatialis D, Van Blitterswijk CA, De Boer J (2011) An algorithm-based topographical biomaterials library to instruct cell fate. Proc Natl Acad Sci USA 108(40):16565–16570PubMedCrossRefGoogle Scholar
  79. 79.
    Kuo SW, Lin HI, Ho JH, Shih YR, Chen HF, Yen TJ, Lee OK (2012) Regulation of the fate of human mesenchymal stem cells by mechanical and stereo-topographical cues provided by silicon nanowires. Biomaterials 33(20):5013–5022PubMedCrossRefGoogle Scholar
  80. 80.
    Oh S, Brammer KS, Li YS, Teng D, Engler AJ, Chien S, Jin S (2009) Stem cell fate dictated solely by altered nanotube dimension. Proc Natl Acad Sci USA 106(7):2130–2135PubMedCrossRefGoogle Scholar
  81. 81.
    Park J, Bauer S, Von Der MK, Schmuki P (2007) Nanosize and vitality: tiO2 nanotube diameter directs cell fate. Nano Lett 7(6):1686–1691PubMedCrossRefGoogle Scholar
  82. 82.
    Zhou Q, Castaneda Ocampo O, Guimaraes CF, Kuhn PT, Van Kooten TG, Van Rijn P (2017) Screening platform for cell contact guidance based on inorganic biomaterial micro/nanotopographical gradients. ACS Appl Mater Interfaces 9(37):31433–31445PubMedPubMedCentralCrossRefGoogle Scholar
  83. 83.
    Abagnale G, Sechi A, Steger M, Zhou Q, Kuo CC, Aydin G, Schalla C, Muller-Newen G, Zenke M, Costa IG, Van Rijn P, Gillner A, Wagner W (2017) Surface topography guides morphology and spatial patterning of induced pluripotent stem cell colonies. Stem Cell Rep 9(2):654–666CrossRefGoogle Scholar
  84. 84.
    Peerani R, Rao BM, Bauwens C, Yin T, Wood GA, Nagy A, Kumacheva E, Zandstra PW (2007) Niche-mediated control of human embryonic stem cell self-renewal and differentiation. EMBO J 26(22):4744–4755PubMedPubMedCentralCrossRefGoogle Scholar
  85. 85.
    Arnold M, Cavalcanti-Adam EA, Glass R, Blummel J, Eck W, Kantlehner M, Kessler H, Spatz JP (2004) Activation of integrin function by nanopatterned adhesive interfaces. ChemPhysChem 5(3):383–388PubMedCrossRefGoogle Scholar
  86. 86.
    Cavalcanti-Adam EA, Volberg T, Micoulet A, Kessler H, Geiger B, Spatz JP (2007) Cell spreading and focal adhesion dynamics are regulated by spacing of integrin ligands. Biophys J 92(8):2964–2974PubMedPubMedCentralCrossRefGoogle Scholar
  87. 87.
    Altrock E, Muth CA, Klein G, Spatz JP, Lee-Thedieck C (2012) The significance of integrin ligand nanopatterning on lipid raft clustering in hematopoietic stem cells. Biomaterials 33(11):3107–3118PubMedCrossRefGoogle Scholar
  88. 88.
    Lee KY, Alsberg E, Hsiong S, Comisar W, Linderman J, Ziff R, Mooney D (2004) Nanoscale adhesion ligand organization regulates osteoblast proliferation and differentiation. Nano Lett 4(8):1501–1506PubMedPubMedCentralCrossRefGoogle Scholar
  89. 89.
    Frith JE, Mills RJ, Cooper-White JJ (2012) Lateral spacing of adhesion peptides influences human mesenchymal stem cell behaviour. J Cell Sci 125(Pt 2):317–327PubMedCrossRefGoogle Scholar
  90. 90.
    Wolff J (1892) Das Gesetz der Transformation der Knochen. Verlag von August HirschwaldGoogle Scholar
  91. 91.
    Lanyon LE, Rubin CT (1984) Static vs dynamic loads as an influence on bone remodelling. J Biomech 17(12):897–905PubMedCrossRefGoogle Scholar
  92. 92.
    Mosley JR, Lanyon LE (1998) Strain rate as a controlling influence on adaptive modeling in response to dynamic loading of the ulna in growing male rats. Bone 23(4):313–318PubMedCrossRefGoogle Scholar
  93. 93.
    O’connor JA, Lanyon LE, Macfie H (1982) The influence of strain rate on adaptive bone remodelling. J Biomech 15(10):767–781PubMedCrossRefGoogle Scholar
  94. 94.
    Bullard RW (1972) Physiological problems of space travel. Annu Rev Physiol 34:205–234PubMedCrossRefGoogle Scholar
  95. 95.
    Grimm D, Grosse J, Wehland M, Mann V, Reseland JE, Sundaresan A, Corydon TJ (2016) The impact of microgravity on bone in humans. Bone 87:44–56PubMedCrossRefGoogle Scholar
  96. 96.
    Pan Z, Yang J, Guo C, Shi D, Shen D, Zheng Q, Chen R, Xu Y, Xi Y, Wang J (2008) Effects of hindlimb unloading on ex vivo growth and osteogenic/adipogenic potentials of bone marrow-derived mesenchymal stem cells in rats. Stem Cells Dev 17(4):795–804PubMedCrossRefGoogle Scholar
  97. 97.
    Sheyn D, Pelled G, Netanely D, Domany E, Gazit D (2010) The effect of simulated microgravity on human mesenchymal stem cells cultured in an osteogenic differentiation system: a bioinformatics study. Tissue Eng Part A 16(11):3403–3412PubMedPubMedCentralCrossRefGoogle Scholar
  98. 98.
    Govoni M, Lotti F, Biagiotti L, Lannocca M, Pasquinelli G, Valente S, Muscari C, Bonafe F, Caldarera CM, Guarnieri C, Cavalcanti S, Giordano E (2014) An innovative stand-alone bioreactor for the highly reproducible transfer of cyclic mechanical stretch to stem cells cultured in a 3D scaffold. J Tissue Eng Regen Med 8(10):787–793PubMedCrossRefGoogle Scholar
  99. 99.
    Xu B, Song G, Ju Y, Li X, Song Y, Watanabe S (2012) RhoA/ROCK, cytoskeletal dynamics, and focal adhesion kinase are required for mechanical stretch-induced tenogenic differentiation of human mesenchymal stem cells. J Cell Physiol 227(6):2722–2729PubMedCrossRefGoogle Scholar
  100. 100.
    Wei F, Liu D, Feng C, Zhang F, Yang S, Hu Y, Ding G, Wang S (2015) microRNA-21 mediates stretch-induced osteogenic differentiation in human periodontal ligament stem cells. Stem Cells Dev 24(3):312–319PubMedCrossRefGoogle Scholar
  101. 101.
    Zhu Z, Gan X, Fan H, Yu H (2015) Mechanical stretch endows mesenchymal stem cells stronger angiogenic and anti-apoptotic capacities via NFkappaB activation. Biochem Biophys Res Commun 468(4):601–605PubMedCrossRefGoogle Scholar
  102. 102.
    Mihic A, Li J, Miyagi Y, Gagliardi M, Li SH, Zu J, Weisel RD, Keller G, Li RK (2014) The effect of cyclic stretch on maturation and 3D tissue formation of human embryonic stem cell-derived cardiomyocytes. Biomaterials 35(9):2798–2808PubMedCrossRefGoogle Scholar
  103. 103.
    Zhang W, Kong CW, Tong MH, Chooi WH, Huang N, Li RA, Chan BP (2017) Maturation of human embryonic stem cell-derived cardiomyocytes (hESC-CMs) in 3D collagen matrix: effects of niche cell supplementation and mechanical stimulation. Acta Biomater 49:204–217PubMedCrossRefGoogle Scholar
  104. 104.
    Ravichandran A, Lim J, Chong MSK, Wen F, Liu Y, Pillay YT, Chan JKY, Teoh SH (2017) In vitro cyclic compressive loads potentiate early osteogenic events in engineered bone tissue. J Biomed Mater Res B Appl Biomater 105(8):2366–2375PubMedCrossRefGoogle Scholar
  105. 105.
    Horner CB, Hirota K, Liu J, Maldonado M, Hyle Park B, Nam J (2016) Magnitude-dependent and inversely-related osteogenic/chondrogenic differentiation of human mesenchymal stem cells under dynamic compressive strain. J Tissue Eng Regen Med 12(2):e637–e647CrossRefGoogle Scholar
  106. 106.
    Jung Y, Kim SH, Kim YH, Kim SH (2009) The effects of dynamic and three-dimensional environments on chondrogenic differentiation of bone marrow stromal cells. Biomed Mater 4(5):055009PubMedCrossRefGoogle Scholar
  107. 107.
    Terraciano V, Hwang N, Moroni L, Park HB, Zhang Z, Mizrahi J, Seliktar D, Elisseeff J (2007) Differential response of adult and embryonic mesenchymal progenitor cells to mechanical compression in hydrogels. Stem Cells 25(11):2730–2738PubMedCrossRefGoogle Scholar
  108. 108.
    Appelman TP, Mizrahi J, Elisseeff JH, Seliktar D (2009) The differential effect of scaffold composition and architecture on chondrocyte response to mechanical stimulation. Biomaterials 30(4):518–525PubMedCrossRefGoogle Scholar
  109. 109.
    Appelman TP, Mizrahi J, Elisseeff JH, Seliktar D (2011) The influence of biological motifs and dynamic mechanical stimulation in hydrogel scaffold systems on the phenotype of chondrocytes. Biomaterials 32(6):1508–1516PubMedCrossRefGoogle Scholar
  110. 110.
    Glossop JR, Cartmell SH (2009) Effect of fluid flow-induced shear stress on human mesenchymal stem cells: differential gene expression of IL1B and MAP3K8 in MAPK signaling. Gene Expr Patterns 9(5):381–388PubMedCrossRefGoogle Scholar
  111. 111.
    Yeatts AB, Choquette DT (1830) Fisher JP (2013) Bioreactors to influence stem cell fate: augmentation of mesenchymal stem cell signaling pathways via dynamic culture systems. Biochim Biophys Acta 2:2470–2480Google Scholar
  112. 112.
    Stavenschi E, Labour MN, Hoey DA (2017) Oscillatory fluid flow induces the osteogenic lineage commitment of mesenchymal stem cells: the effect of shear stress magnitude, frequency, and duration. J Biomech 55:99–106PubMedCrossRefGoogle Scholar
  113. 113.
    Ohtani-Kaneko R, Sato K, Tsutiya A, Nakagawa Y, Hashizume K, Tazawa H (2017) Characterisation of human induced pluripotent stem cell-derived endothelial cells under shear stress using an easy-to-use microfluidic cell culture system. Biomed Microdevices 19(4):91PubMedCrossRefGoogle Scholar
  114. 114.
    Sivarapatna A, Ghaedi M, Le AV, Mendez JJ, Qyang Y, Niklason LE (2015) Arterial specification of endothelial cells derived from human induced pluripotent stem cells in a biomimetic flow bioreactor. Biomaterials 53:621–633PubMedPubMedCentralCrossRefGoogle Scholar
  115. 115.
    Hoey DA, Tormey S, Ramcharan S, O’brien FJ, Jacobs CR (2012) Primary cilia-mediated mechanotransduction in human mesenchymal stem cells. Stem Cells 30(11):2561–2570PubMedPubMedCentralCrossRefGoogle Scholar
  116. 116.
    Singla V, Reiter JF (2006) The primary cilium as the cell’s antenna: signaling at a sensory organelle. Science 313(5787):629–633PubMedCrossRefGoogle Scholar
  117. 117.
    Coughlin TR, Voisin M, Schaffler MB, Niebur GL, Mcnamara LM (2015) Primary cilia exist in a small fraction of cells in trabecular bone and marrow. Calcif Tissue Int 96(1):65–72PubMedCrossRefGoogle Scholar
  118. 118.
    Chen JC, Hoey DA, Chua M, Bellon R, Jacobs CR (2016) Mechanical signals promote osteogenic fate through a primary cilia-mediated mechanism. FASEB J 30(4):1504–1511PubMedCrossRefGoogle Scholar
  119. 119.
    Tse JR, Engler AJ (2011) Stiffness gradients mimicking in vivo tissue variation regulate mesenchymal stem cell fate. PLoS ONE 6(1):e15978PubMedPubMedCentralCrossRefGoogle Scholar
  120. 120.
    Yang C, Tibbitt MW, Basta L, Anseth KS (2014) Mechanical memory and dosing influence stem cell fate. Nat Mater 13(6):645–652PubMedPubMedCentralCrossRefGoogle Scholar
  121. 121.
    Guvendiren M, Burdick JA (2012) Stiffening hydrogels to probe short- and long-term cellular responses to dynamic mechanics. Nat Commun 3:792PubMedCrossRefGoogle Scholar
  122. 122.
    Hendrikson WJ, Rouwkema J, Clementi F, Van Blitterswijk CA, Fare S, Moroni L (2017) Towards 4D printed scaffolds for tissue engineering: exploiting 3D shape memory polymers to deliver time-controlled stimulus on cultured cells. Biofabrication 9(3):031001PubMedCrossRefGoogle Scholar
  123. 123.
    Rammensee S, Kang MS, Georgiou K, Kumar S, Schaffer DV (2017) Dynamics of mechanosensitive neural stem cell differentiation. Stem Cells 35(2):497–506PubMedCrossRefGoogle Scholar
  124. 124.
    Hamidouche Z, Fromigue O, Ringe J, Haupl T, Vaudin P, Pages JC, Srouji S, Livne E, Marie PJ (2009) Priming integrin alpha5 promotes human mesenchymal stromal cell osteoblast differentiation and osteogenesis. Proc Natl Acad Sci U S A 106(44):18587–18591PubMedPubMedCentralCrossRefGoogle Scholar
  125. 125.
    Shih YR, Tseng KF, Lai HY, Lin CH, Lee OK (2011) Matrix stiffness regulation of integrin-mediated mechanotransduction during osteogenic differentiation of human mesenchymal stem cells. J Bone Miner Res 26(4):730–738PubMedCrossRefGoogle Scholar
  126. 126.
    Yu H, Lui YS, Xiong S, Leong WS, Wen F, Nurkahfianto H, Rana S, Leong DT, Ng KW, Tan LP (2013) Insights into the role of focal adhesion modulation in myogenic differentiation of human mesenchymal stem cells. Stem Cells Dev 22(1):136–147PubMedCrossRefGoogle Scholar
  127. 127.
    Du J, Chen X, Liang X, Zhang G, Xu J, He L, Zhan Q, Feng XQ, Chien S, Yang C (2011) Integrin activation and internalization on soft ECM as a mechanism of induction of stem cell differentiation by ECM elasticity. Proc Natl Acad Sci U S A 108(23):9466–9471PubMedPubMedCentralCrossRefGoogle Scholar
  128. 128.
    Hwang JH, Lee DH, Byun MR, Kim AR, Kim KM, Park JI, Oh HT, Hwang ES, Lee KB, Hong JH (2017) Nanotopological plate stimulates osteogenic differentiation through TAZ activation. Sci Rep 7(1):3632PubMedPubMedCentralCrossRefGoogle Scholar
  129. 129.
    Sen B, Guilluy C, Xie Z, Case N, Styner M, Thomas J, Oguz I, Rubin C, Burridge K, Rubin J (2011) Mechanically induced focal adhesion assembly amplifies anti-adipogenic pathways in mesenchymal stem cells. Stem Cells 29(11):1829–1836PubMedPubMedCentralCrossRefGoogle Scholar
  130. 130.
    Teramura T, Takehara T, Onodera Y, Nakagawa K, Hamanishi C, Fukuda K (2012) Mechanical stimulation of cyclic tensile strain induces reduction of pluripotent related gene expressions via activation of Rho/ROCK and subsequent decreasing of AKT phosphorylation in human induced pluripotent stem cells. Biochem Biophys Res Commun 417(2):836–841PubMedCrossRefGoogle Scholar
  131. 131.
    Sen B, Xie Z, Case N, Thompson WR, Uzer G, Styner M, Rubin J (2014) mTORC2 regulates mechanically induced cytoskeletal reorganization and lineage selection in marrow-derived mesenchymal stem cells. J Bone Miner Res 29(1):78–89PubMedCrossRefGoogle Scholar
  132. 132.
    Zhang P, Wu Y, Jiang Z, Jiang L, Fang B (2012) Osteogenic response of mesenchymal stem cells to continuous mechanical strain is dependent on ERK1/2-Runx2 signaling. Int J Mol Med 29(6):1083–1089PubMedGoogle Scholar
  133. 133.
    Hoffman LM, Jensen CC, Chaturvedi A, Yoshigi M, Beckerle MC (2012) Stretch-induced actin remodeling requires targeting of zyxin to stress fibers and recruitment of actin regulators. Mol Biol Cell 23(10):1846–1859PubMedPubMedCentralCrossRefGoogle Scholar
  134. 134.
    Dupont S, Morsut L, Aragona M, Enzo E, Giulitti S, Cordenonsi M, Zanconato F, Le DJ, Forcato M, Bicciato S, Elvassore N, Piccolo S (2011) Role of YAP/TAZ in mechanotransduction. Nature 474(7350):179–183PubMedCrossRefGoogle Scholar
  135. 135.
    Sathe AR, Shivashankar GV, Sheetz MP (2016) Nuclear transport of paxillin depends on focal adhesion dynamics and FAT domains. J Cell Sci 129(10):1981–1988PubMedPubMedCentralCrossRefGoogle Scholar
  136. 136.
    Sabra H, Brunner M, Mandati V, Wehrle-Haller B, Lallemand D, Ribba AS, Chevalier G, Guardiola P, Block MR, Bouvard D (2017) beta1 integrin-dependent Rac/group I PAK signaling mediates YAP activation of Yes-associated protein 1 (YAP1) via NF2/merlin. J Biol Chem 292(47):19179–19197PubMedCrossRefGoogle Scholar
  137. 137.
    Lammerding J, Fong LG, Ji JY, Reue K, Stewart CL, Young SG, Lee RT (2006) Lamins A and C but not lamin B1 regulate nuclear mechanics. J Biol Chem 281(35):25768–25780PubMedCrossRefGoogle Scholar
  138. 138.
    Swift J, Ivanovska IL, Buxboim A, Harada T, Dingal PC, Pinter J, Pajerowski JD, Spinler KR, Shin JW, Tewari M, Rehfeldt F, Speicher DW, Discher DE (2013) Nuclear lamin-A scales with tissue stiffness and enhances matrix-directed differentiation. Science 341(6149):1240104PubMedPubMedCentralCrossRefGoogle Scholar
  139. 139.
    Frobel J, Hemeda H, Lenz M, Abagnale G, Joussen S, Denecke B, Saric T, Zenke M, Wagner W (2014) Epigenetic rejuvenation of mesenchymal stromal cells derived from induced pluripotent stem cells. Stem Cell Reports 3(3):414–422PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Helmholtz Institute for Biomedical Engineering, Stem Cell Biology and Cellular EngineeringRWTH Aachen University Medical SchoolAachenGermany
  2. 2.Institute for Biomedical Engineering – Cell BiologyRWTH Aachen University Medical SchoolAachenGermany
  3. 3.DWI − Leibniz-Institute for Interactive MaterialsAachenGermany
  4. 4.Helmholtz Institute for Biomedical Engineering, Biointerface GroupRWTH Aachen University Medical SchoolAachenGermany
  5. 5.Institute of PathologyRWTH Aachen University Medical SchoolAachenGermany

Personalised recommendations