Advertisement

Cellular and Molecular Life Sciences

, Volume 75, Issue 18, pp 3393–3410 | Cite as

UDP-glucose ceramide glucosyltransferase activates AKT, promoted proliferation, and doxorubicin resistance in breast cancer cells

  • Marthe-Susanna Wegner
  • Nina Schömel
  • Lisa Gruber
  • Stephanie Beatrice Örtel
  • Matti Aleksi Kjellberg
  • Peter Mattjus
  • Jennifer Kurz
  • Sandra Trautmann
  • Bing Peng
  • Martin Wegner
  • Manuel Kaulich
  • Robert Ahrends
  • Gerd Geisslinger
  • Sabine Grösch
Original Article
  • 514 Downloads

Abstract

The UDP-glucose ceramide glucosyltransferase (UGCG) is a key enzyme in the synthesis of glycosylated sphingolipids, since this enzyme generates the precursor for all complex glycosphingolipids (GSL), the GlcCer. The UGCG has been associated with several cancer-related processes such as maintaining cancer stem cell properties or multidrug resistance induction. The precise mechanisms underlying these processes are unknown. Here, we investigated the molecular mechanisms occurring after UGCG overexpression in breast cancer cells. We observed alterations of several cellular properties such as morphological changes, which enhanced proliferation and doxorubicin resistance in UGCG overexpressing MCF-7 cells. These cellular effects seem to be mediated by an altered composition of glycosphingolipid-enriched microdomains (GEMs), especially an accumulation of globotriaosylceramide (Gb3) and glucosylceramide (GlcCer), which leads to an activation of Akt and ERK1/2. The induction of the Akt and ERK1/2 signaling pathway results in an increased gene expression of multidrug resistance protein 1 (MDR1) and anti-apoptotic genes and a decrease of pro-apoptotic gene expression. Inhibition of the protein kinase C (PKC) and phosphoinositide 3 kinase (PI3K) reduced MDR1 gene expression. This study discloses how changes in UGCG expression impact several cellular signaling pathways in breast cancer cells resulting in enhanced proliferation and multidrug resistance.

Keywords

Glycosphingolipids Glycosphingolipid-enriched microdomains Multidrug resistance MDR1 Glucosylceramide Apoptotic 

Notes

Acknowledgements

This work was funded by the Deutsche Forschungsgemeinschaft (WE 5825/1-1), SFB 1039 TP B05, the August Scheidel-Stiftung, the Heinrich und Fritz Riese-Stiftung, and Minerva-Stiftung. The supports by the Ministerium für Innovation, Wissenschaft und Forschung des Landes Nordrhein-Westfalen, the Senatsverwaltung für Wirtschaft, Technologie und Forschung des Landes Berlin, and the Bundesministerium für Bildung und Forschung and BMBF (Code 031L0108A, 031A534B) are also gratefully acknowledged. In addition, funding by the Sigrid Jusélius Foundation and Magnus Ehrnrooth Foundation and Åbo Akademi University are acknowledged.

Supplementary material

18_2018_2799_MOESM1_ESM.pptx (554 kb)
Supplementary material 1 (PPTX 553 kb) Supplemental 1 Stable UGCG knockdown in MCF-7 cells by CRISPR/Cas. (A) Validation of the UGCG knockdown by qRT-PCR, Western blot analysis and immunocytochemistry. Data are represented as a mean of n = 4 to 11 ± SEM. Unpaired t test with Welch’s correction. (B) Transmitted light image acquisition show a reduced cytoplasm size in MCF-7/UGCG KD cells as compared to control and MCF-7/UGCG OE cells. Representative images. (C) Determination of the relative living cell number of MCF-7 cells. Data are represented as a mean of n = 7 to 15 ± SEM. Unpaired t test with Welch’s correction. p ≤ * 0.05, p ≤ ** 0.01, p ≤ *** 0.001, p ≤ **** 0.0001
18_2018_2799_MOESM2_ESM.pptx (490 kb)
Supplementary material 2 (PPTX 489 kb) Supplemental 2 Cytoskeleton, cytoplasm staining and MDR1 mRNA expression of MCF-7 cells. (A) Immunocytochemistry of MCF-7 cells. Cytoskeleton is indicated as β-actin staining (upper panel). Cell membrane is indicated as β-catenin staining (lower panel). Nuclei are stained by DAPI. (B) Analysis of MDR1 mRNA expression by qRT-PCR. The expression is related to the housekeeping gene RPL37A. Data are represented as a mean of n = 3-6 ± SEM. Unpaired t test with Welch’s correction. p ≤ *** 0.001
18_2018_2799_MOESM3_ESM.pptx (488 kb)
Supplementary material 3 (PPTX 487 kb) Supplemental 3 Analysis of mRNA expression of sphingolipid enzymes by qRT-PCR and sphingolipid concentration determination by LC–MS/MS in 3D MCF-7 spheroids. (A) Analysis of sphingolipid enzymes mRNA expression by qRT-PCR. The expression is related to the housekeeping gene RPL37A. Data are represented as a mean of n = 3 ± SEM. (B) Concentrations of C14:0-, C16:0-, C18:0-, C18:1-, C20:0-, C24:0-Cer determined by LC–MS/MS. (C) Concentrations of C16:0-, C18:0-, C18:1-, C24:1-GlcCer, C16:0-, C18:0-, C24:0- and C24:1-LacCer determined by LC–MS/MS. (D) Total Cer, Glc- and LacCer levels determined by LC–MS/MS. Unpaired t test with Welch’s correction. p ≤ * 0.05, p ≤ ** 0.01, p ≤ *** 0.001, p ≤ **** 0.0001
18_2018_2799_MOESM4_ESM.pptx (15.7 mb)
Supplementary material 4 (PPTX 16050 kb) Supplemental 4 Analysis of the size and nuclei staining of 3D MCF-7 spheroids by microscopy. The transmitted light microscopy shows that MCF-7/UGCG OE spheroids are more densely packed than MCF-7/naiv and MCF-7/pTarget cells. DAPI staining indicates cell nuclei. Representative images
18_2018_2799_MOESM5_ESM.pptx (284 kb)
Supplementary material 5 (PPTX 283 kb) Supplemental 5 Determination of sphingolipid concentrations in MCF-7 cells by LC–MS/MS. (A) Sph-1p concentrations in MCF-7/pTarget and MCF-7/UGCG OE cells following 0 and 2 µM PPMP stimulation. (B) GEMs were isolated and total sphinganine, Cer and LacCer levels of fractions 1 to 10 were determined by LC–MS/MS. Data are represented as a mean of n = 3 ± SEM. p ≤ * 0.05
18_2018_2799_MOESM6_ESM.pptx (443 kb)
Supplementary material 6 (PPTX 442 kb) Supplemental 6 Analysis of different cellular marker in fractions 1 to 10 in MCF-7 cells by Western blot analysis. (A) PonceauS staining. (B) Western blot analysis of different cellular marker
18_2018_2799_MOESM7_ESM.pptx (428 kb)
Supplementary material 7 (PPTX 427 kb) Supplemental 7 Analysis of phosphorylation status of key signaling molecules in MCF-7 cells following PPMP stimulation by an antibody-based array. Array was performed according to manufacturer’s protocol. (A) Densitometrical analysis of the array. Data are represented as a mean of n = 2 ± SEM. RFU = relative fluorescence unit. (B) Representative arrays were displayed. p ≤ * 0.05, p ≤ ** 0.01, p ≤ **** 0.0001
18_2018_2799_MOESM8_ESM.pptx (427 kb)
Supplementary material 8 (PPTX 427 kb) Supplemental 8 Analysis of phosphorylation status of key signaling molecules in 3D MCF-7 spheroids by an antibody-based array. Array was performed according to manufacturer’s protocol. (A) Densitometrical analysis of the array. Data are represented as a mean of n = 4 ± SEM. (B) Representative arrays were displayed. RFU = relative fluorescence unit. RFU = relative fluorescence unit. p ≤ * 0.05, p ≤ **** 0.0001
18_2018_2799_MOESM9_ESM.pptx (588 kb)
Supplementary material 9 (PPTX 588 kb) Supplemental 9 Analysis of phosphorylation status of key signaling molecules in MCF-7/UGCG KD cells by an antibody-based array. Array was performed according to manufacturer’s protocol. (A) Densitometrical analysis of the array. Data are represented as a mean of n = 5-7 ± SEM. RFU = relative fluorescence unit. (B) Representative arrays were displayed. p ≤ * 0.05

References

  1. 1.
    Ferlay J, Soerjomataram I, Dikshit R, Eser S, Mathers C, Rebelo M, Parkin DM, Forman D, Bray F (2015) Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. Int J Cancer 136:E359–E386CrossRefPubMedGoogle Scholar
  2. 2.
    Ichikawa S, Sakiyama H, Suzuki G, Hidari KI, Hirabayashi Y (1996) Expression cloning of a cDNA for human ceramide glucosyltransferase that catalyzes the first glycosylation step of glycosphingolipid synthesis. Proc Natl Acad Sci USA 93:12654CrossRefPubMedGoogle Scholar
  3. 3.
    Wegner MS, Schiffmann S, Parnham MJ, Geisslinger G, Grosch S (2016) The enigma of ceramide synthase regulation in mammalian cells. Prog Lipid Res 63:93–119CrossRefPubMedGoogle Scholar
  4. 4.
    Yamashita T, Wada R, Sasaki T, Deng C, Bierfreund U, Sandhoff K, Proia RL (1999) A vital role for glycosphingolipid synthesis during development and differentiation. Proc Natl Acad Sci USA 96:9142–9147CrossRefPubMedGoogle Scholar
  5. 5.
    Jennemann R, Sandhoff R, Langbein L, Kaden S, Rothermel U, Gallala H, Sandhoff K, Wiegandt H, Grone HJ (2007) Integrity and barrier function of the epidermis critically depend on glucosylceramide synthesis. J Biol Chem 282:3083–3094CrossRefPubMedGoogle Scholar
  6. 6.
    Amen N, Mathow D, Rabionet M, Sandhoff R, Langbein L, Gretz N, Jackel C, Grone HJ, Jennemann R (2013) Differentiation of epidermal keratinocytes is dependent on glucosylceramide: ceramide processing. Hum Mol Genet 22:4164–4179CrossRefPubMedGoogle Scholar
  7. 7.
    Allende ML, Proia RL (2014) Simplifying complexity: genetically resculpting glycosphingolipid synthesis pathways in mice to reveal function. Glycoconj J 31:613–622CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Mistry PK, Lukina E, Ben Turkia H, Shankar SP, Baris H, Ghosn M, Mehta A, Packman S, Pastores G, Petakov M, Assouline S, Balwani M, Danda S, Hadjiev E, Ortega A, Gaemers SJM, Tayag R, Peterschmitt MJ (2017) Outcomes after 18 months of eliglustat therapy in treatment-naive adults with gaucher disease type 1: the phase 3 ENGAGE trial. Am J Hematol 92:1170–1176CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Gouaze V, Yu JY, Bleicher RJ, Han TY, Liu YY, Wang H, Gottesman MM, Bitterman A, Giuliano AE, Cabot MC (2004) Overexpression of glucosylceramide synthase and P-glycoprotein in cancer cells selected for resistance to natural product chemotherapy. Mol Cancer Ther 3:633–639PubMedGoogle Scholar
  10. 10.
    Gouaze-Andersson V, Yu JY, Kreitenberg AJ, Bielawska A, Giuliano AE, Cabot MC (2007) Ceramide and glucosylceramide upregulate expression of the multidrug resistance gene MDR1 in cancer cells. Biochim Biophys Acta 1771:1407–1417CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Jennemann R, Grone HJ (2013) Cell-specific in vivo functions of glycosphingolipids: lessons from genetic deletions of enzymes involved in glycosphingolipid synthesis. Prog Lipid Res 52:231–248CrossRefPubMedGoogle Scholar
  12. 12.
    Ishibashi Y, Kohyama-Koganeya A, Hirabayashi Y (2013) New insights on glucosylated lipids: metabolism and functions. Biochim Biophys Acta 1831:1475–1485CrossRefPubMedGoogle Scholar
  13. 13.
    Liu YY, Hill RA, Li YT (2013) Ceramide glycosylation catalyzed by glucosylceramide synthase and cancer drug resistance. Adv Cancer Res 117:59–89CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Liu YY, Gupta V, Patwardhan GA, Bhinge K, Zhao Y, Bao J, Mehendale H, Cabot MC, Li YT, Jazwinski SM (2010) Glucosylceramide synthase upregulates MDR1 expression in the regulation of cancer drug resistance through cSrc and beta-catenin signaling. Mol Cancer 9:145CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Morad SA, Cabot MC (2015) Tamoxifen regulation of sphingolipid metabolism—therapeutic implications. Biochim Biophys Acta 1851:1134–1145CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Liu J, Zhang X, Liu A, Zhang D, Su Y, Liu Y, You D, Yuan L, Kong X, Wang X, Sun P (2016) Altered methylation of glucosylceramide synthase promoter regulates its expression and associates with acquired multidrug resistance in invasive ductal breast cancer. Oncotarget 7(24):36755–36766PubMedPubMedCentralGoogle Scholar
  17. 17.
    Zhang X, Wu X, Su P, Gao Y, Meng B, Sun Y, Li L, Zhou Z, Zhou G (2012) Doxorubicin influences the expression of glucosylceramide synthase in invasive ductal breast cancer. PLoS One 7:e48492CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Crespo PM, Silvestre DC, Gil GA, Maccioni HJ, Daniotti JL, Caputto BL (2008) c-Fos activates glucosylceramide synthase and glycolipid synthesis in PC12 cells. J Biol Chem 283:31163–31171CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Di Sano F, Fazi B, Citro G, Lovat PE, Cesareni G, Piacentini M (2003) Glucosylceramide synthase and its functional interaction with RTN-1C regulate chemotherapeutic-induced apoptosis in neuroepithelioma cells. Cancer Res 63:3860–3865PubMedGoogle Scholar
  20. 20.
    Mollinedo F, Gajate C (2015) Lipid rafts as major platforms for signaling regulation in cancer. Adv Biol Regul 57:130–146CrossRefPubMedGoogle Scholar
  21. 21.
    Staubach S, Hanisch FG (2011) Lipid rafts: signaling and sorting platforms of cells and their roles in cancer. Expert Rev Proteom 8:263–277CrossRefGoogle Scholar
  22. 22.
    Yamaji T, Horie A, Tachida Y, Sakuma C, Suzuki Y, Kushi Y, Hanada K (2016) Role of intracellular lipid logistics in the preferential usage of very long chain-ceramides in glucosylceramide. Int J Mol Sci 17:1761CrossRefPubMedCentralGoogle Scholar
  23. 23.
    Newton J, Lima S, Maceyka M, Spiegel S (2015) Revisiting the sphingolipid rheostat: evolving concepts in cancer therapy. Exp Cell Res 333:195–200CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Tornquist K (2013) Sphingosine 1-phosphate and cancer: lessons from thyroid cancer cells. Biomolecules 3:303–315CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Hakomori SI (2000) Cell adhesion/recognition and signal transduction through glycosphingolipid microdomain. Glycoconj J 17:143–151CrossRefPubMedGoogle Scholar
  26. 26.
    Sabharanjak S, Sharma P, Parton RG, Mayor S (2002) GPI-anchored proteins are delivered to recycling endosomes via a distinct cdc42-regulated, clathrin-independent pinocytic pathway. Dev Cell 2:411–423CrossRefPubMedGoogle Scholar
  27. 27.
    Rogers KR, Kikawa KD, Mouradian M, Hernandez K, McKinnon KM, Ahwah SM, Pardini RS (2010) Docosahexaenoic acid alters epidermal growth factor receptor-related signaling by disrupting its lipid raft association. Carcinogenesis 31:1523–1530CrossRefPubMedGoogle Scholar
  28. 28.
    Hers I, Vincent EE, Tavare JM (2011) Akt signalling in health and disease. Cell Signal 23:1515–1527CrossRefPubMedGoogle Scholar
  29. 29.
    Wee P, Wang Z (2017) Epidermal growth factor receptor cell proliferation signaling pathways. Cancers 9:52CrossRefPubMedCentralGoogle Scholar
  30. 30.
    Hartmann D, Wegner MS, Wanger RA, Ferreiros N, Schreiber Y, Lucks J, Schiffmann S, Geisslinger G, Grosch S (2013) The equilibrium between long and very long chain ceramides is important for the fate of the cell and can be influenced by co-expression of CerS. Int J Biochem Cell Biol 45:1195–1203CrossRefPubMedGoogle Scholar
  31. 31.
    Mesicek J, Lee H, Feldman T, Jiang X, Skobeleva A, Berdyshev EV, Haimovitz-Friedman A, Fuks Z, Kolesnick R (2010) Ceramide synthases 2, 5, and 6 confer distinct roles in radiation-induced apoptosis in HeLa cells. Cell Signal 22:1300–1307CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Yamane M, Miyazawa K, Moriya S, Abe A, Yamane S (2011) D, L-Threo-1-phenyl-2-decanoylamino-3-morpholino-1-propanol (DL-PDMP) increases endoplasmic reticulum stress, autophagy and apoptosis accompanying ceramide accumulation via ceramide synthase 5 protein expression in A549 cells. Biochimie 93:1446–1459CrossRefPubMedGoogle Scholar
  33. 33.
    Payne AW, Pant DK, Pan TC, Chodosh LA (2014) Ceramide kinase promotes tumor cell survival and mammary tumor recurrence. Cancer Res 74:6352–6363CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Burns TA, Subathra M, Signorelli P, Choi Y, Yang X, Wang Y, Villani M, Bhalla K, Zhou D, Luberto C (2013) Sphingomyelin synthase 1 activity is regulated by the BCR–ABL oncogene. J Lipid Res 54:794–805CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Separovic D, Semaan L, Tarca AL, Awad Maitah MY, Hanada K, Bielawski J, Villani M, Luberto C (2008) Suppression of sphingomyelin synthase 1 by small interference RNA is associated with enhanced ceramide production and apoptosis after photodamage. Exp Cell Res 314:1860–1868CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Jin ZX, Huang CR, Dong L, Goda S, Kawanami T, Sawaki T, Sakai T, Tong XP, Masaki Y, Fukushima T, Tanaka M, Mimori T, Tojo H, Bloom ET, Okazaki T, Umehara H (2008) Impaired TCR signaling through dysfunction of lipid rafts in sphingomyelin synthase 1 (SMS1)-knockdown T cells. Int Immunol 20:1427–1437CrossRefPubMedGoogle Scholar
  37. 37.
    Hartmann D, Lucks J, Fuchs S, Schiffmann S, Schreiber Y, Ferreiros N, Merkens J, Marschalek R, Geisslinger G, Grosch S (2012) Long chain ceramides and very long chain ceramides have opposite effects on human breast and colon cancer cell growth. Int J Biochem Cell Biol 44:620–628CrossRefPubMedGoogle Scholar
  38. 38.
    He X, Schuchman EH (2012) Potential role of acid sphingomyelinase in environmental health. Zhong nan da xue xue bao Yi xue ban J Cent South Univ Med Sci 37:109–125Google Scholar
  39. 39.
    Yabu T, Shiba H, Shibasaki Y, Nakanishi T, Imamura S, Touhata K, Yamashita M (2015) Stress-induced ceramide generation and apoptosis via the phosphorylation and activation of nSMase1 by JNK signaling. Cell Death Differ 22:258–273CrossRefPubMedGoogle Scholar
  40. 40.
    Park B, Lee YM, Kim JS, Her Y, Kang JH, Oh SH, Kim HM (2013) Neutral sphingomyelinase 2 modulates cytotoxic effects of protopanaxadiol on different human cancer cells. BMC Complement Altern Med 13:194CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Kim WJ, Okimoto RA, Purton LE, Goodwin M, Haserlat SM, Dayyani F, Sweetser DA, McClatchey AI, Bernard OA, Look AT, Bell DW, Scadden DT, Haber DA (2008) Mutations in the neutral sphingomyelinase gene SMPD3 implicate the ceramide pathway in human leukemias. Blood 111:4716–4722CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Marchesini N, Luberto C, Hannun YA (2003) Biochemical properties of mammalian neutral sphingomyelinase 2 and its role in sphingolipid metabolism. J Biol Chem 278:13775–13783CrossRefPubMedGoogle Scholar
  43. 43.
    Sanger N, Ruckhaberle E, Gyorffy B, Engels K, Heinrich T, Fehm T, Graf A, Holtrich U, Becker S, Karn T (2015) Acid ceramidase is associated with an improved prognosis in both DCIS and invasive breast cancer. Mol Oncol 9:58–67CrossRefPubMedGoogle Scholar
  44. 44.
    Sukocheva O, Wadham C, Gamble J, Xia P (2015) Sphingosine-1-phosphate receptor 1 transmits estrogens’ effects in endothelial cells. Steroids 104:237–245CrossRefPubMedGoogle Scholar
  45. 45.
    Shen W, Henry AG, Paumier KL, Li L, Mou K, Dunlop J, Berger Z, Hirst WD (2014) Inhibition of glucosylceramide synthase stimulates autophagy flux in neurons. J Neurochem 129:884–894CrossRefPubMedGoogle Scholar
  46. 46.
    Gosejacob D, Jager PS, Vom Dorp K, Frejno M, Carstensen AC, Kohnke M, Degen J, Dormann P, Hoch M (2016) Ceramide synthase 5 is essential to maintain C16:0-ceramide pools and contributes to the development of diet-induced obesity. J Biol Chem 291:6989–7003CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    White MD, Chan L, Antoon JW, Beckman BS (2013) Targeting ovarian cancer and chemoresistance through selective inhibition of sphingosine kinase-2 with ABC294640. Anticancer Res 33:3573–3579PubMedGoogle Scholar
  48. 48.
    Katayama K, Noguchi K, Sugimoto Y (2014) Regulations of P-glycoprotein/ABCB1/MDR1 in human cancer cells. New J Sci 2014:10CrossRefGoogle Scholar
  49. 49.
    Dahdouh F, Raane M, Thevenod F, Lee WK (2014) Nickel-induced cell death and survival pathways in cultured renal proximal tubule cells: roles of reactive oxygen species, ceramide and ABCB1. Arch Toxicol 88:881–892CrossRefPubMedGoogle Scholar
  50. 50.
    Sharom FJ (2014) Complex interplay between the P-glycoprotein multidrug efflux pump and the membrane: its role in modulating protein function. Front Oncol 4:41CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Bentires-Alj M, Barbu V, Fillet M, Chariot A, Relic B, Jacobs N, Gielen J, Merville MP, Bours V (2003) NF-kappaB transcription factor induces drug resistance through MDR1 expression in cancer cells. Oncogene 22:90–97CrossRefPubMedGoogle Scholar
  52. 52.
    Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254CrossRefPubMedGoogle Scholar
  53. 53.
    Peng B, Weintraub ST, Coman C, Ponnaiyan S, Sharma R, Tews B, Winter D, Ahrends R (2017) A comprehensive high-resolution targeted workflow for the deep profiling of sphingolipids. Anal Chem 89:12480–12487CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Marthe-Susanna Wegner
    • 1
  • Nina Schömel
    • 1
  • Lisa Gruber
    • 1
  • Stephanie Beatrice Örtel
    • 1
  • Matti Aleksi Kjellberg
    • 2
  • Peter Mattjus
    • 2
  • Jennifer Kurz
    • 3
  • Sandra Trautmann
    • 1
  • Bing Peng
    • 4
  • Martin Wegner
    • 5
  • Manuel Kaulich
    • 5
  • Robert Ahrends
    • 4
  • Gerd Geisslinger
    • 1
    • 3
  • Sabine Grösch
    • 1
  1. 1.pharmazentrum frankfurt/ZAFES, Institute of Clinical PharmacologyJohann Wolfgang Goethe UniversityFrankfurt am MainGermany
  2. 2.Biochemistry, Faculty of Science and EngineeringÅbo Akademi UniversityTurkuFinland
  3. 3.Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Project Group Translational Medicine and Pharmacology (TMP)Frankfurt am MainGermany
  4. 4.Leibniz-Institut für Analytische Wissenschaften, ISAS e. V.DortmundGermany
  5. 5.Institute of Biochemistry IIJohann Wolfgang Goethe UniversityFrankfurt am MainGermany

Personalised recommendations