Cellular and Molecular Life Sciences

, Volume 75, Issue 12, pp 2137–2151 | Cite as

Challenges and approaches to understand cholesterol-binding impact on membrane protein function: an NMR view

  • Garima Jaipuria
  • Tina Ukmar-Godec
  • Markus ZweckstetterEmail author


Experimental evidence for a direct role of lipids in determining the structure, dynamics, and function of membrane proteins leads to the term ‘functional lipids’. In particular, the sterol molecule cholesterol modulates the activity of many membrane proteins. The precise nature of cholesterol-binding sites and the consequences of modulation of local membrane micro-viscosity by cholesterol, however, is often unknown. Here, we review the current knowledge of the interaction of cholesterol with transmembrane proteins, with a special focus on structural aspects of the interaction derived from nuclear magnetic resonance approaches. We highlight examples of the importance of cholesterol modulation of membrane protein function, discuss the specificity of cholesterol binding, and review the proposed binding motifs from a molecular perspective. We conclude with a short perspective on what could be future trends in research efforts targeted towards a better understanding of cholesterol/membrane protein interactions.


Membrane protein Lipid Cholesterol Function NMR spectroscopy Structure 



M.Z. was supported by the Deutsche Forschungsgemeinschaft Collaborative Research Center 803 (Project A11) and the European Research Council (Grant agreement number 282008).


  1. 1.
    Killian JA, Nyholm TKM (2006) Peptides in lipid bilayers: the power of simple models. Curr Opin Struct Biol 16(4):473–479. PubMedCrossRefGoogle Scholar
  2. 2.
    Huster D (2014) Solid-state NMR spectroscopy to study protein lipid interactions. Biochim Biophys Acta Mol Cell Biol Lipids 1841(8):1146–1160. CrossRefGoogle Scholar
  3. 3.
    Lee AG (2004) How lipids affect the activities of integral membrane proteins. Biochim Biophys Acta Biomembr 1666(1–2):62–87. CrossRefGoogle Scholar
  4. 4.
    McIntosh TJ, Simon SA (2006) Roles of bilayer material properties in function and distribution of membrane proteins. Annu Rev Biophys Biomol Struct 35:177–198. PubMedCrossRefGoogle Scholar
  5. 5.
    de Planque MRR, Killian JA (2003) Protein-lipid interactions studied with designed transmembrane peptides: role of hydrophobic matching and interfacial anchoring (review). Mol Membr Biol 20(4):271–284. PubMedCrossRefGoogle Scholar
  6. 6.
    Soubias O, Gawrisch K (2012) The role of the lipid matrix for structure and function of the GPCR rhodopsin. Biochim Biophys Acta Biomembr 1818(2):234–240. CrossRefGoogle Scholar
  7. 7.
    Khandelia H, Ipsen JH, Mouritsen OG (2008) The impact of peptides on lipid membranes. Biochim Biophys Acta Biomembr 1778(7–8):1528–1536. CrossRefGoogle Scholar
  8. 8.
    Brown MF (1994) Modulation of rhodopsin function by properties of the membrane bilayer. Chem Phys Lipid 73(1–2):159–180. CrossRefGoogle Scholar
  9. 9.
    Mitchell DC, Niu SL, Litman BJ (2003) Enhancement of G protein-coupled signaling by DHA phospholipids. Lipids 38(4):437–443. PubMedCrossRefGoogle Scholar
  10. 10.
    Singer SJ, Nicolson GL (1972) The fluid mosaic model of the structure of cell membranes. Science 175(4023):720. PubMedCrossRefGoogle Scholar
  11. 11.
    Simons K, Ikonen E (1997) Functional rafts in cell membranes. Nature 387(6633):569–572. PubMedCrossRefGoogle Scholar
  12. 12.
    Berridge MJ, Irvine RF (1989) Inosito phosphates and cell signaling. Nature 341(6239):197–205. PubMedCrossRefGoogle Scholar
  13. 13.
    Irvine RF (1992) Inositol lipids in cell signalling. Curr Opin Cell Biol 4(2):212–219. PubMedCrossRefGoogle Scholar
  14. 14.
    Koshy C, Ziegler C (2015) Structural insights into functional lipid-protein interactions in secondary transporters. Biochimica Et Biophysica Acta-General Subjects 1850(3):476–487. CrossRefGoogle Scholar
  15. 15.
    Levitan I, Fang Y, Rosenhouse-Dantsker A, Romanenko V (2010) Cholesterol and ion channels. In: Harris JR (ed) Cholesterol binding and cholesterol transport proteins: structure and function in health and disease, vol 51. Subcellular biochemistry, pp 509–549.
  16. 16.
    Lee AG (2003) Lipid-protein interactions in biological membranes: a structural perspective. Biochim Biophys Acta Biomembr 1612(1):1–40. CrossRefGoogle Scholar
  17. 17.
    Zhou YF, Morais-Cabral JH, Kaufman A, MacKinnon R (2001) Chemistry of ion coordination and hydration revealed by a K + channel–fab complex at 2.0 angstrom resolution. Nature 414(6859):43–48. PubMedCrossRefGoogle Scholar
  18. 18.
    Betaneli V, Petrov EP, Schwille P (2012) The role of lipids in VDAC oligomerization. Biophys J 102(3):523–531. PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    Shoshan-Barmatz V, De Pinto V, Zweckstetter M, Raviv Z, Keinan N, Arbel N (2010) VDAC, a multi-functional mitochondrial protein regulating cell life and death. Mol Aspects Med 31(3):227–285. PubMedCrossRefGoogle Scholar
  20. 20.
    Rostovtseva TK, Gurnev PA, Chen MY, Bezrukov SM (2012) Membrane lipid composition regulates tubulin interaction with mitochondrial voltage-dependent anion channel. J Biol Chem 287(35):29589–29598. PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Rostovtseva TK, Kazemi N, Weinrich M, Bezrukov SM (2006) Voltage gating of VDAC is regulated by nonlamellar lipids of mitochondrial membranes. J Biol Chem 281(49):37496–37506. PubMedCrossRefGoogle Scholar
  22. 22.
    Hanson MA, Cherezov V, Griffith MT, Roth CB, Jaakola VP, Chien EYT, Velasquez J, Kuhn P, Stevens RC (2008) A specific cholesterol binding site is established by the 2.8 angstrom structure of the human beta(2)-adrenergic receptor. Structure 16(6):897–905. PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Kwon HJ, Abi-Mosleh L, Wang ML, Deisenhofer J, Goldstein JL, Brown MS, Infante RE (2009) Structure of N-terminal domain of NPC1 reveals distinct subdomains for binding and transfer of cholesterol. Cell 137(7):1213–1224. PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Marsh D, Barrantes FJ (1978) Immobilized lipid in acetylcholine receptor-rich membranes from torpedo-marmorata. Proc Natl Acad Sci USA 75(9):4329–4333. PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Marsh D (2010) Electron spin resonance in membrane research: protein-lipid interactions from challenging beginnings to state of the art. Eur Biophys J Biophys Lett 39(4):513–525. CrossRefGoogle Scholar
  26. 26.
    Song YL, Hustedt EJ, Brandon S, Sanders CR (2013) Competition between homodimerization and cholesterol binding to the C99 domain of the amyloid precursor protein. Biochemistry 52(30):5051–5064. PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Kim SS, Upshur MA, Saotome K, Sahu ID, McCarrick RM, Feix JB, Lorigan GA, Howard KP (2015) Cholesterol-dependent conformational exchange of the C-terminal domain of the influenza A M2 protein. Biochemistry 54(49):7157–7167. PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Korkhov VM, Sachse C, Short JM, Tate CG (2010) Three-dimensional structure of TspO by electron cryomicroscopy of helical crystals. Structure 18(6):677–687. PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Saibil HR (2000) Conformational changes studied by cryo-electron microscopy. Nat Struct Biol 7(9):711–714. PubMedCrossRefGoogle Scholar
  30. 30.
    Taylor NMI, Manolaridis I, Jackson SM, Kowal J, Stahlberg H, Locher KP (2017) Structure of the human multidrug transporter ABCG2. Nature 546:504. PubMedCrossRefGoogle Scholar
  31. 31.
    Picazo-Juarez G, Romero-Suarez S, Nieto-Posadas A, Llorente I, Jara-Oseguera A, Briggs M, McIntosh TJ, Simon SA, Ladron-de-Guevara E, Islas LD, Rosenbaum T (2011) Identification of a binding motif in the S5 helix that confers cholesterol sensitivity to the TRPV1 ion channel. J Biol Chem 286(28):24966–24976. PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Li H, Papadopoulos V (1998) Peripheral-type benzodiazepine receptor function in cholesterol transport. Identification of a putative cholesterol recognition/interaction amino acid sequence and consensus patterns. Endocrinology 139(12):4991–4997. PubMedCrossRefGoogle Scholar
  33. 33.
    Li H, Yao ZX, Degenhardt B, Teper G, Papadopoulos V (2001) Cholesterol binding at the cholesterol recognition/interaction amino acid consensus (CRAC) of the peripheral-type benzodiazepine receptor and inhibition of steroidogenesis by an HIV TAT-CRAC peptide. Proc Natl Acad Sci USA 98(3):1267–1272. PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Weiser BP, Salari R, Eckenhoff RG, Brannigan G (2014) Computational investigation of cholesterol binding sites on mitochondrial VDAC. J Phys Chem B 118(33):9852–9860. PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Henin J, Salari R, Murlidaran S, Brannigan G (2014) A predicted binding site for cholesterol on the GABA(A) receptor. Biophys J 106(9):1938–1949. PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    Brannigan G, Henin J, Law R, Eckenhoff R, Klein ML (2008) Embedded cholesterol in the nicotinic acetylcholine receptor. Proc Natl Acad Sci USA 105(38):14418–14423. PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    Jaipuria G, Leonov A, Giller K, Vasa SK, Jaremko L, Jaremko M, Linser R, Becker S, Zweckstetter M (2017) Cholesterol-mediated allosteric regulation of the mitochondrial translocator protein structure. Nat Commun. PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Fantini J, Yahi N, Garmy N (2013) Cholesterol accelerates the binding of Alzheimer’s beta-amyloid peptide to ganglioside GM1 through a universal hydrogen-bond-dependent sterol tuning of glycolipid conformation. Front Physiol. CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Levitan I, Singh DK, Rosenhouse-Dantsker A (2014) Cholesterol binding to ion channels. Front Physiol. PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    Cross TA, Sharma M, Yi M, Zhou HX (2011) Influence of solubilizing environments on membrane protein structures. Trends Biochem Sci 36(2):117–125. PubMedCrossRefGoogle Scholar
  41. 41.
    Rosenhouse-Dantsker A, Noskov S, Durdagi S, Logothetis DE, Levitan I (2013) Identification of novel cholesterol-binding regions in Kir2 channels. J Biol Chem 288(43):31154–31164. PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    Bukiya AN, Dopico AM (2017) Common structural features of cholesterol binding sites in crystallized soluble proteins. J Lipid Res 58(6):1044–1054. PubMedCrossRefPubMedCentralGoogle Scholar
  43. 43.
    Palmer M (2004) Cholesterol and the activity of bacterial toxins. FEMS Microbiol Lett 238(2):281–289. PubMedCrossRefGoogle Scholar
  44. 44.
    Epand RM (2006) Cholesterol and the interaction of proteins with membrane domains. Prog Lipid Res 45(4):279–294. PubMedCrossRefGoogle Scholar
  45. 45.
    Jafurulla M, Tiwari S, Chattopadhyay A (2011) Identification of cholesterol recognition amino acid consensus (CRAC) motif in G-protein coupled receptors. Biochem Biophys Res Commun 404(1):569–573. PubMedCrossRefGoogle Scholar
  46. 46.
    Oddi S, Dainese E, Fezza F, Lanuti M, Barcaroli D, De Laurenzi V, Centonze D, Maccarrone M (2011) Functional characterization of putative cholesterol binding sequence (CRAC) in human type-1 cannabinoid receptor. J Neurochem 116(5):858–865. PubMedCrossRefGoogle Scholar
  47. 47.
    Sengupta D, Chattopadhyay A (2012) Identification of cholesterol binding sites in the serotonin(1A) receptor. J Phys Chem B 116(43):12991–12996. PubMedCrossRefGoogle Scholar
  48. 48.
    Jaremko Ł, Jaremko M, Giller K, Becker S, Zweckstetter M (2014) Structure of the mitochondrial translocator protein in complex with a diagnostic ligand. Science 343(6177):1363PubMedPubMedCentralCrossRefGoogle Scholar
  49. 49.
    Jamin N, Neumann JM, Ostuni MA, Vu TKN, Yao ZX, Murail S, Robert JC, Giatzakis C, Papadopoulos V, Lacapere JJ (2005) Characterization of the cholesterol recognition amino acid consensus sequence of the peripheral-type benzodiazepine receptor. Mol Endocrinol 19(3):588–594. PubMedCrossRefGoogle Scholar
  50. 50.
    Epand RF, Thomas A, Brasseur R, Vishwanathan SA, Hunter E, Epand RM (2006) Juxtamembrane protein segments that contribute to recruitment of cholesterol into domains. Biochemistry 45(19):6105–6114. PubMedPubMedCentralCrossRefGoogle Scholar
  51. 51.
    Singh AK, McMillan J, Bukiya AN, Burton B, Parrill AL, Dopico AM (2012) Multiple cholesterol recognition/interaction amino acid consensus (CRAC) motifs in cytosolic C tail of Slo1 subunit determine cholesterol sensitivity of Ca2 + - and voltage-gated K + (BK) channels. J Biol Chem 287(24):20509–20521. PubMedPubMedCentralCrossRefGoogle Scholar
  52. 52.
    Baier CJ, Fantini J, Barrantes FJ (2011) Disclosure of cholesterol recognition motifs in transmembrane domains of the human nicotinic acetylcholine receptor. Sci Rep. PubMedPubMedCentralCrossRefGoogle Scholar
  53. 53.
    Strandberg E, Killian JA (2003) Snorkeling of lysine side chains in transmembrane helices: how easy can it get? FEBS Lett 544(1–3):69–73. PubMedCrossRefGoogle Scholar
  54. 54.
    Lins L, Decaffmeyer M, Thomas A, Brasseur R (2008) Relationships between the orientation and the structural properties of peptides and their membrane interactions. Biochim Biophys Acta Biomembr 1778(7–8):1537–1544. CrossRefGoogle Scholar
  55. 55.
    Di Scala C, Yahi N, Lelievre C, Garmy N, Chahinian H, Fantini J (2013) Biochemical identification of a linear cholesterol-binding domain within Alzheimer’s beta amyloid peptide. ACS Chem Neurosci 4(3):509–517. PubMedCrossRefGoogle Scholar
  56. 56.
    Fantini J, Carlus D, Yahi N (2011) The fusogenic tilted peptide (67–78) of alpha-synuclein is a cholesterol binding domain. Biochim Biophys Acta Biomembr 1808(10):2343–2351. CrossRefGoogle Scholar
  57. 57.
    Charloteaux B, Lorin A, Crowet JM, Stroobant V, Lins L, Thomas A, Brasseur R (2006) The N-terminal 12 residue long peptide of HIV gp41 is the minimal peptide sufficient to induce significant T-cell-like membrane destabilization in vitro. J Mol Biol 359(3):597–609. PubMedCrossRefGoogle Scholar
  58. 58.
    van Rooijen BD, Claessens M, Subramaniam V (2010) Membrane interactions of oligomeric alpha-synuclein: potential role in Parkinson’s disease. Curr Protein Pept Sci 11(5):334–342PubMedCrossRefGoogle Scholar
  59. 59.
    Tosatto L, Andrighetti AO, Plotegher N, Antonini V, Tessari I, Ricci L, Bubacco L, Serra MD (2012) Alpha-synuclein pore forming activity upon membrane association. Biochim Biophys Acta Biomembr 1818(11):2876–2883. CrossRefGoogle Scholar
  60. 60.
    Fantini J, Yahi N (2010) Molecular insights into amyloid regulation by membrane cholesterol and sphingolipids: common mechanisms in neurodegenerative diseases. Expert Rev Mol Med. PubMedPubMedCentralCrossRefGoogle Scholar
  61. 61.
    Crowet JM, Lins L, Dupiereux I, Elmoualija B, Lorin A, Charloteaux B, Stroobant V, Heinen E, Brasseur R (2007) In silico tilted properties of the 67–78 fragment of alpha-synuclein are responsible for membrane destabilization and neurotoxicity. Proteins Struct Funct Bioinform 68(4):936–947. CrossRefGoogle Scholar
  62. 62.
    Zhou HX, Cross TA (2013) Influences of membrane mimetic environments on membrane protein structures. Annu Rev Biophys 42:361–392. PubMedPubMedCentralCrossRefGoogle Scholar
  63. 63.
    Soubias O, Gawrisch K (2013) Rhodopsin–lipid interactions studied by NMR. In: Conn PM (ed) G protein coupled receptors: modeling, activation, interactions and virtual screening. Methods Enzymol 522:209–227. PubMedPubMedCentralCrossRefGoogle Scholar
  64. 64.
    Marsh D, Watts A, Barrantes FJ (1981) Phospholipid chain immobilization and steroid rotational immobilization in acetylcholine receptor-rich membranes from torpedo-marmorata. Biochem Biophys Acta 645(1):97–101. PubMedCrossRefGoogle Scholar
  65. 65.
    Popot JL, Demel RA, Sobel A, Vandeenen LLM, Changeux JP (1978) Interaction of acetylcholine (nicotinic) receptor protein from torpedo-marmorata electric organ with monolayers of pure lipids. Eur J Biochem 85(1):27–42. PubMedCrossRefGoogle Scholar
  66. 66.
    Ellena JF, Blazing MA, McNamee MG (1983) Lipid–protein interactions in reconstituted membranes containing acetylcholine-receptor. Biochemistry 22(24):5523–5535. PubMedCrossRefGoogle Scholar
  67. 67.
    Dalziel AW, Rollins ES, McNamee MG (1980) The effect of cholesterol on agonist-induced flux in reconstituted acetylcholine-receptor vesicles. FEBS Lett 122(2):193–196. PubMedCrossRefGoogle Scholar
  68. 68.
    Barrantes FJ (2004) Structural basis for lipid modulation of nicotinic acetylcholine receptor function. Brain Res Rev 47(1–3):71–95. PubMedCrossRefGoogle Scholar
  69. 69.
    Barrantes FJ (2007) Cholesterol effects on nicotinic acetylcholine receptor. J Neurochem 103:72–80. PubMedCrossRefGoogle Scholar
  70. 70.
    Sengupta D, Chattopadhyay A (2015) Molecular dynamics simulations of GPCR–cholesterol interaction: an emerging paradigm. Biochim Biophys Acta Biomembr 1848(9):1775–1782. CrossRefGoogle Scholar
  71. 71.
    Lee JY, Lyman E (2012) Predictions for cholesterol interaction sites on the A(2A) adenosine receptor. J Am Chem Soc 134(40):16512–16515. PubMedCrossRefGoogle Scholar
  72. 72.
    Prasanna X, Chattopadhyay A, Sengupta D (2014) Cholesterol modulates the dimer interface of the beta(2)-adrenergic receptor via cholesterol occupancy sites. Biophys J 106(6):1290–1300. PubMedPubMedCentralCrossRefGoogle Scholar
  73. 73.
    Cang XH, Du Y, Mao YY, Wang YY, Yang HY, Jiang HL (2013) Mapping the functional binding sites of cholesterol in beta(2)-adrenergic receptor by long-time molecular dynamics simulations. J Phys Chem B 117(4):1085–1094. PubMedCrossRefGoogle Scholar
  74. 74.
    Jones OT, McNamee MG (1988) Annular and nonannular binding-sites for cholesterol associated with the nicotinic acetylcholine-receptor. Biochemistry 27(7):2364–2374. PubMedCrossRefGoogle Scholar
  75. 75.
    Simmonds AC, East JM, Jones OT, Rooney EK, McWhirter J, Lee AG (1982) Annular and non-annular binding-sites on the (Ca2 + + Mg2 +)-ATPase. Biochem Biophys Acta 693(2):398–406. PubMedCrossRefGoogle Scholar
  76. 76.
    Cherezov V, Rosenbaum DM, Hanson MA, Rasmussen SGF, Thian FS, Kobilka TS, Choi HJ, Kuhn P, Weis WI, Kobilka BK, Stevens RC (2007) High-resolution crystal structure of an engineered human beta(2)-adrenergic G protein-coupled receptor. Science 318(5854):1258–1265. PubMedPubMedCentralCrossRefGoogle Scholar
  77. 77.
    Penmatsa A, Wang KH, Gouaux E (2013) X-ray structure of dopamine transporter elucidates antidepressant mechanism. Nature 503(7474):85. PubMedPubMedCentralCrossRefGoogle Scholar
  78. 78.
    Wacker D, Wang C, Katritch V, Han GW, Huang XP, Vardy E, McCorvy JD, Jiang Y, Chu MH, Siu FY, Liu W, Xu HE, Cherezov V, Roth BL, Stevens RC (2013) Structural features for functional selectivity at serotonin receptors. Science 340(6132):615–619. PubMedPubMedCentralCrossRefGoogle Scholar
  79. 79.
    Liu W, Chun E, Thompson AA, Chubukov P, Xu F, Katritch V, Han GW, Roth CB, Heitman LH, Ijzerman AP, Cherezov V, Stevens RC (2012) Structural basis for allosteric regulation of GPCRs by sodium ions. Science 337(6091):232–236. PubMedPubMedCentralCrossRefGoogle Scholar
  80. 80.
    Yeagle PL (2014) Non-covalent binding of membrane lipids to membrane proteins. Biochim Biophys Acta Biomembr 1838(6):1548–1559. CrossRefGoogle Scholar
  81. 81.
    Wada T, Shimono K, Kikukawa T, Hato M, Shinya N, Kim SY, Kimura-Someya T, Shirouzu M, Tamogami J, Miyauchi S, Jung KH, Kamo N, Yokoyama S (2011) Crystal structure of the eukaryotic light-driven proton-pumping rhodopsin, acetabularia rhodopsin II, from marine alga. J Mol Biol 411(5):986–998. PubMedCrossRefGoogle Scholar
  82. 82.
    Manglik A, Kruse AC, Kobilka TS, Thian FS, Mathiesen JM, Sunahara RK, Pardo L, Weis WI, Kobilka BK, Granier S (2012) Crystal structure of the mu-opioid receptor bound to a morphinan antagonist. Nature 485(7398):321–U370. PubMedPubMedCentralCrossRefGoogle Scholar
  83. 83.
    Burger K, Gimpl G, Fahrenholz F (2000) Regulation of receptor function by cholesterol. Cell Mol Life Sci 57(11):1577–1592. PubMedCrossRefGoogle Scholar
  84. 84.
    Brown MF (2017) Soft matter in lipid–protein interactions. Ann Rev Biophys 46:379–410. CrossRefGoogle Scholar
  85. 85.
    Addona GH, Sandermann H, Kloczewiak MA, Miller KW (2003) Low chemical specificity of the nicotinic acetylcholine receptor sterol activation site. Biochim Biophys Acta Biomembr 1609(2):177–182. CrossRefGoogle Scholar
  86. 86.
    Dacosta CJB, Dey L, Therien JPD, Baenziger JE (2013) A distinct mechanism for activating uncoupled nicotinic acetylcholine receptors. Nat Chem Biol 9(11):701. PubMedCrossRefGoogle Scholar
  87. 87.
    Sooksawate T, Simmonds MA (2001) Effects of membrane cholesterol on the sensitivity of the GABA(A) receptor to GABA in acutely dissociated rat hippocampal neurones. Neuropharmacology 40(2):178–184. PubMedCrossRefGoogle Scholar
  88. 88.
    Klausen TK, Hougaard C, Hoffmann EK, Pedersen SF (2006) Cholesterol modulates the volume-regulated anion current in Ehrlich–Lettre ascites cells via effects on Rho and F-actin. Am J Physiol Cell Physiol 291(4):C757–C771. PubMedCrossRefGoogle Scholar
  89. 89.
    Romanenko VG, Rothblat GH, Levitan I (2004) Sensitivity of volume-regulated anion current to cholesterol structural analogues. J Gen Physiol 123(1):77–87. PubMedPubMedCentralCrossRefGoogle Scholar
  90. 90.
    Romanenko VG, Rothblat GH, Levitan I (2002) Modulation of endothelial inward-rectifier K + current by optical isomers of cholesterol. Biophys J 83(6):3211–3222PubMedPubMedCentralCrossRefGoogle Scholar
  91. 91.
    Romanenko VG, Fang Y, Byfield F, Travis AJ, Vandenberg CA, Rothblat GH, Levitan I (2004) Cholesterol sensitivity and lipid raft targeting of Kir2.1 channels. Biophys J 87(6):3850–3861. PubMedPubMedCentralCrossRefGoogle Scholar
  92. 92.
    Bolotina V, Omelyanenko V, Heyes B, Ryan U, Bregestovski P (1989) Variations of membrane cholesterol alter the kinetics of Ca2+ -dependent K + channels and membrane fluidity in vascular smooth-muscle cells. Pflugers Arch Eur J Physiol 415(3):262–268. CrossRefGoogle Scholar
  93. 93.
    Bukiya AN, Belani JD, Rychnovsky S, Dopico AM (2011) Specificity of cholesterol and analogs to modulate BK channels points to direct sterol-channel protein interactions. J Gen Physiol 137(1):93–110. PubMedPubMedCentralCrossRefGoogle Scholar
  94. 94.
    Bukiya AN, Vaithianathan T, Toro L, Dopico AM (2008) The second transmembrane domain of the large conductance, voltage- and calcium-gated potassium channel beta(1) subunit is a lithocholate sensor. FEBS Lett 582(5):673–678. PubMedPubMedCentralCrossRefGoogle Scholar
  95. 95.
    Gimpl G, Burger K, Fahrenholz F (1997) Cholesterol as modulator of receptor function. Biochemistry 36(36):10959–10974. PubMedCrossRefGoogle Scholar
  96. 96.
    Infante RE, Wang ML, Radhakrishnan A, Kwon HJ, Brown MS, Goldstein JL (2008) NPC2 facilitates bidirectional transfer of cholesterol between NPC1 and lipid bilayers, a step in cholesterol egress from lysosomes. Proc Natl Acad Sci USA 105(40):15287–15292. PubMedPubMedCentralCrossRefGoogle Scholar
  97. 97.
    Radhakrishnan A, Sun LP, Kwon HJ, Brown MS, Goldstein JL (2004) Direct binding of cholesterol to the purified membrane region of SCAP: mechanism for a sterol-sensing domain. Mol Cell 15(2):259–268. PubMedCrossRefGoogle Scholar
  98. 98.
    Singh DK, Shentu TP, Enkvetchakul D, Levitan I (2011) Cholesterol regulates prokaryotic Kir channel by direct binding to channel protein. Biochim Biophys Acta Biomembr 1808(10):2527–2533. CrossRefGoogle Scholar
  99. 99.
    Maxfield FR, Tabas I (2005) Role of cholesterol and lipid organization in disease. Nature 438(7068):612–621. PubMedCrossRefGoogle Scholar
  100. 100.
    Schug ZT, Frezza C, Galbraith LCA, Gottlieb E (2012) The music of lipids: how lipid composition orchestrates cellular behaviour. Acta Oncol 51(3):301–310. PubMedCrossRefGoogle Scholar
  101. 101.
    Monteiro JP, Oliveira PJ, Jurado AS (2013) Mitochondrial membrane lipid remodeling in pathophysiology: a new target for diet and therapeutic interventions. Prog Lipid Res 52(4):513–528. PubMedCrossRefGoogle Scholar
  102. 102.
    Rone MB, Fan JJ, Papadopoulos V (2009) Cholesterol transport in steroid biosynthesis: role of protein–protein interactions and implications in disease states. Biochim Biophys Acta Mol Cell Biol Lipids 1791(7):646–658. CrossRefGoogle Scholar
  103. 103.
    Schroeder F, Atshaves BP, McIntosh AL, Gallegos AM, Storey SM, Parr RD, Jefferson JR, Ball JM, Kier AB (2007) Sterol carrier protein-2: new roles in regulating lipid rafts and signaling. Biochim Biophys Acta Mol Cell Biol Lipids 1771(6):700–718. CrossRefGoogle Scholar
  104. 104.
    Gut P, Zweckstetter M, Banati RB (2015) Lost in translocation: the functions of the 18-kD translocator protein. Trends Endocrinol Metab 26(7):349–356. PubMedPubMedCentralCrossRefGoogle Scholar
  105. 105.
    Krueger KE, Papadopoulos V (1990) Peripheral-type benzodiazepine receptors mediate translocation of cholesterol from outer to inner mitochondrial-membranes in adrenocortical-cells. J Biol Chem 265(25):15015–15022PubMedGoogle Scholar
  106. 106.
    Lacapere JJ, Delavoie F, Li H, Peranzi G, Maccario J, Papadopoulos V, Vidic B (2001) Structural and functional study of reconstituted peripheral benzodiazepine receptor. Biochem Biophys Res Commun 284(2):536–541. PubMedCrossRefGoogle Scholar
  107. 107.
    Depinto V, Benz R, Palmieri F (1989) Interaction of non-classical detergents with the mitochondrial porin—a new purification procedure and charcterization of the pore-forming unit. Eur J Biochem 183(1):179–187CrossRefGoogle Scholar
  108. 108.
    Hulce JJ, Cognetta AB, Niphakis MJ, Tully SE, Cravatt BF (2013) Proteome-wide mapping of cholesterol-interacting proteins in mammalian cells. Nat Methods 10(3):259–264. PubMedPubMedCentralCrossRefGoogle Scholar
  109. 109.
    Hiller S, Garces RG, Malia TJ, Orekhov VY, Colombini M, Wagner G (2008) Solution structure of the integral human membrane protein VDAC-1 in detergent micelles. Science 321(5893):1206–1210. PubMedPubMedCentralCrossRefGoogle Scholar
  110. 110.
    Campbell AM, Chan SHP (2007) The voltage dependent anion channel affects mitochondrial cholesterol distribution and function. Arch Biochem Biophys 466(2):203–210. PubMedCrossRefGoogle Scholar
  111. 111.
    Pfaller R, Freitag H, Harmey MA, Benz R, Neupert W (1985) A water-soluble form of porin from the mitochondrial outer-membrane of neurospora-crassa—properties and relationship to the biosynthetic precursor form. J Biol Chem 260(13):8188–8193PubMedGoogle Scholar
  112. 112.
    Popp B, Schmid A, Benz R (1995) Role of sterols in the functional reconstitution of water-soluble mitochondrial porins from different organisms. Biochemistry 34(10):3352–3361. PubMedCrossRefGoogle Scholar
  113. 113.
    Pastorino JG, Hoek JB (2008) Regulation of hexokinase binding to VDAC. J Bioenerg Biomembr 40(3):171–182. PubMedPubMedCentralCrossRefGoogle Scholar
  114. 114.
    Montero J, Morales A, Llacuna L, Lluis JM, Terrones O, Basanez G, Antonsson B, Prieto J, Garcia-Ruiz C, Colell A, Fernandez-Checa JC (2008) Mitochondrial cholesterol contributes to chemotherapy resistance in hepatocellular carcinoma. Can Res 68(13):5246–5256. CrossRefGoogle Scholar
  115. 115.
    Rouslin W, Macgee J, Gupte S, Wesselman A, Epps DE (1982) Mitochondrial cholesterol content and membrane-properties in porcine myocardial ischemia. Am J Physiol 242(2):H254–H259PubMedGoogle Scholar
  116. 116.
    Liao MF, Cao EH, Julius D, Cheng YF (2013) Structure of the TRPV1 ion channel determined by electron cryo-microscopy. Nature 504(7478):107. PubMedPubMedCentralCrossRefGoogle Scholar
  117. 117.
    Guler G, Gartner RM, Ziegler C, Mantele W (2016) Lipid–protein interactions in the regulated betaine symporter BetP probed by infrared spectroscopy. J Biol Chem 291(9):4295–4307. PubMedCrossRefGoogle Scholar
  118. 118.
    Liu W, Wacker D, Gati C, Han GW, James D, Wang DJ, Nelson G, Weierstall U, Katritch V, Barty A, Zatsepin NA, Li DF, Messerschmidt M, Boutet S, Williams GJ, Koglin JE, Seibert MM, Wang C, Shah STA, Basu S, Fromme R, Kupitz C, Rendek KN, Grotjohann I, Fromme P, Kirian RA, Beyerlein KR, White TA, Chapman HN, Caffrey M, Spence JCH, Stevens RC, Cherezov V (2013) Serial femtosecond crystallography of G protein-coupled receptors. Science 342(6165):1521–1524. PubMedPubMedCentralCrossRefGoogle Scholar
  119. 119.
    Budelier MM, Cheng WWL, Bergdoll L, Chen ZW, Janetka JW, Abramson J, Krishnan K, Mydock-McGrane L, Covey DF, Whitelegge JP, Evers AS (2017) Photoaffinity labeling with cholesterol analogues precisely maps a cholesterol-binding site in voltage-dependent anion channel-1. J Biol Chem 292(22):9294–9304. PubMedCrossRefPubMedCentralGoogle Scholar
  120. 120.
    Grouleff J, Irudayam SJ, Skeby KK, Schiott B (2015) The influence of cholesterol on membrane protein structure, function, and dynamics studied by molecular dynamics simulations. Biochim Biophys Acta Biomembr 1848(9):1783–1795. CrossRefGoogle Scholar
  121. 121.
    Meyer B, Peters T (2003) NMR spectroscopy techniques for screening and identifying ligand binding to protein receptors. Angew Chem Int Ed 42(8):864–890. CrossRefGoogle Scholar
  122. 122.
    Scheidt HA, Muller P, Herrmann A, Huster D (2003) The potential of fluorescent and spin-labeled steroid analogs to mimic natural cholesterol. J Biol Chem 278(46):45563–45569. PubMedCrossRefGoogle Scholar
  123. 123.
    Prasanna X, Chattopadhyay A, Sengupta D (2015) Role of lipid-mediated effects in beta(2)-adrenergic receptor dimerization. In: Chakrabarti A, Surolia A (eds) Biochemical roles of eukaryotic cell surface macromolecules. Adv Exp Med Biol 842:247–261. PubMedCrossRefGoogle Scholar
  124. 124.
    Gater DL, Saurel O, Iordanov I, Liu W, Cherezov V, Milon A (2014) Two classes of cholesterol binding sites for the beta(2)AR revealed by thermostability and NMR. Biophys J 107(10):2305–2312. PubMedPubMedCentralCrossRefGoogle Scholar
  125. 125.
    Vukoti K, Kimura T, Macke L, Gawrisch K, Yeliseev A (2012) Stabilization of functional recombinant cannabinoid receptor CB2 in detergent micelles and lipid bilayers. PLoS ONE. PubMedPubMedCentralCrossRefGoogle Scholar
  126. 126.
    Barrett PJ, Song YL, Van Horn WD, Hustedt EJ, Schafer JM, Hadziselimovic A, Beel AJ, Sanders CR (2012) The amyloid precursor protein has a flexible transmembrane domain and binds cholesterol. Science 336(6085):1168–1171. PubMedPubMedCentralCrossRefGoogle Scholar
  127. 127.
    Senes A, Ubarretxena-Belandia I, Engelman DM (2001) The C alpha-H center dot center dot center dot O hydrogen bond: a determinant of stability and specificity in transmembrane helix interactions. Proc Natl Acad Sci USA 98(16):9056–9061. PubMedPubMedCentralCrossRefGoogle Scholar
  128. 128.
    Bayrhuber M, Meins T, Habeck M, Becker S, Giller K, Villinger S, Vonrhein C, Griesinger C, Zweckstetter M, Zeth K (2008) Structure of the human voltage-dependent anion channel. Proc Natl Acad Sci USA 105(40):15370–15375. PubMedPubMedCentralCrossRefGoogle Scholar
  129. 129.
    Luo WB, Cady SD, Hong M (2009) Immobilization of the influenza A M2 transmembrane peptide in virus envelope-mimetic lipid membranes: a solid-state NMR investigation. Biochemistry 48(27):6361–6368. PubMedPubMedCentralCrossRefGoogle Scholar
  130. 130.
    Liao SY, Fritzsching KJ, Hong M (2013) Conformational analysis of the full-length M2 protein of the influenza A virus using solid-state NMR. Protein Sci 22(11):1623–1638. PubMedPubMedCentralCrossRefGoogle Scholar
  131. 131.
    Tang M, Hong M (2009) Structure and mechanism of beta-hairpin antimicrobial peptides in lipid bilayers from solid-state NMR spectroscopy. Mol BioSyst 5(4):317–322. PubMedPubMedCentralCrossRefGoogle Scholar
  132. 132.
    Zheng Z, Yang R, Bodner ML, Weliky DP (2006) Conformational flexibility and strand arrangements of the membrane-associated HIV fusion peptide trimer probed by solid-state NMR spectroscopy. Biochemistry 45(43):12960–12975. PubMedPubMedCentralCrossRefGoogle Scholar
  133. 133.
    Elkins MR, Williams JK, Gelenter MD, Dai P, Kwon B, Sergeyev IV, Pentelute BL, Hong M (2017) Cholesterol-binding site of the influenza M2 protein in lipid bilayers from solid-state NMR. Proc Natl Acad Sci. PubMedCrossRefGoogle Scholar
  134. 134.
    Papadopoulos V (1993) Peripheral-type benzodiazepine diazepam binding inhibitor receptor—biological role in steroidogenic cell-function. Endocr Rev 14(2):222–240. PubMedCrossRefGoogle Scholar
  135. 135.
    Rupprecht R, Papadopoulos V, Rammes G, Baghai TC, Fan JJ, Akula N, Groyer G, Adams D, Schumacher M (2010) Translocator protein (18 kDa) (TSPO) as a therapeutic target for neurological and psychiatric disorders. Nat Rev Drug Discov 9(12):971–988. PubMedCrossRefGoogle Scholar
  136. 136.
    Nothdurfter C, Baghai TC, Schule C, Rupprecht R (2012) Translocator protein (18 kDa) (TSPO) as a therapeutic target for anxiety and neurologic disorders. Eur Arch Psychiatry Clin Neurosci 262:S107–S112. PubMedCrossRefGoogle Scholar
  137. 137.
    Jaremko L, Jaremko M, Giller K, Becker S, Zweckstetter M (2015) Conformational flexibility in the transmembrane protein TSPO. Chemistry (Eur J) 21(46):16555–16563. CrossRefGoogle Scholar
  138. 138.
    Jaremko M, Jaremko L, Giller K, Becker S, Zweckstetter M (2015) Structural integrity of the A147T polymorph of mammalian TSPO. ChemBioChem 16(10):1483–1489. PubMedPubMedCentralCrossRefGoogle Scholar
  139. 139.
    Delavoie F, Li H, Hardwick M, Robert JC, Giatzakis C, Peranzi G, Yao ZX, Maccario J, Lacapere JJ, Papadopoulos V (2003) In vivo and in vitro peripheral-type benzodiazepine receptor polymerization: functional significance in drug ligand and cholesterol binding. Biochemistry 42(15):4506–4519. PubMedCrossRefGoogle Scholar
  140. 140.
    Russ WP, Engelman DM (2000) The GxxxG motif: a framework for transmembrane helix–helix association. J Mol Biol 296(3):911–919. PubMedCrossRefGoogle Scholar
  141. 141.
    Hianik T, Haburcak M (1993) Clustering of cholesterol in DMPC bilayers as indicated by membrane mechanical properties. Gen Physiol Biophys 12(3):283–291PubMedGoogle Scholar
  142. 142.
    Denisov IG, Sligar SG (2016) Nanodiscs for structural and functional studies of membrane proteins. Nat Struct Mol Biol 23(6):481–486. PubMedCrossRefGoogle Scholar
  143. 143.
    Martinez D, Decossas M, Kowal J, Frey L, Stahlberg H, Dufourc EJ, Riek R, Habenstein B, Bibow S, Loquet A (2017) Lipid internal dynamics probed in nanodiscs. ChemPhysChem 18(19):2651–2657. PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.German Center for Neurodegenerative Diseases (DZNE)GöttingenGermany
  2. 2.Department of Neurology, University Medical Center GöttingenUniversity of GöttingenGöttingenGermany
  3. 3.Department for NMR-Based Structural BiologyMax Planck Institute for Biophysical ChemistryGöttingenGermany

Personalised recommendations