Advertisement

Cellular and Molecular Life Sciences

, Volume 75, Issue 11, pp 1999–2009 | Cite as

Enhancer DNA methylation in acute myeloid leukemia and myelodysplastic syndromes

Review

Abstract

DNA methylation (CpG methylation) exerts an important role in normal differentiation and proliferation of hematopoietic stem cells and their differentiated progeny, while it has also the ability to regulate myeloid versus lymphoid fate. Mutations of the epigenetic machinery are observed in hematological malignancies including acute myeloid leukemia (AML) and myelodysplastic syndromes (MDS) resulting in hyper- or hypo-methylation affecting several different pathways. Enhancers are cis-regulatory elements which promote transcription activation and are characterized by histone marks including H3K27ac and H3K4me1/2. These gene subunits are target gene expression ‘fine-tuners’, are differentially used during the hematopoietic differentiation, and, in contrast to promoters, are not shared by the different hematopoietic cell types. Although the interaction between gene promoters and DNA methylation has extensively been studied, much less is known about the interplay between enhancers and DNA methylation. In hematopoiesis, DNA methylation at enhancers has the potential to discriminate between fetal and adult erythropoiesis, and also is a regulatory mechanism in granulopoiesis through repression of neutrophil-specific enhancers in progenitor cells during maturation. The interplay between DNA methylation at enhancers is disrupted in AML and MDS and mainly hyper-methylation at enhancers raising early during myeloid lineage commitment is acquired during malignant transformation. Interactions between mutated epigenetic drivers and other oncogenic mutations also affect enhancers’ activity with final result, myeloid differentiation block. In this review, we have assembled recent data regarding DNA methylation and enhancers’ activity in normal and mainly myeloid malignancies.

Keywords

Transcription factors DNA methyltransferases Histone marks AML MDS Hematopoietic stem cells 

Notes

Acknowledgements

We apologize to the authors whose papers have not been cited.

Author contributions

LB and GV collected data and wrote the paper.

Compliance with ethical standards

Conflict of interest

Authors declare no potential conflict of interest.

References

  1. 1.
    Bröske AM, Vockentanz L, Kharazi S, Huska MR, Mancini E, Scheller M, Kuhl C, Enns A, Prinz M, Jaenisch R, Nerlov C, Leutz A, Andrade-Navarro MA, Jacobsen SE, Rosenbauer F (2009) DNA methylation protects hematopoietic stem cell multipotency from myeloerythroid restriction. Nat Genet 41:1207–1215PubMedCrossRefGoogle Scholar
  2. 2.
    Gu J, Stevens M, Xing X, Li D, Zhang B, Payton JE, Oltz EM, Jarvis JN, Jiang K, Cicero T, Costello JF, Wang T (2016) Mapping of variable DNA methylation across multiple cell types defines a dynamic regulatory landscape of the human genome. G3 (Bethesda) 6:973–986CrossRefGoogle Scholar
  3. 3.
    Hodges E, Molaro A, Dos Santos CO, Thekkat P, Song Q, Uren PJ, Park J, Butler J, Rafii S, McCombie WR, Smith AD, Hannon GJ (2011) Directional DNA methylation changes and complex intermediate states accompany lineage specificity in the adult hematopoietic compartment. Mol Cell 44:17–28PubMedPubMedCentralCrossRefGoogle Scholar
  4. 4.
    Ji H, Ehrlich LI, Seita J, Murakami P, Doi A, Lindau P, Lee H, Aryee MJ, Irizarry RA, Kim K, Rossi DJ, Inlay MA, Serwold T, Karsunky H, Ho L, Daley GQ, Weissman IL, Feinberg AP (2010) Comprehensive methylome map of lineage commitment from haematopoietic progenitors. Nature 467:338–342PubMedPubMedCentralCrossRefGoogle Scholar
  5. 5.
    Bocker MT, Hellwig I, Breiling A, Eckstein V, Ho AD, Lyko F (2011) Genome-wide promoter DNA methylation dynamics of human hematopoietic progenitor cells during differentiation and aging. Blood 117:e182–e189PubMedCrossRefGoogle Scholar
  6. 6.
    Baylin SB, Jones PA (2016) Epigenetic determinants of cancer. Cold Spring Harb Perspect Biol 8:a019505PubMedCrossRefGoogle Scholar
  7. 7.
    Yang L, Rau R, Goodell MA (2015) DNMT3A in haematological malignancies. Nat Rev Cancer 15:152–165PubMedPubMedCentralCrossRefGoogle Scholar
  8. 8.
    Cole CB, Russler-Germain DA, Ketkar S, Verdoni AM, Smith AM, Bangert CV, Helton NM, Guo M, Klco JM, O’Laughlin S, Fronick C, Fulton R, Chang GS, Petti AA, Miller CA, Ley TJ (2017) Haploinsufficiency for DNA methyltransferase 3A predisposes hematopoietic cells to myeloid malignancies. J Clin Investig 127:3657–3674PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    Benetatos L, Vartholomatos G (2016) On the potential role of DNMT1 in acute myeloid leukemia and myelodysplastic syndromes: not another mutated epigenetic driver. Ann Hematol 95:1571–1582PubMedCrossRefGoogle Scholar
  10. 10.
    Figueroa ME, Skrabanek L, Li Y, Jiemjit A, Fandy TE, Paietta E, Fernandez H, Tallman MS, Greally JM, Carraway H, Licht JD, Gore SD, Melnick A (2009) MDS and secondary AML display unique patterns and abundance of aberrant DNA methylation. Blood 114:3448–3458PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    Jiang Y, Dunbar A, Gondek LP, Mohan S, Rataul M, O’Keefe C, Sekeres M, Saunthararajah Y, Maciejewski JP (2009) Aberrant DNA methylation is a dominant mechanism in MDS progression to AML. Blood 113:1315–1325PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    Sengupta S, George RE (2017) Super-Enhancer-Driven Transcriptional Dependencies in Cancer. Trends Cancer. 3:269–281PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    Heinz S, Romanoski CE, Benner C, Glass CK (2015) The selection and function of cell type-specific enhancers. Nat Rev Mol Cell Biol 16:144–154PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    Kagey MH, Newman JJ, Bilodeau S, Zhan Y, Orlando DA, van Berkum NL, Ebmeier CC, Goossens J, Rahl PB, Levine SS, Taatjes DJ, Dekker J, Young RA (2010) Mediator and cohesin connect gene expression and chromatin architecture. Nature 467:430–435PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Spitz F, Furlong EE (2012) Transcription factors: from enhancer binding to developmental control. Nat Rev Genet 13:613–626PubMedCrossRefGoogle Scholar
  16. 16.
    Calo E, Wysocka J (2013) Modification of enhancer chromatin: what, how, and why? Mol Cell 49:825–837PubMedCrossRefGoogle Scholar
  17. 17.
    Creyghton MP, Cheng AW, Welstead GG, Kooistra T, Carey BW, Steine EJ, Hanna J, Lodato MA, Frampton GM, Sharp PA, Boyer LA, Young RA, Jaenisch R (2010) Histone H3K27ac separates active from poised enhancers and predicts developmental state. Proc Natl Acad Sci USA 107:21931–21936PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    Rada-Iglesias A, Bajpai R, Swigut T, Brugmann SA, Flynn RA, Wysocka J (2011) A unique chromatin signature uncovers early developmental enhancers in humans. Nature 470:279–283PubMedCrossRefGoogle Scholar
  19. 19.
    Cruz-Molina S, Respuela P, Tebartz C, Kolovos P, Nikolic M, Fueyo R, van Ijcken WFJ, Grosveld F, Frommolt P, Bazzi H, Rada-Iglesias A (2017) PRC2 facilitates the regulatory topology required for poised enhancer function during pluripotent stem cell differentiation. Cell Stem Cell 20(689–705):e9Google Scholar
  20. 20.
    Hnisz D, Abraham BJ, Lee TI, Lau A, Saint-André V, Sigova AA, Hoke HA, Young RA (2013) Super-enhancers in the control of cell identity and disease. Cell 155:934–947PubMedCrossRefGoogle Scholar
  21. 21.
    Niederriter AR, Varshney A, Parker SC, Martin DM (2015) Super enhancers in cancers, complex disease, and developmental disorders. Genes (Basel) 6:1183–1200CrossRefGoogle Scholar
  22. 22.
    Whyte WA, Orlando DA, Hnisz D, Abraham BJ, Lin CY, Kagey MH, Rahl PB, Lee TI, Young RA (2013) Master transcription factors and mediator establish super-enhancers at key cell identity genes. Cell 153:307–319PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Kowalczyk MS, Hughes JR, Garrick D, Lynch MD, Sharpe JA, Sloane-Stanley JA, McGowan SJ, De Gobbi M, Hosseini M, Vernimmen D, Brown JM, Gray NE, Collavin L, Gibbons RJ, Flint J, Taylor S, Buckle VJ, Milne TA, Wood WG, Higgs DR (2012) Intragenic enhancers act as alternative promoters. Mol Cell 45:447–458PubMedCrossRefGoogle Scholar
  24. 24.
    Dao LTM, Galindo-Albarrán AO, Castro-Mondragon JA, Andrieu-Soler C, Medina-Rivera A, Souaid C, Charbonnier G, Griffon A, Vanhille L, Stephen T, Alomairi J, Martin D, Torres M, Fernandez N, Soler E, van Helden J, Puthier D, Spicuglia S (2017) Genome-wide characterization of mammalian promoters with distal enhancer functions. Nat Genet 49:1073–1081PubMedCrossRefGoogle Scholar
  25. 25.
    Cao Q, Anyansi C, Hu X, Xu L, Xiong L, Tang W, Mok MTS, Cheng C, Fan X, Gerstein M, Cheng ASL, Yip KY (2017) Reconstruction of enhancer-target networks in 935 samples of human primary cells, tissues and cell lines. Nat Genet 49:1428–1436PubMedCrossRefGoogle Scholar
  26. 26.
    Fulco CP, Munschauer M, Anyoha R, Munson G, Grossman SR, Perez EM, Kane M, Cleary B, Lander ES, Engreitz JM (2016) Systematic mapping of functional enhancer-promoter connections with CRISPR interference. Science 354:769–773PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Fukaya T, Lim B, Levine M (2016) Enhancer control of transcriptional bursting. Cell 166:358–368PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Rubin AJ, Barajas BC, Furlan-Magaril M, Lopez-Pajares V, Mumbach MR, Howard I, Kim DS, Boxer LD, Cairns J, Spivakov M, Wingett SW, Shi M, Zhao Z, Greenleaf WJ, Kundaje A, Snyder M, Chang HY, Fraser P, Khavari PA (2017) Lineage-specific dynamic and pre-established enhancer-promoter contacts cooperate in terminal differentiation. Nat Genet 49:1522–1528PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Matharu N, Ahituv N (2015) Minor loops in major folds: enhancer-promoter looping, chromatin restructuring, and their association with transcriptional regulation and disease. PLoS Genet 11:e1005640PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    Zabidi MA, Arnold CD, Schernhuber K, Pagani M, Rath M, Frank O, Stark A (2015) Enhancer-core-promoter specificity separates developmental and housekeeping gene regulation. Nature 518(7540):556–559PubMedCrossRefGoogle Scholar
  31. 31.
    Teppo S, Laukkanen S, Liuksiala T, Nordlund J, Oittinen M, Teittinen K, Grönroos T, St-Onge P, Sinnett D, Syvänen AC, Nykter M, Viiri K, Heinäniemi M, Lohi O (2016) Genome-wide repression of eRNA and target gene loci by the ETV6-RUNX1 fusion in acute leukemia. Genome Res 26:1468–1477PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Ooi WF, Xing M, Xu C, Yao X, Ramlee MK, Lim MC, Cao F, Lim K, Babu D, Poon LF, Lin Suling J, Qamra A, Irwanto A, Qu Zhengzhong J, Nandi T, Lee-Lim AP, Chan YS, Tay ST, Lee MH, Davies JO, Wong WK, Soo KC, Chan WH, Ong HS, Chow P, Wong CY, Rha SY, Liu J, Hillmer AM, Hughes JR, Rozen S, Teh BT, Fullwood MJ, Li S, Tan P (2016) Epigenomic profiling of primary gastric adenocarcinoma reveals super-enhancer heterogeneity. Nat Commun 7:12983PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Hawkins RD, Hon GC, Lee LK, Ngo Q, Lister R, Pelizzola M, Edsall LE, Kuan S, Luu Y, Klugman S, Antosiewicz-Bourget J, Ye Z, Espinoza C, Agarwahl S, Shen L, Ruotti V, Wang W, Stewart R, Thomson JA, Ecker JR, Ren B (2010) Distinct epigenomic landscapes of pluripotent and lineage-committed human cells. Cell Stem Cell 6:479–491PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Wiench M, John S, Baek S, Johnson TA, Sung MH, Escobar T, Simmons CA, Pearce KH, Biddie SC, Sabo PJ, Thurman RE, Stamatoyannopoulos JA, Hager GL (2011) DNA methylation status predicts cell type-specific enhancer activity. EMBO J 30:3028–3039PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Petell CJ, Alabdi L, He M, San Miguel P, Rose R, Gowher H (2016) An epigenetic switch regulates de novo DNA methylation at a subset of pluripotency gene enhancers during embryonic stem cell differentiation. Nucleic Acids Res 44:7605–7617PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    Blattler A, Pj Farnham (2013) Cross-talk between site-specific transcription factors and DNA methylation states. J Biol Chem 288:34287–34294PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    King AD, Huang K, Rubbi L, Liu S, Wang CY, Wang Y, Pellegrini M, Fan G (2016) Reversible regulation of promoter and enhancer histone landscape by DNA methylation in mouse embryonic stem cells. Cell Rep 17:289–302PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Tsagaratou A, Äijö T, Lio CW, Yue X, Huang Y, Jacobsen SE, Lähdesmäki H, Rao A (2014) Dissecting the dynamic changes of 5-hydroxymethylcytosine in T-cell development and differentiation. Proc Natl Acad Sci USA 111:E3306–E3315PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    Sérandour AA, Avner S, Oger F, Bizot M, Percevault F, Lucchetti-Miganeh C, Palierne G, Gheeraert C, Barloy-Hubler F, Péron CL, Madigou T, Durand E, Froguel P, Staels B, Lefebvre P, Métivier R, Eeckhoute J, Salbert G (2012) Dynamic hydroxymethylation of deoxyribonucleic acid marks differentiation-associated enhancers. Nucleic Acids Res 40:8255–8265PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    Hon GC, Song CX, Du T, Jin F, Selvaraj S, Lee AY, Yen CA, Ye Z, Mao SQ, Wang BA, Kuan S, Edsall LE, Zhao BS, Xu GL, He C, Ren B (2014) mC oxidation by Tet2 modulates enhancer activity and timing of transcriptome reprogramming during differentiation. Mol Cell 56:286–297PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Lu F, Liu Y, Jiang L, Yamaguchi S, Zhang Y (2014) Role of Tet proteins in enhancer activity and telomere elongation. Genes Dev 28:2103–2119PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    Hon GC, Rajagopal N, Shen Y, McCleary DF, Yue F, Dang MD, Ren B (2013) Epigenetic memory at embryonic enhancers identified in DNA methylation maps from adult mouse tissues. Nat Genet 45:1198–1206PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Xu J, Pope SD, Jazirehi AR, Attema JL, Papathanasiou P, Watts JA, Zaret KS, Weissman IL, Smale ST (2007) Pioneer factor interactions and unmethylated CpG dinucleotides mark silent tissue-specific enhancers in embryonic stem cells. Proc Natl Acad Sci USA 104:12377–12382PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    Kaaij LJ, Mokry M, Zhou M, Musheev M, Geeven G, Melquiond AS, de Jesus Domingues AM, de Laat W, Niehrs C, Smith AD, Ketting RF (2016) Enhancers reside in a unique epigenetic environment during early zebrafish development. Genome Biol 17:146PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Zhou S, Treloar AE, Lupien M (2016) Emergence of the noncoding cancer genome: a target of genetic and epigenetic alterations. Cancer Discov 6:1215–1229PubMedPubMedCentralCrossRefGoogle Scholar
  46. 46.
    Bell RE, Golan T, Sheinboim D, Malcov H, Amar D, Salamon A, Liron T, Gelfman S, Gabet Y, Shamir R, Levy C (2016) Enhancer methylation dynamics contribute to cancer plasticity and patient mortality. Genome Res 26:601–611PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    Aran D, Sabato S, Hellman A (2013) DNA methylation of distal regulatory sites characterizes dysregulation of cancer genes. Genome Biol 14:R21PubMedPubMedCentralCrossRefGoogle Scholar
  48. 48.
    Mahé EA, Madigou T, Sérandour AA, Bizot M, Avner S, Chalmel F, Palierne G, Métivier R, Salbert G (2017) Cytosine modifications modulate the chromatin architecture of transcriptional enhancers. Genome Res 27:947–958PubMedPubMedCentralCrossRefGoogle Scholar
  49. 49.
    Aran D, Hellman A (2013) DNA methylation of transcriptional enhancers and cancer predisposition. Cell 154:11–13PubMedCrossRefGoogle Scholar
  50. 50.
    Jeong KW, Andreu-Vieyra C, You JS, Jones PA, Stallcup MR (2014) Establishment of active chromatin structure at enhancer elements by mixed-lineage leukemia 1 to initiate estrogen-dependent gene expression. Nucleic Acids Res 42:2245–2256PubMedCrossRefGoogle Scholar
  51. 51.
    Rinaldi L, Datta D, Serrat J, Morey L, Solanas G, Avgustinova A, Blanco E, Pons JI, Matallanas D, Von Kriegsheim A, Di Croce L, Benitah SA (2016) Dnmt3a and Dnmt3b associate with enhancers to regulate human epidermal stem cell homeostasis. Cell Stem Cell 19:491–501PubMedCrossRefGoogle Scholar
  52. 52.
    Rinaldi L, Avgustinova A, Martín M, Datta D, Solanas G, Prats N, Benitah SA (2017) Loss of Dnmt3a and Dnmt3b does not affect epidermal homeostasis but promotes squamous transformation through PPAR-γ. Elife 6:e21697PubMedPubMedCentralCrossRefGoogle Scholar
  53. 53.
    Shlush LI, Zandi S, Mitchell A, Chen WC, Brandwein JM, Gupta V, Kennedy JA, Schimmer AD, Schuh AC, Yee KW, McLeod JL, Doedens M, Medeiros JJ, Marke R, Kim HJ, Lee K, McPherson JD, Hudson TJ, Brown AM, HALT Pan-Leukemia Gene Panel Consortium, Yousif F, Trinh QM, Stein LD, Minden MD, Wang JC, Dick JE (2014) Identification of pre-leukaemic haematopoietic stem cells in acute leukaemia. Nature 506:328–333PubMedPubMedCentralCrossRefGoogle Scholar
  54. 54.
    Taberlay PC, Statham AL, Kelly TK, Clark SJ, Jones PA (2014) Reconfiguration of nucleosome-depleted regions at distal regulatory elements accompanies DNA methylation of enhancers and insulators in cancer. Genome Res 24:1421–1432PubMedPubMedCentralCrossRefGoogle Scholar
  55. 55.
    Heyn H, Vidal E, Ferreira HJ, Vizoso M, Sayols S, Gomez A, Moran S, Boque-Sastre R, Guil S, Martinez-Cardus A, Lin CY, Royo R, Sanchez-Mut JV, Martinez R, Gut M, Torrents D, Orozco M, Gut I, Young RA, Esteller M (2016) Epigenomic analysis detects aberrant super-enhancer DNA methylation in human cancer. Genome Biol 17:11PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    Cico A, Andrieu-Soler C, Soler E (2016) Enhancers and their dynamics during hematopoietic differentiation and emerging strategies for therapeutic action. FEBS Lett 590:4084–4104PubMedCrossRefGoogle Scholar
  57. 57.
    Romano O, Peano C, Tagliazucchi GM, Petiti L, Poletti V, Cocchiarella F, Rizzi E, Severgnini M, Cavazza A, Rossi C, Pagliaro P, Ambrosi A, Ferrari G, Bicciato S, De Bellis G, Mavilio F, Miccio A (2016) Transcriptional, epigenetic and retroviral signatures identify regulatory regions involved in hematopoietic lineage commitment. Sci Rep 6:24724PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    Javierre BM, Burren OS, Wilder SP, Kreuzhuber R, Hill SM, Sewitz S, Cairns J, Wingett SW, Várnai C, Thiecke MJ, Burden F, Farrow S, Cutler AJ, Rehnström K, Downes K, Grassi L, Kostadima M, Freire-Pritchett P, Wang F, BLUEPRINT Consortium, Stunnenberg HG, Todd JA, Zerbino DR, Stegle O, Ouwehand WH, Frontini M, Wallace C, Spivakov M, Fraser P (2016) Lineage-specific genome architecture links enhancers and non-coding disease variants to target gene promoters. Cell 167:1369–1384.e19PubMedPubMedCentralCrossRefGoogle Scholar
  59. 59.
    Lara-Astiaso D, Weiner A, Lorenzo-Vivas E, Zaretsky I, Jaitin DA, David E, Keren-Shaul H, Mildner A, Winter D, Jung S, Friedman N, Amit I (2014) Immunogenetics. Chromatin state dynamics during blood formation. Science 345:943–949PubMedPubMedCentralCrossRefGoogle Scholar
  60. 60.
    Luyten A, Zang C, Liu XS, Shivdasani RA (2014) Active enhancers are delineated de novo during hematopoiesis, with limited lineage fidelity among specified primary blood cells. Genes Dev 28:1827–1839PubMedPubMedCentralCrossRefGoogle Scholar
  61. 61.
    Choukrallah MA, Song S, Rolink AG, Burger L, Matthias P (2015) Enhancer repertoires are reshaped independently of early priming and heterochromatin dynamics during B cell differentiation. Nat Commun 6:8324PubMedPubMedCentralCrossRefGoogle Scholar
  62. 62.
    Migueles RP, Shaw L, Rodrigues NP, May G, Henseleit K, Anderson KG, Goker H, Jones CM, de Bruijn MF, Brickman JM, Enver T (2017) Transcriptional regulation of Hhex in hematopoiesis and hematopoietic stem cell ontogeny. Dev Biol 424:236–245PubMedCrossRefGoogle Scholar
  63. 63.
    Huang J, Liu X, Li D, Shao Z, Cao H, Zhang Y, Trompouki E, Bowman TV, Zon LI, Yuan GC, Orkin SH, Xu J (2016) Dynamic control of enhancer repertoires drives lineage and stage-specific transcription during hematopoiesis. Dev Cell 36:9–23PubMedPubMedCentralCrossRefGoogle Scholar
  64. 64.
    Xu J, Shao Z, Li D, Xie H, Kim W, Huang J, Taylor JE, Pinello L, Glass K, Jaffe JD, Yuan GC, Orkin SH (2015) Developmental control of polycomb subunit composition by GATA factors mediates a switch to non-canonical functions. Mol Cell 57:304–316PubMedPubMedCentralCrossRefGoogle Scholar
  65. 65.
    Xu J, Shao Z, Glass K, Bauer DE, Pinello L, Van Handel B, Hou S, Stamatoyannopoulos JA, Mikkola HK, Yuan GC, Orkin SH (2012) Combinatorial assembly of developmental stage-specific enhancers controls gene expression programs during human erythropoiesis. Dev Cell 23:796–811PubMedPubMedCentralCrossRefGoogle Scholar
  66. 66.
    Soucie EL, Weng Z, Geirsdóttir L, Molawi K, Maurizio J, Fenouil R, Mossadegh-Keller N, Gimenez G, VanHille L, Beniazza M, Favret J, Berruyer C, Perrin P, Hacohen N, Andrau JC, Ferrier P, Dubreuil P, Sidow A, Sieweke MH (2016) Lineage-specific enhancers activate self-renewal genes in macrophages and embryonic stem cells. Science 351:aad5510PubMedPubMedCentralCrossRefGoogle Scholar
  67. 67.
    van Oevelen C, Collombet S, Vicent G, Hoogenkamp M, Lepoivre C, Badeaux A, Bussmann L, Sardina JL, Thieffry D, Beato M, Shi Y, Bonifer C, Graf T (2015) C/EBPα activates pre-existing and de novo macrophage enhancers during induced pre-B cell transdifferentiation and myelopoiesis. Stem Cell Rep 5:232–247CrossRefGoogle Scholar
  68. 68.
    Kaikkonen MU, Spann NJ, Heinz S, Romanoski CE, Allison KA, Stender JD, Chun HB, Tough DF, Prinjha RK, Benner C, Glass CK (2013) Remodeling of the enhancer landscape during macrophage activation is coupled to enhancer transcription. Mol Cell 51:310–325PubMedPubMedCentralCrossRefGoogle Scholar
  69. 69.
    Pham TH, Benner C, Lichtinger M, Schwarzfischer L, Hu Y, Andreesen R, Chen W, Rehli M (2012) Dynamic epigenetic enhancer signatures reveal key transcription factors associated with monocytic differentiation states. Blood 119:e161–e171PubMedCrossRefGoogle Scholar
  70. 70.
    Tagore M, McAndrew MJ, Gjidoda A, Floer M (2015) The lineage-specific transcription factor PU.1 prevents polycomb-mediated heterochromatin formation at macrophage-specific genes. Mol Cell Biol 35:2610–2625PubMedPubMedCentralCrossRefGoogle Scholar
  71. 71.
    Lavin Y, Winter D, Blecher-Gonen R, David E, Keren-Shaul H, Merad M, Jung S, Amit I (2014) Tissue-resident macrophage enhancer landscapes are shaped by the local microenvironment. Cell 159:1312–1326PubMedPubMedCentralCrossRefGoogle Scholar
  72. 72.
    Heinz S, Romanoski CE, Benner C, Allison KA, Kaikkonen MU, Orozco LD, Glass CK (2013) Effect of natural genetic variation on enhancer selection and function. Nature 503:487–492PubMedPubMedCentralCrossRefGoogle Scholar
  73. 73.
    Gosselin D, Link VM, Romanoski CE, Fonseca GJ, Eichenfield DZ, Spann NJ, Stender JD, Chun HB, Garner H, Geissmann F, Glass CK (2014) Environment drives selection and function of enhancers controlling tissue-specific macrophage identities. Cell 159:1327–1340PubMedPubMedCentralCrossRefGoogle Scholar
  74. 74.
    Huang Y, Sitwala K, Bronstein J, Sanders D, Dandekar M, Collins C, Robertson G, MacDonald J, Cezard T, Bilenky M, Thiessen N, Zhao Y, Zeng T, Hirst M, Hero A, Jones S, Hess JL (2012) Identification and characterization of Hoxa9 binding sites in hematopoietic cells. Blood 119:388–398PubMedPubMedCentralCrossRefGoogle Scholar
  75. 75.
    McKeown MR, Corces MR, Eaton ML, Fiore C, Lee E, Lopez JT, Chen MW, Smith D, Chan SM, Koenig JL, Austgen K, Guenther MG, Orlando DA, Lovén J, Fritz CC, Majeti R (2017) Superenhancer analysis defines novel epigenomic subtypes of non-APL AML, including an RARα dependency targetable by SY-1425, a potent and selective RARα agonist. Cancer Discov 7:1136–1153PubMedCrossRefPubMedCentralGoogle Scholar
  76. 76.
    Wang E, Aifantis I (2017) Targeting the noncoding genome: superenhancers meet their kryptonite. Cancer Discov 7:1065–1066PubMedPubMedCentralCrossRefGoogle Scholar
  77. 77.
    Xu J, Li L, Xiong J, denDekker A, Ye A, Karatas H, Liu L, Wang H, Qin ZS, Wang S, Dou Y (2016) MLL1 and MLL1 fusion proteins have distinct functions in regulating leukemic transcription program. Cell Discov 2:16008PubMedPubMedCentralCrossRefGoogle Scholar
  78. 78.
    Katsumura KR, Ong IM, DeVilbiss AW, Sanalkumar R, Bresnick EH (2016) GATA factor-dependent positive-feedback circuit in acute myeloid leukemia cells. Cell Rep 16:2428–2441PubMedPubMedCentralCrossRefGoogle Scholar
  79. 79.
    Hewitt KJ, Katsumura KR, Matson DR, Devadas P, Tanimura N, Hebert AS, Coon JJ, Kim JS, Dewey CN, Keles S, Hao S, Paulson RF, Bresnick EH (2017) GATA factor-regulated Samd14 enhancer confers red blood cell regeneration and survival in severe anemia. Dev Cell 42(213–225):e4Google Scholar
  80. 80.
    Mehta C, Johnson KD, Gao X, Ong IM, Katsumura KR, McIver SC, Ranheim EA, Bresnick EH (2017) Integrating enhancer mechanisms to establish a hierarchical blood development program. Cell Rep 20:2966–2979PubMedPubMedCentralCrossRefGoogle Scholar
  81. 81.
    Yamazaki H, Suzuki M, Otsuki A, Shimizu R, Bresnick EH, Engel JD, Yamamoto M (2014) A remote GATA2 hematopoietic enhancer drives leukemogenesis in inv(3)(q21;q26) by activating EVI1 expression. Cancer Cell 25:415–427PubMedPubMedCentralCrossRefGoogle Scholar
  82. 82.
    Gröschel S, Sanders MA, Hoogenboezem R, de Wit E, Bouwman BAM, Erpelinck C, van der Velden VHJ, Havermans M, Avellino R, van Lom K, Rombouts EJ, van Duin M, Döhner K, Beverloo HB, Bradner JE, Döhner H, Löwenberg B, Valk PJM, Bindels EMJ, de Laat W, Delwel R (2014) A single oncogenic enhancer rearrangement causes concomitant EVI1 and GATA2 deregulation in leukemia. Cell 157:369–381PubMedCrossRefGoogle Scholar
  83. 83.
    Guo H, Cooper S, Friedman AD (2016) In vivo deletion of the Cebpa +37 kb enhancer markedly reduces Cebpa mRNA in myeloid progenitors but not in non-hematopoietic tissues to impair granulopoiesis. PLoS One 11:e0150809PubMedPubMedCentralCrossRefGoogle Scholar
  84. 84.
    Cooper S, Guo H, Friedman AD (2015) The +37 kb Cebpa enhancer is critical for Cebpa myeloid gene expression and contains functional sites that bind SCL, GATA2, C/EBPα, PU.1, and additional Ets factors. PLoS One 10:e0126385PubMedPubMedCentralCrossRefGoogle Scholar
  85. 85.
    Avellino R, Havermans M, Erpelinck C, Sanders MA, Hoogenboezem R, van de Werken HJ, Rombouts E, van Lom K, van Strien PM, Gebhard C, Rehli M, Pimanda J, Beck D, Erkeland S, Kuiken T, de Looper H, Gröschel S, Touw I, Bindels E, Delwel R (2016) An autonomous CEBPA enhancer specific for myeloid-lineage priming and neutrophilic differentiation. Blood 127:2991–3003PubMedPubMedCentralCrossRefGoogle Scholar
  86. 86.
    Avellino R, Delwel R (2017) Expression and regulation of C/EBPα in normal myelopoiesis and in malignant transformation. Blood 129:2083–2091PubMedCrossRefGoogle Scholar
  87. 87.
    Goardon N, Marchi E, Atzberger A, Quek L, Schuh A, Soneji S, Woll P, Mead A, Alford KA, Rout R, Chaudhury S, Gilkes A, Knapper S, Beldjord K, Begum S, Rose S, Geddes N, Griffiths M, Standen G, Sternberg A, Cavenagh J, Hunter H, Bowen D, Killick S, Robinson L, Price A, Macintyre E, Virgo P, Burnett A, Craddock C, Enver T, Jacobsen SE, Porcher C, Vyas P (2011) Coexistence of LMPP-like and GMP-like leukemia stem cells in acute myeloid leukemia. Cancer Cell 19:138–152PubMedCrossRefGoogle Scholar
  88. 88.
    Lessard S, Beaudoin M, Benkirane K, Lettre G (2015) Comparison of DNA methylation profiles in human fetal and adult red blood cell progenitors. Genome Med 7:1PubMedPubMedCentralCrossRefGoogle Scholar
  89. 89.
    Takai J, Moriguchi T, Suzuki M, Yu L, Ohneda K, Yamamoto M (2013) The Gata1 5′ region harbors distinct cis-regulatory modules that direct gene activation in erythroid cells and gene inactivation in HSCs. Blood 122:3450–3460PubMedCrossRefGoogle Scholar
  90. 90.
    Yu L, Takai J, Otsuki A, Katsuoka F, Suzuki M, Katayama S, Nezu M, Engel JD, Moriguchi T, Yamamoto M (2017) Derepression of the DNA methylation machinery of the Gata1 gene triggers the differentiation cue for erythropoiesis. Mol Cell Biol 37:e00592-16PubMedPubMedCentralCrossRefGoogle Scholar
  91. 91.
    Wijetunga NA, Delahaye F, Zhao YM, Golden A, Mar JC, Einstein FH, Greally JM (2014) The meta-epigenomic structure of purified human stem cell populations is defined at cis-regulatory sequences. Nat Commun 5:5195PubMedPubMedCentralCrossRefGoogle Scholar
  92. 92.
    Rönnerblad M, Andersson R, Olofsson T, Douagi I, Karimi M, Lehmann S, Hoof I, de Hoon M, Itoh M, Nagao-Sato S, Kawaji H, Lassmann T, Carninci P, Hayashizaki Y, Forrest AR, Sandelin A, Ekwall K, Arner E, Lennartsson A, FANTOM Consortium (2014) Analysis of the DNA methylome and transcriptome in granulopoiesis reveals timed changes and dynamic enhancer methylation. Blood 123:e79–89PubMedCrossRefGoogle Scholar
  93. 93.
    Farlik M, Halbritter F, Müller F, Choudry FA, Ebert P, Klughammer J, Farrow S, Santoro A, Ciaurro V, Mathur A, Uppal R, Stunnenberg HG, Ouwehand WH, Laurenti E, Lengauer T, Frontini M, Bock C (2016) DNA methylation dynamics of human hematopoietic stem cell differentiation. Cell Stem Cell 19:808–822PubMedPubMedCentralCrossRefGoogle Scholar
  94. 94.
    Kulis M, Merkel A, Heath S, Queirós AC, Schuyler RP, Castellano G, Beekman R, Raineri E, Esteve A, Clot G, Verdaguer-Dot N, Duran-Ferrer Russiñol N, Vilarrasa-Blasi R, Ecker S, Pancaldi V, Rico D, Agueda L, Blanc J, Richardson D, Clarke L, Datta A, Pascual M, Agirre X, Prosper F, Alignani D, Paiva B, Caron G, Fest T, Muench MO, Fomin ME, Lee ST, Wiemels JL, Valencia A, Gut M, Flicek P, Stunnenberg HG, Siebert R, Küppers R, Gut IG, Campo E, Martín-Subero JI (2015) Whole-genome fingerprint of the DNA methylome during human B cell differentiation. Nat Genet 47:746–756PubMedPubMedCentralCrossRefGoogle Scholar
  95. 95.
    Barwick BG, Scharer CD, Bally APR, Boss JM (2016) Plasma cell differentiation is coupled to division-dependent DNA hypomethylation and gene regulation. Nat Immunol 17:1216–1225PubMedPubMedCentralCrossRefGoogle Scholar
  96. 96.
    Fleischer T, Tekpli X, Mathelier A, Wang S, Nebdal D, Dhakal HP, Sahlberg KK, Schlichting E, Oslo Breast Cancer Research Consortium (OSBREAC), Børresen-Dale AL, Borgen E, Naume B, Eskeland R, Frigessi A, Tost J, Hurtado A, Kristensen VN (2017) DNA methylation at enhancers identifies distinct breast cancer lineages. Nat Commun. 8:1379PubMedPubMedCentralCrossRefGoogle Scholar
  97. 97.
    Wahlberg P, Lundmark A, Nordlund J, Busche S, Raine A, Tandre K, Rönnblom L, Sinnett D, Forestier E, Pastinen T, Lönnerholm G, Syvänen AC (2016) DNA methylome analysis of acute lymphoblastic leukemia cells reveals stochastic de novo DNA methylation in CpG islands. Epigenomics 8:1367–1387PubMedCrossRefGoogle Scholar
  98. 98.
    Bergmann AK, Castellano G, Alten J, Ammerpohl O, Kolarova J, Nordlund J, Martin-Subero JI, Schrappe M, Siebert R (2017) DNA methylation profiling of pediatric B-cell lymphoblastic leukemia with KMT2A rearrangement identifies hypomethylation at enhancer sites. Pediatr Blood Cancer 64(3).  https://doi.org/10.1002/pbc.26251
  99. 99.
    Burda P, Vargova J, Curik N, Salek C, Papadopoulos GL, Strouboulis J, Stopka T (2016) GATA-1 inhibits PU.1 gene via DNA and histone H3K9 methylation of its distal enhancer in erythroleukemia. PLoS One 11:e0152234PubMedPubMedCentralCrossRefGoogle Scholar
  100. 100.
    Agirre X, Castellano G, Pascual M, Heath S, Kulis M, Segura V, Bergmann A, Esteve A, Merkel A, Raineri E, Agueda L, Blanc J, Richardson D, Clarke L, Datta A, Russiñol N, Queirós AC, Beekman R, Rodríguez-Madoz JR, San José-Enériz E, Fang F, Gutiérrez NC, García-Verdugo JM, Robson MI, Schirmer EC, Guruceaga E, Martens JH, Gut M, Calasanz MJ, Flicek P, Siebert R, Campo E, Miguel JF, Melnick A, Stunnenberg HG, Gut IG, Prosper F, Martín-Subero JI (2015) Whole-epigenome analysis in multiple myeloma reveals DNA hypermethylation of B cell-specific enhancers. Genome Res 25:478–487PubMedPubMedCentralCrossRefGoogle Scholar
  101. 101.
    Aran D, Abu-Remaileh M, Levy R, Meron N, Toperoff G, Edrei Y, Bergman Y, Hellman A (2016) Embryonic stem cell (ES)-specific enhancers specify the expression potential of ES genes in cancer. PLoS Genet 12:e1005840PubMedPubMedCentralCrossRefGoogle Scholar
  102. 102.
    Glass JL, Hassane D, Wouters BJ, Kunimoto H, Avellino R, Garrett-Bakelman FE, Guryanova OA, Bowman R, Redlich S, Intlekofer AM, Meydan C, Qin T, Fall M, Alonso A, Guzman ML, Valk PJM, Thompson CB, Levine R, Elemento O, Delwel R, Melnick A, Figueroa ME (2017) Epigenetic identity in AML depends on disruption of nonpromoter regulatory elements and is affected by antagonistic effects of mutations in epigenetic modifiers. Cancer Discov 7:868–883PubMedCrossRefGoogle Scholar
  103. 103.
    Spencer DH, Russler-Germain DA, Ketkar S, Helton NM, Lamprecht TL, Fulton RS, Fronick CC, O’Laughlin M, Heath SE, Shinawi M, Westervelt P, Payton JE, Wartman LD, Welch JS, Wilson RK, Walter MJ, Link DC, DiPersio JF, Ley TJ (2017) CpG island hypermethylation mediated by DNMT3A is a consequence of AML progression. Cell 168(801–816):e13Google Scholar
  104. 104.
    Yang L, Rodriguez B, Mayle A, Park HJ, Lin X, Luo M, Jeong M, Curry CV, Kim SB, Ruau D, Zhang X, Zhou T, Zhou M, Rebel VI, Challen GA, Gottgens B, Lee JS, Rau R, Li W, Goodell MA (2016) DNMT3A loss drives enhancer hypomethylation in FLT3-ITD-associated leukemias. Cancer Cell 29:922–934PubMedPubMedCentralCrossRefGoogle Scholar
  105. 105.
    Lu R, Wang P, Parton T, Zhou Y, Chrysovergis K, Rockowitz S, Chen WY, Abdel-Wahab O, Wade PA, Zheng D, Wang GG (2016) Epigenetic perturbations by Arg882-mutated DNMT3A potentiate aberrant stem cell gene-expression program and acute leukemia development. Cancer Cell 30:92–107PubMedPubMedCentralCrossRefGoogle Scholar
  106. 106.
    Qu Y, Siggens L, Cordeddu L, Gaidzik VI, Karlsson K, Bullinger L, Döhner K, Ekwall K, Lehmann S, Lennartsson A (2017) Cancer-specific changes in DNA methylation reveal aberrant silencing and activation of enhancers in leukemia. Blood 129:e13–e25PubMedCrossRefGoogle Scholar
  107. 107.
    Yamazaki J, Jelinek J, Lu Y, Cesaroni M, Madzo J, Neumann F, He R, Taby R, Vasanthakumar A, Macrae Ostler KR, Kantarjian HM, Liang S, Estecio MR, Godley LA, Issa JP (2015) TET2 mutations affect non-CpG island DNA methylation at enhancers and transcription factor-binding sites in chronic myelomonocytic leukemia. Cancer Res 75:2833–2843PubMedPubMedCentralCrossRefGoogle Scholar
  108. 108.
    Rasmussen KD, Jia G, Johansen JV, Pedersen MT, Rapin N, Bagger FO, Porse BT, Bernard OA, Christensen J, Helin K (2015) Loss of TET2 in hematopoietic cells leads to DNA hypermethylation of active enhancers and induction of leukemogenesis. Genes Dev 29:910–922PubMedPubMedCentralCrossRefGoogle Scholar
  109. 109.
    Hasegawa N, Oshima M, Sashida G, Matsui H, Koide S, Saraya A, Wang C, Muto T, Takane K, Kaneda A, Shimoda K, Nakaseko C, Yokote K, Iwama A (2017) Impact of combinatorial dysfunctions of Tet2 and Ezh2 on the epigenome in the pathogenesis of myelodysplastic syndrome. Leukemia 31:861–871PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Blood BankPreveza General HospitalPrevezaGreece
  2. 2.Molecular Biology LaboratoryIoannina University HospitalIoanninaGreece

Personalised recommendations