Skip to main content

Advertisement

Log in

Cellular functions of stem cell factors mediated by the ubiquitin–proteasome system

  • Review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Stem cells undergo partitioning through mitosis and separate into specific cells of each of the three embryonic germ layers: endoderm, mesoderm, and ectoderm. Pluripotency, reprogramming, and self-renewal are essential elements of embryonic stem cells (ESCs), and it is becoming evident that regulation of protein degradation mediated by the ubiquitin–proteasome system (UPS) is one of the key cellular mechanisms in ESCs. Although the framework of that mechanism may seem simple, it involves complicated proteolytic machinery. The UPS controls cell development, survival, differentiation, lineage commitment, migration, and homing processes. This review is centered on the connection between stem cell factors NANOG, OCT-3/4, SOX2, KLF4, C-MYC, LIN28, FAK, and telomerase and the UPS. Herein, we summarize recent findings and discuss potential UPS mechanisms involved in pluripotency, reprogramming, differentiation, and self-renewal. Interactions between the UPS and stem cell transcription factors can apply to various human diseases which can be treated by generating more efficient iPSCs. Such complexes may permit the design of novel therapeutics and the establishment of biomarkers that may be used in diagnosis and prognosis development. Therefore, the UPS is an important target for stem cell therapeutic product research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Shirazi R, Zarnani AH, Soleimani M, Nayernia K, Ragerdi Kashani I (2017) Differentiation of bone marrow-derived stage-specific embryonic antigen 1 positive pluripotent stem cells into male germ cells. Microsc Res Tech 80(4):430–440. https://doi.org/10.1002/jemt.22812

    Article  CAS  PubMed  Google Scholar 

  2. Zhang W, Sui Y, Ni J, Yang T (2016) Insights into the Nanog gene: a propeller for stemness in primitive stem cells. Int J Biol Sci 12(11):1372–1381. https://doi.org/10.7150/ijbs.16349

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Smith AG (2001) Embryo-derived stem cells: of mice and men. Annu Rev Cell Dev Biol 17:435–462. https://doi.org/10.1146/annurev.cellbio.17.1.435

    Article  CAS  PubMed  Google Scholar 

  4. Kwon SK, Lee DH, Kim SY, Park JH, Choi J, Baek KH (2017) Ubiquitin-specific protease 21 regulating the K48-linked polyubiquitination of NANOG. Biochem Biophys Res Commun 482(4):1443–1448. https://doi.org/10.1016/j.bbrc.2016.12.055

    Article  CAS  PubMed  Google Scholar 

  5. Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K, Yamanaka S (2007) Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131(5):861–872. https://doi.org/10.1016/j.cell.2007.11.019

    Article  CAS  PubMed  Google Scholar 

  6. Naujokat C, Saric T (2007) Concise review: role and function of the ubiquitin-proteasome system in mammalian stem and progenitor cells. Stem Cells 25(10):2408–2418. https://doi.org/10.1634/stemcells.2007-0255

    Article  CAS  PubMed  Google Scholar 

  7. Ramakrishna S, Kim KS, Baek KH (2014) Posttranslational modifications of defined embryonic reprogramming transcription factors. Cell Reprogram 16(2):108–120. https://doi.org/10.1089/cell.2013.0077

    Article  CAS  PubMed  Google Scholar 

  8. Jin J, Liu J, Chen C, Liu Z, Jiang C, Chu H, Pan W, Wang X, Zhang L, Li B, Jiang C, Ge X, Xie X, Wang P (2016) The deubiquitinase USP21 maintains the stemness of mouse embryonic stem cells via stabilization of Nanog. Nat Commun 7:13594. https://doi.org/10.1038/ncomms13594

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Liu X, Yao Y, Ding H, Han C, Chen Y, Zhang Y, Wang C, Zhang X, Zhang Y, Zhai Y (2016) USP21 deubiquitylates Nanog to regulate protein stability and stem cell pluripotency. Signal Transduct Target Ther 1:16024. https://doi.org/10.1038/sigtrans.2016.24

    Article  PubMed  PubMed Central  Google Scholar 

  10. Ramakrishna S, Suresh B, Lim KH, Cha BH, Lee SH, Kim KS, Baek KH (2011) PEST motif sequence regulating human NANOG for proteasomal degradation. Stem Cells Dev 20(9):1511–1519. https://doi.org/10.1089/scd.2010.0410

    Article  CAS  PubMed  Google Scholar 

  11. Kim SH, Kim MO, Cho YY, Yao K, Kim DJ, Jeong CH, Yu DH, Bae KB, Cho EJ, Jung SK, Lee MH, Chen H, Kim JY, Bode AM, Dong Z (2014) ERK1 phosphorylates Nanog to regulate protein stability and stem cell self-renewal. Stem Cell Res 13(1):1–11. https://doi.org/10.1016/j.scr.2014.04.001

    Article  CAS  PubMed  Google Scholar 

  12. Oh E, Kim JY, Sung D, Cho Y, Lee N, An H, Kim YJ, Cho TM, Seo JH (2017) Inhibition of ubiquitin-specific protease 34 (USP34) induces epithelial-mesenchymal transition and promotes stemness in mammary epithelial cells. Cell Signal 36:230–239. https://doi.org/10.1016/j.cellsig.2017.05.009

    Article  CAS  PubMed  Google Scholar 

  13. Jin W, Wang L, Zhu F, Tan W, Lin W, Chen D, Sun Q, Xia Z (2016) Critical POU domain residues confer Oct4 uniqueness in somatic cell reprogramming. Sci Rep 6:20818. https://doi.org/10.1038/srep20818

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Boyer LA, Lee TI, Cole MF, Johnstone SE, Levine SS, Zucker JP, Guenther MG, Kumar RM, Murray HL, Jenner RG, Gifford DK, Melton DA, Jaenisch R, Young RA (2005) Core transcriptional regulatory circuitry in human embryonic stem cells. Cell 122(6):947–956. https://doi.org/10.1016/j.cell.2005.08.020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Saxe JP, Tomilin A, Scholer HR, Plath K, Huang J (2009) Post-translational regulation of Oct4 transcriptional activity. PLoS One 4(2):e4467. https://doi.org/10.1371/journal.pone.0004467

    Article  PubMed  PubMed Central  Google Scholar 

  16. Oka M, Moriyama T, Asally M, Kawakami K, Yoneda Y (2013) Differential role for transcription factor Oct4 nucleocytoplasmic dynamics in somatic cell reprogramming and self-renewal of embryonic stem cells. J Biol Chem 288(21):15085–15097. https://doi.org/10.1074/jbc.M112.448837

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Schmidt R, Plath K (2012) The roles of the reprogramming factors Oct4, Sox2 and Klf4 in resetting the somatic cell epigenome during induced pluripotent stem cell generation. Genome Biol 13(10):251. https://doi.org/10.1186/gb-2012-13-10-251

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Heng JC, Feng B, Han J, Jiang J, Kraus P, Ng JH, Orlov YL, Huss M, Yang L, Lufkin T, Lim B, Ng HH (2010) The nuclear receptor Nr5a2 can replace Oct4 in the reprogramming of murine somatic cells to pluripotent cells. Cell Stem Cell 6(2):167–174. https://doi.org/10.1016/j.stem.2009.12.009

    Article  CAS  PubMed  Google Scholar 

  19. Villodre ES, Kipper FC, Pereira MB, Lenz G (2016) Roles of OCT4 in tumorigenesis, cancer therapy resistance and prognosis. Cancer Treat Rev 51:1–9. https://doi.org/10.1016/j.ctrv.2016.10.003

    Article  CAS  PubMed  Google Scholar 

  20. Liao B, Jin Y (2010) Wwp2 mediates Oct4 ubiquitination and its own auto-ubiquitination in a dosage-dependent manner. Cell Res 20(3):332–344. https://doi.org/10.1038/cr.2009.136

    Article  CAS  PubMed  Google Scholar 

  21. Liao B, Zhong X, Xu H, Xiao F, Fang Z, Gu J, Chen Y, Zhao Y, Jin Y (2013) Itch, an E3 ligase of Oct4, is required for embryonic stem cell self-renewal and pluripotency induction. J Cell Physiol 228(7):1443–1451. https://doi.org/10.1002/jcp.24297

    Article  CAS  PubMed  Google Scholar 

  22. Liu C, Zhang D, Shen Y, Tao X, Liu L, Zhong Y, Fang S (1853) DPF2 regulates OCT4 protein level and nuclear distribution. Biochim Biophys Acta 12:3279–3293. https://doi.org/10.1016/j.bbamcr.2015.09.029

    Google Scholar 

  23. Akutsu M, Dikic I, Bremm A (2016) Ubiquitin chain diversity at a glance. J Cell Sci 129(5):875–880. https://doi.org/10.1242/jcs.183954

    Article  CAS  PubMed  Google Scholar 

  24. Grice GL, Nathan JA (2016) The recognition of ubiquitinated proteins by the proteasome. Cell Mol Life Sci 73(18):3497–3506. https://doi.org/10.1007/s00018-016-2255-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Birsa N, Norkett R, Wauer T, Mevissen TE, Wu HC, Foltynie T, Bhatia K, Hirst WD, Komander D, Plun-Favreau H, Kittler JT (2014) Lysine 27 ubiquitination of the mitochondrial transport protein Miro is dependent on serine 65 of the Parkin ubiquitin ligase. J Biol Chem 289(21):14569–14582. https://doi.org/10.1074/jbc.M114.563031

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Davis ME, Gack MU (2015) Ubiquitination in the antiviral immune response. Virology 479–480:52–65. https://doi.org/10.1016/j.virol.2015.02.033

    Article  PubMed  Google Scholar 

  27. Wertz IE, Dixit VM (2010) Regulation of death receptor signaling by the ubiquitin system. Cell Death Differ 17(1):14–24. https://doi.org/10.1038/cdd.2009.168

    Article  CAS  PubMed  Google Scholar 

  28. Fuchs G, Shema E, Vesterman R, Kotler E, Wolchinsky Z, Wilder S, Golomb L, Pribluda A, Zhang F, Haj-Yahya M, Feldmesser E, Brik A, Yu X, Hanna J, Aberdam D, Domany E, Oren M (2012) RNF20 and USP44 regulate stem cell differentiation by modulating H2B monoubiquitylation. Mol Cell 46(5):662–673. https://doi.org/10.1016/j.molcel.2012.05.023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Tang YA, Chen CH, Sun HS, Cheng CP, Tseng VS, Hsu HS, Su WC, Lai WW, Wang YC (2015) Global Oct4 target gene analysis reveals novel downstream PTEN and TNC genes required for drug-resistance and metastasis in lung cancer. Nucleic Acids Res 43(3):1593–1608. https://doi.org/10.1093/nar/gkv024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Wang YD, Cai N, Wu XL, Cao HZ, Xie LL, Zheng PS (2013) OCT4 promotes tumorigenesis and inhibits apoptosis of cervical cancer cells by miR-125b/BAK1 pathway. Cell Death Dis 4:e760. https://doi.org/10.1038/cddis.2013.272

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Lu Y, Zhu H, Shan H, Lu J, Chang X, Li X, Lu J, Fan X, Zhu S, Wang Y, Guo Q, Wang L, Huang Y, Zhu M, Wang Z (2013) Knockdown of Oct4 and Nanog expression inhibits the stemness of pancreatic cancer cells. Cancer Lett 340(1):113–123. https://doi.org/10.1016/j.canlet.2013.07.009

    Article  CAS  PubMed  Google Scholar 

  32. Suresh B, Lee J, Kim KS, Ramakrishna S (2016) The importance of ubiquitination and deubiquitination in cellular reprogramming. Stem Cells Int 2016:6705927. https://doi.org/10.1155/2016/6705927

    Article  PubMed  PubMed Central  Google Scholar 

  33. Ring KL, Tong LM, Balestra ME, Javier R, Andrews-Zwilling Y, Li G, Walker D, Zhang WR, Kreitzer AC, Huang Y (2012) Direct reprogramming of mouse and human fibroblasts into multipotent neural stem cells with a single factor. Cell Stem Cell 11(1):100–109. https://doi.org/10.1016/j.stem.2012.05.018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Nagano K, Itagaki C, Izumi T, Nunomura K, Soda Y, Tani K, Takahashi N, Takenawa T, Isobe T (2006) Rb plays a role in survival of Abl-dependent human tumor cells as a downstream effector of Abl tyrosine kinase. Oncogene 25(4):493–502. https://doi.org/10.1038/sj.onc.1208996

    Article  CAS  PubMed  Google Scholar 

  35. Ouyang J, Yu W, Liu J, Zhang N, Florens L, Chen J, Liu H, Washburn M, Pei D, Xie T (2015) Cyclin-dependent kinase-mediated Sox2 phosphorylation enhances the ability of Sox2 to establish the pluripotent state. J Biol Chem 290(37):22782–22794. https://doi.org/10.1074/jbc.M115.658195

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Jeong CH, Cho YY, Kim MO, Kim SH, Cho EJ, Lee SY, Jeon YJ, Lee KY, Yao K, Keum YS, Bode AM, Dong Z (2010) Phosphorylation of Sox2 cooperates in reprogramming to pluripotent stem cells. Stem Cells 28(12):2141–2150. https://doi.org/10.1002/stem.540

    Article  CAS  PubMed  Google Scholar 

  37. Fang L, Zhang L, Wei W, Jin X, Wang P, Tong Y, Li J, Du JX, Wong J (2014) A methylation-phosphorylation switch determines Sox2 stability and function in ESC maintenance or differentiation. Mol Cell 55(4):537–551. https://doi.org/10.1016/j.molcel.2014.06.018

    Article  CAS  PubMed  Google Scholar 

  38. Masui S, Nakatake Y, Toyooka Y, Shimosato D, Yagi R, Takahashi K, Okochi H, Okuda A, Matoba R, Sharov AA, Ko MS, Niwa H (2007) Pluripotency governed by Sox2 via regulation of Oct3/4 expression in mouse embryonic stem cells. Nat Cell Biol 9(6):625–635. https://doi.org/10.1038/ncb1589

    Article  CAS  PubMed  Google Scholar 

  39. Sussman RT, Stanek TJ, Esteso P, Gearhart JD, Knudsen KE, McMahon SB (2013) The epigenetic modifier ubiquitin-specific protease 22 (USP22) regulates embryonic stem cell differentiation via transcriptional repression of sex-determining region Y-box 2 (SOX2). J Biol Chem 288(33):24234–24246. https://doi.org/10.1074/jbc.M113.469783

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Takahashi K, Yamanaka S (2016) A decade of transcription factor-mediated reprogramming to pluripotency. Nat Rev Mol Cell Biol 17(3):183–193. https://doi.org/10.1038/nrm.2016.8

    Article  CAS  PubMed  Google Scholar 

  41. Cox JL, Wilder PJ, Gilmore JM, Wuebben EL, Washburn MP, Rizzino A (2013) The SOX2-interactome in brain cancer cells identifies the requirement of MSI2 and USP9X for the growth of brain tumor cells. PLoS One 8(5):e62857. https://doi.org/10.1371/journal.pone.0062857

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Oishi S, Premarathne S, Harvey TJ, Iyer S, Dixon C, Alexander S, Burne TH, Wood SA, Piper M (2016) Usp9x-deficiency disrupts the morphological development of the postnatal hippocampal dentate gyrus. Sci Rep 6:25783. https://doi.org/10.1038/srep25783

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Wuebben EL, Rizzino A (2017) The dark side of SOX2: cancer-a comprehensive overview. Oncotarget 8(27):44917–44943. https://doi.org/10.18632/oncotarget.16570

    Article  PubMed  PubMed Central  Google Scholar 

  44. Qiu GZ, Sun W, Jin MZ, Lin J, Lu PG, Jin WL (2017) The bad seed gardener: deubiquitinases in the cancer stem-cell signaling network and therapeutic resistance. Pharmacol Ther 172:127–138. https://doi.org/10.1016/j.pharmthera.2016.12.003

    Article  CAS  PubMed  Google Scholar 

  45. Suresh B, Lee J, Kim H, Ramakrishna S (2016) Regulation of pluripotency and differentiation by deubiquitinating enzymes. Cell Death Differ 23(8):1257–1264. https://doi.org/10.1038/cdd.2016.53

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Jiang J, Chan YS, Loh YH, Cai J, Tong GQ, Lim CA, Robson P, Zhong S, Ng HH (2008) A core Klf circuitry regulates self-renewal of embryonic stem cells. Nat Cell Biol 10(3):353–360. https://doi.org/10.1038/ncb1698

    Article  PubMed  Google Scholar 

  47. Lim KH, Kim SR, Ramakrishna S, Baek KH (2014) Critical lysine residues of Klf4 required for protein stabilization and degradation. Biochem Biophys Res Commun 443(4):1206–1210. https://doi.org/10.1016/j.bbrc.2013.12.121

    Article  CAS  PubMed  Google Scholar 

  48. Pan J, Deng Q, Jiang C, Wang X, Niu T, Li H, Chen T, Jin J, Pan W, Cai X, Yang X, Lu M, Xiao J, Wang P (2015) USP37 directly deubiquitinates and stabilizes c-Myc in lung cancer. Oncogene 34(30):3957–3967. https://doi.org/10.1038/onc.2014.327

    Article  CAS  PubMed  Google Scholar 

  49. Polo JM, Anderssen E, Walsh RM, Schwarz BA, Nefzger CM, Lim SM, Borkent M, Apostolou E, Alaei S, Cloutier J, Bar-Nur O, Cheloufi S, Stadtfeld M, Figueroa ME, Robinton D, Natesan S, Melnick A, Zhu J, Ramaswamy S, Hochedlinger K (2012) A molecular roadmap of reprogramming somatic cells into iPS cells. Cell 151(7):1617–1632. https://doi.org/10.1016/j.cell.2012.11.039

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Olariu V, Lovkvist C, Sneppen K (2016) Nanog, Oct4 and Tet1 interplay in establishing pluripotency. Sci Rep 6:25438. https://doi.org/10.1038/srep25438

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Feng B, Jiang J, Kraus P, Ng JH, Heng JC, Chan YS, Yaw LP, Zhang W, Loh YH, Han J, Vega VB, Cacheux-Rataboul V, Lim B, Lufkin T, Ng HH (2009) Reprogramming of fibroblasts into induced pluripotent stem cells with orphan nuclear receptor Esrrb. Nat Cell Biol 11(2):197–203. https://doi.org/10.1038/ncb1827

    Article  CAS  PubMed  Google Scholar 

  52. Nakagawa M, Koyanagi M, Tanabe K, Takahashi K, Ichisaka T, Aoi T, Okita K, Mochiduki Y, Takizawa N, Yamanaka S (2008) Generation of induced pluripotent stem cells without Myc from mouse and human fibroblasts. Nat Biotechnol 26(1):101–106. https://doi.org/10.1038/nbt1374

    Article  CAS  PubMed  Google Scholar 

  53. Okita K, Ichisaka T, Yamanaka S (2007) Generation of germline-competent induced pluripotent stem cells. Nature 448(7151):313–317. https://doi.org/10.1038/nature05934

    Article  CAS  PubMed  Google Scholar 

  54. Carey BW, Markoulaki S, Hanna JH, Faddah DA, Buganim Y, Kim J, Ganz K, Steine EJ, Cassady JP, Creyghton MP, Welstead GG, Gao Q, Jaenisch R (2011) Reprogramming factor stoichiometry influences the epigenetic state and biological properties of induced pluripotent stem cells. Cell Stem Cell 9(6):588–598. https://doi.org/10.1016/j.stem.2011.11.003

    Article  CAS  PubMed  Google Scholar 

  55. Sun XX, He X, Yin L, Komada M, Sears RC, Dai MS (2015) The nucleolar ubiquitin-specific protease USP36 deubiquitinates and stabilizes c-Myc. Proc Natl Acad Sci USA 112(12):3734–3739. https://doi.org/10.1073/pnas.1411713112

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Kim SY, Herbst A, Tworkowski KA, Salghetti SE, Tansey WP (2003) Skp2 regulates Myc protein stability and activity. Mol Cell 11(5):1177–1188. https://doi.org/10.1016/S1097-2765(03)00173-4

    Article  CAS  PubMed  Google Scholar 

  57. Cartwright P, McLean C, Sheppard A, Rivett D, Jones K, Dalton S (2005) LIF/STAT3 controls ES cell self-renewal and pluripotency by a Myc-dependent mechanism. Development 132(5):885–896. https://doi.org/10.1242/dev.01670

    Article  CAS  PubMed  Google Scholar 

  58. Li L, Osdal T, Ho Y, Chun S, McDonald T, Agarwal P, Lin A, Chu S, Qi J, Li L, Hsieh YT, Dos Santos C, Yuan H, Ha TQ, Popa M, Hovland R, Bruserud O, Gjertsen BT, Kuo YH, Chen W, Lain S, McCormack E, Bhatia R (2014) SIRT1 activation by a c-MYC oncogenic network promotes the maintenance and drug resistance of human FLT3-ITD acute myeloid leukemia stem cells. Cell Stem Cell 15(4):431–446. https://doi.org/10.1016/j.stem.2014.08.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Diefenbacher ME, Chakraborty A, Blake SM, Mitter R, Popov N, Eilers M, Behrens A (2015) Usp28 counteracts Fbw7 in intestinal homeostasis and cancer. Cancer Res 75(7):1181–1186. https://doi.org/10.1158/0008-5472.CAN-14-1726

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Welcker M, Orian A, Jin J, Grim JE, Harper JW, Eisenman RN, Clurman BE (2004) The Fbw7 tumor suppressor regulates glycogen synthase kinase 3 phosphorylation-dependent c-Myc protein degradation. Proc Natl Acad Sci USA 101(24):9085–9090. https://doi.org/10.1073/pnas.0402770101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Ambros V, Horvitz HR (1984) Heterochronic mutants of the nematode Caenorhabditis elegans. Science 226(4673):409–416. https://doi.org/10.1126/science.6494891

    Article  CAS  PubMed  Google Scholar 

  62. Roush S, Slack FJ (2008) The let-7 family of microRNAs. Trends Cell Biol 18(10):505–516. https://doi.org/10.1016/j.tcb.2008.07.007

    Article  CAS  PubMed  Google Scholar 

  63. Balzer E, Heine C, Jiang Q, Lee VM, Moss EG (2010) LIN28 alters cell fate succession and acts independently of the let-7 microRNA during neurogliogenesis in vitro. Development 137(6):891–900. https://doi.org/10.1242/dev.042895

    Article  CAS  PubMed  Google Scholar 

  64. Yu J, Vodyanik MA, Smuga-Otto K, Antosiewicz-Bourget J, Frane JL, Tian S, Nie J, Jonsdottir GA, Ruotti V, Stewart R, Slukvin II, Thomson JA (2007) Induced pluripotent stem cell lines derived from human somatic cells. Science 318(5858):1917–1920. https://doi.org/10.1126/science.1151526

    Article  CAS  PubMed  Google Scholar 

  65. Kashyap V, Rezende NC, Scotland KB, Shaffer SM, Persson JL, Gudas LJ, Mongan NP (2009) Regulation of stem cell pluripotency and differentiation involves a mutual regulatory circuit of the NANOG, OCT4, and SOX2 pluripotency transcription factors with polycomb repressive complexes and stem cell microRNAs. Stem Cells Dev 18(7):1093–1108. https://doi.org/10.1089/scd.2009.0113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Qiu C, Ma Y, Wang J, Peng S, Huang Y (2010) Lin28-mediated post-transcriptional regulation of Oct4 expression in human embryonic stem cells. Nucleic Acids Res 38(4):1240–1248. https://doi.org/10.1093/nar/gkp1071

    Article  CAS  PubMed  Google Scholar 

  67. Worringer KA, Rand TA, Hayashi Y, Sami S, Takahashi K, Tanabe K, Narita M, Srivastava D, Yamanaka S (2014) The let-7/LIN-41 pathway regulates reprogramming to human induced pluripotent stem cells by controlling expression of prodifferentiation genes. Cell Stem Cell 14(1):40–52. https://doi.org/10.1016/j.stem.2013.11.001

    Article  CAS  PubMed  Google Scholar 

  68. Lee SH, Cho S, Kim MS, Choi K, Cho JY, Gwak HS, Kim YJ, Yoo H, Lee SH, Park JB, Kim JH (2014) The ubiquitin ligase human TRIM71 regulates let-7 microRNA biogenesis via modulation of Lin28B protein. Biochim Biophys Acta 5:374–386. https://doi.org/10.1016/j.bbagrm.2014.02.017

    Article  Google Scholar 

  69. Herrera RA, Kiontke K, Fitch DH (2016) Makorin ortholog LEP-2 regulates LIN-28 stability to promote the juvenile-to-adult transition in Caenorhabditis elegans. Development 143(5):799–809. https://doi.org/10.1242/dev.132738

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Moss EG, Tang L (2003) Conservation of the heterochronic regulator Lin-28, its developmental expression and microRNA complementary sites. Dev Biol 258(2):432–442. https://doi.org/10.1016/S0012-1606(03)00126-X

    Article  CAS  PubMed  Google Scholar 

  71. Li C, Sako Y, Imai A, Nishiyama T, Thompson K, Kubo M, Hiwatashi Y, Kabeya Y, Karlson D, Wu SH, Ishikawa M, Murata T, Benfey PN, Sato Y, Tamada Y, Hasebe M (2017) A Lin28 homologue reprograms differentiated cells to stem cells in the moss Physcomitrella patens. Nat Commun 8:14242. https://doi.org/10.1038/ncomms14242

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Gorsuch RA, Lahne M, Yarka CE, Petravick ME, Li J, Hyde DR (2017) Sox2 regulates Muller glia reprogramming and proliferation in the regenerating zebrafish retina via Lin28 and Ascl1a. Exp Eye Res 161:174–192. https://doi.org/10.1016/j.exer.2017.05.012

    Article  CAS  PubMed  Google Scholar 

  73. Nguyen N, Yi JS, Park H, Lee JS, Ko YG (2014) Mitsugumin 53 (MG53) ligase ubiquitinates focal adhesion kinase during skeletal myogenesis. J Biol Chem 289(6):3209–3216. https://doi.org/10.1074/jbc.M113.525154

    Article  CAS  PubMed  Google Scholar 

  74. Zhao X, Guan JL (2011) Focal adhesion kinase and its signaling pathways in cell migration and angiogenesis. Adv Drug Deliv Rev 63(8):610–615. https://doi.org/10.1016/j.addr.2010.11.001

    Article  CAS  PubMed  Google Scholar 

  75. Frisan T, Coppotelli G, Dryselius R, Masucci MG (2012) Ubiquitin C-terminal hydrolase-L1 interacts with adhesion complexes and promotes cell migration, survival, and anchorage independent growth. FASEB J 26(12):5060–5070. https://doi.org/10.1096/fj.12-211946

    Article  CAS  PubMed  Google Scholar 

  76. Ajjappala BS, Kim MS, Kim EY, Kim JH, Kang IC, Baek KH (2009) Protein chip analysis of pluripotency-associated proteins in NIH3T3 fibroblast. Proteomics 9(16):3968–3978. https://doi.org/10.1002/pmic.200800611

    Article  CAS  PubMed  Google Scholar 

  77. Ning Z, Wang A, Liang J, Xie Y, Liu J, Yan Q, Wang Z (2014) USP22 promotes epithelial-mesenchymal transition via the FAK pathway in pancreatic cancer cells. Oncol Rep 32(4):1451–1458. https://doi.org/10.3892/or.2014.3354

    Article  CAS  PubMed  Google Scholar 

  78. Greider CW (1996) Telomere length regulation. Annu Rev Biochem 65:337–365. https://doi.org/10.1146/annurev.bi.65.070196.002005

    Article  CAS  PubMed  Google Scholar 

  79. Kim JH, Park SM, Kang MR, Oh SY, Lee TH, Muller MT, Chung IK (2005) Ubiquitin ligase MKRN1 modulates telomere length homeostasis through a proteolysis of hTERT. Genes Dev 19(7):776–781. https://doi.org/10.1101/gad.1289405

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Renaud S, Loukinov D, Bosman FT, Lobanenkov V, Benhattar J (2005) CTCF binds the proximal exonic region of hTERT and inhibits its transcription. Nucleic Acids Res 33(21):6850–6860. https://doi.org/10.1093/nar/gki989

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Joazeiro CA, Weissman AM (2000) RING finger proteins: mediators of ubiquitin ligase activity. Cell 102(5):549–552. https://doi.org/10.1016/S0092-8674(00)00077-5

    Article  CAS  PubMed  Google Scholar 

  82. Zemp I, Lingner J (2014) The shelterin component TPP1 is a binding partner and substrate for the deubiquitinating enzyme USP7. J Biol Chem 289(41):28595–28606. https://doi.org/10.1074/jbc.M114.596056

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We would like to thank members of Baek laboratory for their critical comments on the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

JC: manuscript writing; KHB: manuscript writing, final approval of manuscript.

Corresponding author

Correspondence to Kwang-Hyun Baek.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Choi, J., Baek, KH. Cellular functions of stem cell factors mediated by the ubiquitin–proteasome system. Cell. Mol. Life Sci. 75, 1947–1957 (2018). https://doi.org/10.1007/s00018-018-2770-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-018-2770-7

Keywords

Navigation