Advertisement

Cellular and Molecular Life Sciences

, Volume 75, Issue 17, pp 3215–3229 | Cite as

Giant fish-killing water bug reveals ancient and dynamic venom evolution in Heteroptera

  • Andrew A. Walker
  • Maria José Hernández-Vargas
  • Gerardo Corzo
  • Bryan G. Fry
  • Glenn F. King
Original Article

Abstract

True Bugs (Insecta: Heteroptera) produce venom or saliva with diverse bioactivities depending on their feeding strategies. However, little is known about the molecular evolution of the venom toxins underlying these biological activities. We examined venom of the giant fish-killing water bug Lethocerus distinctifemur (Insecta: Belostomatidae) using infrared spectroscopy, transcriptomics, and proteomics. We report 132 venom proteins including putative enzymes, cytolytic toxins, and antimicrobial peptides. Over 73% (96 proteins) showed homology to venom proteins from assassin bugs (Reduviidae), including 21% (28 proteins from seven families) not known from other sources. These data suggest that numerous protein families were recruited into venom and diversified rapidly following the switch from phytophagy to predation by ancestral heteropterans, and then were retained over > 200 my of evolution. In contrast, trophic switches to blood-feeding (e.g. in Triatominae and Cimicidae) or reversions to plant-feeding (e.g., in Pentatomomorpha) were accompanied by rapid changes in the composition of venom/saliva, including the loss of many protein families.

Keywords

Venom Saliva Heteroptera Belostomatidae Nepomorpha Venom evolution Trophic shift 

Notes

Acknowledgements

We thank the Australian Insect Farm for acquiring insects, Alun Jones for assistance with proteomics experiments, Idriss Blakey for assistance with FTIR spectroscopy, Christiane Weirauch for discussions of phylogeny, and Eivind Undheim for assistance with animals and sequencing costs. This work was supported by a University of Queensland Postdoctoral Fellowship to A.A.W. and a Principal Research Fellowship to G.F.K. from the Australian National Health and Medical Research Council. Sequences discovered in this project were deposited to GenBank with identifiers of MF683255–MF683386.

Supplementary material

18_2018_2768_MOESM1_ESM.xlsx (208 kb)
Supplementary Dataset S1: Identification and annotation of Lethocerus distinctifemur venom proteins (XLSX 207 kb)
18_2018_2768_MOESM2_ESM.xlsx (91 kb)
Supplementary Dataset S2: Most abundant transcripts in each compartment of Lethocerus distinctifemur venom glands (XLSX 90 kb)
18_2018_2768_MOESM3_ESM.pdf (77 kb)
Supplementary Fig. S1: Alignment of amino acid sequences of family 2 venom proteins, redulysins and trialysins (PDF 77 kb)
18_2018_2768_MOESM4_ESM.pdf (37 kb)
Supplementary Table S1: Abundant venom proteins detected by LC–MS/MS (PDF 36 kb)

References

  1. 1.
    Aird SD, Arora J, Barua A, Qiu L, Terada K, Mikheyev AS (2017) Population genomic analysis of a pitviper reveals microevolutionary forces underlying venom chemistry. Genome Biol Evol 9:2640–2649CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Kordiš D, Gubenšek F (2000) Adaptive evolution of animal toxin multigene families. Gene 261:43–52CrossRefPubMedGoogle Scholar
  3. 3.
    Olivera BM et al (1999) Speciation of cone snails and interspecific hyperdivergence of their venom peptides. Ann N Y Acad Sci 870:223–237CrossRefPubMedGoogle Scholar
  4. 4.
    Pineda SS et al (2014) Diversification of a single ancestral gene into a successful toxin superfamily in highly venomous Australian funnel-web spiders. BMC Genom 15:177CrossRefGoogle Scholar
  5. 5.
    Duda TF, Palumbi SR (2004) Gene expression and feeding ecology: evolution of piscivory in the venomous gastropod genus Conus. Proc R Soc Lond B Biol Sci 271:1165–1174CrossRefGoogle Scholar
  6. 6.
    Jackson T et al (2016) Rapid radiations and the race to redundancy: an investigation of the evolution of Australian elapid snake venoms. Toxins 8:309CrossRefPubMedCentralGoogle Scholar
  7. 7.
    Lynch VJ (2007) Inventing an arsenal: adaptive evolution and neofunctionalization of snake venom phospholipase A2 genes. BMC Evol Biol 7:2CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Sunagar K, Moran Y (2015) The rise and fall of an evolutionary innovation: contrasting strategies of venom evolution in ancient and young animals. PLoS Genet 11:e1005596CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Li M, Fry BG, Kini RM (2005) Putting the brakes on snake venom evolution: the unique molecular evolutionary patterns of Aipysurus eydouxii (marbled sea snake) phospholipase A2 toxins. Mol Biol Evol 22:934–941CrossRefPubMedGoogle Scholar
  10. 10.
    Li M, Fry BG, Kini RM (2005) Eggs-only diet: its implications for the toxin profile changes and ecology of the marbled sea snake (Aipysurus eydouxii). J Mol Evol 60:81–89CrossRefPubMedGoogle Scholar
  11. 11.
    Daltry JC, Wuster W, Thorpe RS (1996) Diet and snake venom evolution. Nature 379:537–540CrossRefPubMedGoogle Scholar
  12. 12.
    Binford GJ (2001) Differences in venom composition between orb-weaving and wandering Hawaiian Tetragnatha (Araneae). Biol J Linn Soc 74:581–595CrossRefGoogle Scholar
  13. 13.
    Martinson EO, Mrinalini, Kelkar YD, Chang C-H, Werren JH (2017) The evolution of venom by co-option of single-copy genes. Curr Biol 27:2007–2013CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Wang Y-H et al (2016) Phylogenetic divergences of the true bugs (Insecta: Hemiptera: Heteroptera), with emphasis on the aquatic lineages: the last piece of the aquatic insect jigsaw originated in the Late Permian/Early Triassic. Cladistics 32:390–405CrossRefGoogle Scholar
  15. 15.
    Walker AA, Weirauch C, Fry BG, King GF (2016) Venoms of heteropteran insects: a treasure trove of diverse pharmacological toolkits. Toxins 8:43CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Cobben RH (1979) On the original feeding habits of the Hemiptera (Insecta): a reply to Merrill Sweet. Ann Entomol Soc Am 72:711–715CrossRefGoogle Scholar
  17. 17.
    Cohen AC (1996) Plant feeding by predatory Heteroptera: Evolutionary and adaptational aspects of trophic switching. In: Alomar O (ed) Zoophytophagous Heteroptera: implication for life history and integrated pest management. Thomas Say Publications in Entomology, Lanham, pp 1–7Google Scholar
  18. 18.
    Weirauch C, Schuh RT, Cassis G, Wheeler WC (2018) Revisiting habitat and lifestyle transitions in Heteroptera (Insecta: Hemiptera): insights from a combined morphological and molecular phylogeny. Cladistics.  https://doi.org/10.1111/cla.12233 Google Scholar
  19. 19.
    Li H, Leavengood JM, Chapman EG, Burkhardt D, Song F, Jiang P, Liu J, Zhou X, Cai W (2017) Mitochondrial phylogenomics of Hemiptera reveals adaptive innovations driving the diversification of true bugs. Proc R Soc Lond B: Biol Sci 284(1862).  https://doi.org/10.1098/rspb.2017.1223
  20. 20.
    Edwards JS (1961) The action and composition of the saliva of an assassin bug Platymeris rhadamanthus Gaerst. (Hemiptera, Reduviidae). J Exp Biol 38:61–77Google Scholar
  21. 21.
    Maran SPM, Ambrose DP (2000) Paralytic potential of Catamiarus brevipennis (Serville), a potential biological control agent (Insecta: Heteroptera: Reduviidae). In: Ignacimuth A, Sen A, Janarthanan S (eds) Biotechnological applications for integrated pest management. Oxford Publishing, New Delhi, pp 125–131Google Scholar
  22. 22.
    Silva-Cardoso L et al (2010) Paralytic activity of lysophosphatidylcholine from saliva of the waterbug Belostoma anurum. J Exp Biol 213:3305–3310CrossRefPubMedGoogle Scholar
  23. 23.
    Walker AA et al (2018) The assassin bug Pristhesancus plagipennis produces two distinct venoms in separate gland lumens. Nat Commun.  https://doi.org/10.1038/s41467-018-03091-5
  24. 24.
    Ribeiro JMC, Assumpção TC, Francischetti IMB (2012) An insight into the sialomes of bloodsucking Heteroptera. Psyche (Stuttg.) 2012:1–16Google Scholar
  25. 25.
    Miles PW (1972) The saliva of Hemiptera. In: Treherne JE, Berridge MJ, Wigglesworth VB (eds) Advances in insect physiology. Academic Press, New York, pp 183–255Google Scholar
  26. 26.
    Peiffer M, Felton GW (2014) Insights into the saliva of the brown marmorated stink bug Halyomorpha halys (Hemiptera: Pentatomidae). PLoS One 9:e88483CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Walker AA, Madio B, Jin J, Undheim EA, Fry BG, King GF (2017) Melt with this kiss: paralyzing and liquefying venom of the assassin bug Pristhesancus plagipennis (Hemiptera: Reduviidae). Mol Cell Proteom 16:552–566CrossRefGoogle Scholar
  28. 28.
    Weirauch C, Schuh RT (2011) Systematics and evolution of Heteroptera: 25 years of progress. Annu Rev Entomol 56:487–510CrossRefPubMedGoogle Scholar
  29. 29.
    Fraser NC, Grimaldi DA, Olsen PE, Axsmith B (1996) A Triassic Lagerstätte from eastern North America. Nature 380:615CrossRefGoogle Scholar
  30. 30.
    Schuh RT, Slater JA (1995) True bugs of the world (Hemiptera: Heteroptera): classification and natural history. Cornell University Press, New YorkGoogle Scholar
  31. 31.
    Ohba S-Y (2011) Field observation of predation on a turtle by a giant water bug. Entomol Sci 14:364–365CrossRefGoogle Scholar
  32. 32.
    Ohba S-Y, Nakasuji F (2006) Dietary items of predacious aquatic bugs (Nepoidea: Heteroptera) in Japanese wetlands. Limnology 7:41–43CrossRefGoogle Scholar
  33. 33.
    Caccin P, Rigoni M, Bisceglie A, Rossetto O, Montecucco C (2006) Reversible skeletal neuromuscular paralysis induced by different lysophospholipids. FEBS Lett 580:6317–6321CrossRefPubMedGoogle Scholar
  34. 34.
    Kordiš D (2011) Evolution of phospholipase A2 toxins in venomous animals. Acta Chim Slov 58:638–646PubMedGoogle Scholar
  35. 35.
    Šribar J, Križaj I (2011) Secreted phospholipases A2—not just enzymes. Acta Chim Slov 58:678–688PubMedGoogle Scholar
  36. 36.
    Rastogi SC (1962) On the salivary enzymes of some phytophagous and predaceous heteropterans. Sci Cult 28:479–480Google Scholar
  37. 37.
    Rees AR, Offord RE (1969) Studies on the protease and other enzymes from the venom of Lethocerus cordofanus. Nature 221:675–677CrossRefPubMedGoogle Scholar
  38. 38.
    Swart CC, Deaton LE, Felgenhauer BE (2006) The salivary gland and salivary enzymes of the giant waterbugs (Heteroptera; Belostomatidae). Comp Biochem Physiol A Mol Integr Physiol 145:114–122CrossRefPubMedGoogle Scholar
  39. 39.
    Byler DM, Susi H (1986) Examination of the secondary structure of proteins by deconvolved FTIR spectra. Biopolymers 25:469–487CrossRefPubMedGoogle Scholar
  40. 40.
    Fen N, DeOliveira DB, Trumble WR, Sarkar HK, Singh BR (1994) Secondary structure estimation of proteins using the amide III region of Fourier transform infrared spectroscopy: application to analyze calcium-binding-induced structural changes in calsequestrin. Appl Spectrosc 48:1432–1441CrossRefGoogle Scholar
  41. 41.
    Coates J (2000) Interpretation of infrared spectra, a practical approach. In: Meyers RA (ed) Encyclopedia of analytical chemistry. Wiley, Chichester, pp 10815–10837Google Scholar
  42. 42.
    Baptist BA (1941) The morphology and physiology of the salivary glands of Hemiptera-Heteroptera. Q J Microsc Sci s2-83:91–139Google Scholar
  43. 43.
    Swart CC, Felgenhauer BE (2003) Structure and function of the mouthparts and salivary gland complex of the giant waterbug, Belostoma lutarium (Stål) (Hemiptera: Belostomatidae). Ann Entomol Soc Am 95:870–882CrossRefGoogle Scholar
  44. 44.
    Haridass ET, Ananthakrishnan TN (1981) Functional morphology of the salivary system in some reduviids (Insecta-Heteroptera-Reduviidae). Proc Indian Acad Sci 90:145–160CrossRefGoogle Scholar
  45. 45.
    Assumpção TCF, Francischetti IM, Andersen JF, Schwarz A, Santana JM, Ribeiro JM (2008) An insight into the sialome of the blood-sucking bug Triatoma infestans, a vector of Chagas’ disease. Insect Biochem Mol Biol 38:213–232CrossRefPubMedGoogle Scholar
  46. 46.
    Charneau S et al (2007) The saliva proteome of the blood-feeding insect Triatoma infestans is rich in platelet-aggregation inhibitors. Int J Mass Spectrom 268:265–276CrossRefGoogle Scholar
  47. 47.
    Costa CM, Sousa MV, Ricart CA, Santana JM, Teixeira AR, Roepstorff P, Charneau S (2011) 2-DE-based proteomic investigation of the saliva of the Amazonian triatomine vectors of Chagas disease: Rhodnius brethesi and Rhodnius robustus. J. Proteom 74:1652–1663CrossRefGoogle Scholar
  48. 48.
    Hernández-Vargas MJ, Gil J, Lozano L, Pedraza-Escalona M, Ortiz E, Encarnación-Guevara S, Alagón A, Corzo G (2017) Proteomic and transcriptomic analysis of saliva components from the hematophagous reduviid Triatoma pallidipennis. J Proteom 162:30–39CrossRefGoogle Scholar
  49. 49.
    Montandon CE, Barros E, Vidigal PM, Mendes MT, Anhê ACBM, de Oliveira Ramos HJ, de Oliveira CJF, Mafra C (2016) Comparative proteomic analysis of the saliva of the Rhodnius prolixus, Triatoma lecticularia and Panstrongylus herreri triatomines reveals a high interspecific functional biodiversity. Insect Biochem Mol Biol 71:83–90CrossRefPubMedGoogle Scholar
  50. 50.
    Francischetti IM et al (2010) Insight into the sialome of the bed bug, Cimex lectularius. J Proteome Res 9:3820–3831CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Cooper WR, Nicholson SJ, Puterka GJ (2013) Salivary proteins of Lygus hesperus (Hemiptera: Miridae). Ann Entomol Soc Am 106:86–92CrossRefGoogle Scholar
  52. 52.
    Rao SAK, Carolan JC, Wilkinson TL (2013) Proteomic profiling of cereal aphid saliva reveals both ubiquitous and adaptive secreted proteins. PLoS One 8:e57413CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Misof B et al (2014) Phylogenomics resolves the timing and pattern of insect evolution. Science 346:763–767CrossRefPubMedGoogle Scholar
  54. 54.
    Li M, Tian Y, Zhao Y, Bu W (2012) Higher level phylogeny and the first divergence time estimation of Heteroptera (Insecta: Hemiptera) based on multiple genes. PLoS One 7:e32152CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Haddad V, Schwartz EF, Schwartz CA, Carvalho LN (2010) Bites caused by giant water bugs belonging to Belostomatidae family (Hemiptera, Heteroptera) in humans: a report of seven cases. Wilderness Environ Med 21:130–133CrossRefPubMedGoogle Scholar
  56. 56.
    Zerachia T, Bergmann F, Shulov A (1973) Pharmacological activities of the venom of the predaceous bug Holotrichius innesi H. (Heteroptera, Reduviidae). In: Kaiser E (ed) Animal and plant toxins. Goldman, Munich, pp 143–146Google Scholar
  57. 57.
    Lavoipierre MM, Dickerson G, Gordon RM (1959) Studies on the methods of feeding of blood-sucking arthropods. I. The manner in which triatomine bugs obtain their blood-meal, as observed in the tissues of the living rodent, with some remarks on the effects of the bite on human volunteers. Ann Trop Med Parasitol 53:235–250CrossRefPubMedGoogle Scholar
  58. 58.
    Hwang WS, Weirauch C (2012) Evolutionary history of assassin bugs (Insecta: Hemiptera: Reduviidae): insights from divergence dating and ancestral state reconstruction. PLoS One 7:e45523CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Dhananjaya BL, Nataraju A, Rajesh R, Raghavendra Gowda CD, Sharath BK, Vishwanath BS, D’Souza CJM (2006) Anticoagulant effect of Naja naja venom 5′ nucleotidase: demonstration through the use of novel specific inhibitor, vanillic acid. Toxicon 48:411–421CrossRefPubMedGoogle Scholar
  60. 60.
    Hart ML, Köhler D, Eckle T, Kloor D, Stahl GL, Eltzschig HK (2008) Direct treatment of mouse or human blood with soluble 5′-nucleotidase inhibits platelet aggregation. Arterioscler Thromb Vasc Biol 28:1477–1483CrossRefPubMedGoogle Scholar
  61. 61.
    Faudry E et al (2004) Triatoma infestans apyrases belong to the 5′-nucleotidase family. J Biol Chem 279:19607–19613CrossRefPubMedGoogle Scholar
  62. 62.
    Tavares-Dias M, Ragonha Oliveira S (2009) A review of the blood coagulation system of fish. Br J Biosci 7:205–224Google Scholar
  63. 63.
    Dushay MS (2009) Insect hemolymph clotting. Cell Mol Life Sci 66:2643–2650CrossRefPubMedGoogle Scholar
  64. 64.
    Fu L, Niu B, Zhu Z, Wu S, Li W (2012) CD-HIT: accelerated for clustering the next-generation sequencing data. Bioinformatics 28:3150–3152CrossRefPubMedPubMedCentralGoogle Scholar
  65. 65.
    Rice P, Longden I, Bleasby A (2000) EMBOSS: the European Molecular Biology Open Software Suite. Trends Genet 16:276–277CrossRefPubMedGoogle Scholar
  66. 66.
    Petersen TN, Brunak S, von Heijne G, Nielsen H (2011) SignalP 4.0: discriminating signal peptides from transmembrane regions. Nat Methods 8:785–786CrossRefPubMedGoogle Scholar
  67. 67.
    Finn RD, Bateman A, Clements J, Coggill P, Eberhardt RY, Eddy SR (2014) The Pfam protein families database. Nucleic Acids Res 42:D222–D230CrossRefPubMedGoogle Scholar
  68. 68.
    Katoh K, Standley DM (2013) MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol 30:772–780CrossRefPubMedPubMedCentralGoogle Scholar
  69. 69.
    Darriba D, Taboada GL, Doallo R, Posada D (2011) ProtTest 3: fast selection of best-fit models of protein evolution. Bioinformatics 27:1164–1165CrossRefPubMedPubMedCentralGoogle Scholar
  70. 70.
    Drummond AJ, Suchard MA, Xie D, Rambaut A (2012) Bayesian phylogenetics with BEAUti and the BEAST 1.7. Mol Biol Evol 29:1969–1973CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institute for Molecular BioscienceThe University of QueenslandSt LuciaAustralia
  2. 2.Instituto de BiotecnologíaUniversidad Nacional Autónoma de MéxicoCuernavacaMexico
  3. 3.Venom Evolution Lab, School of Biological SciencesThe University of QueenslandSt LuciaAustralia

Personalised recommendations