Skip to main content
Log in

Tight co-twin similarity of monozygotic twins for hTERT protein level of T cell subsets, for telomere length and mitochondrial DNA copy number, but not for telomerase activity

  • Original Article
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Our study analyzed lymphocyte subpopulations of 32 monozygotic twins and compared the level of the catalytic reverse transcriptase protein subunit (hTERT) in T lymphocytes (Tly), helper- (Th), cytotoxic- (Tc) and regulatory T cell (Treg) subgroups. Four variables related to telomere and mitochondrial biology were simultaneously assessed, applying multi-parametric flow cytometry, TRAP-ELISA assay and qPCR standard curve method on peripheral blood mononuclear cell (PBMC) samples of genetically matched individuals. Twin data of telomerase activity (TA), hTERT protein level, telomere length (TL) and mitochondrial DNA copy number (mtDNAcn) were analyzed for co-twin similarity. The present study has provided novel information by demonstrating very high intraclass correlation (ICC) of hTERT protein level in T lymphocytes (0.891) and in both Th (0.896), Treg (0.885) and Tc (0.798) cell subgroups. When comparing results measured from PBMCs, intraclass correlation was also high for telomere length (0.815) and considerable for mtDNA copy number (0.524), and again exceptionally high for the rate-limiting telomerase subunit, hTERT protein level (0.946). In contrast, telomerase activity showed no co-twin similarity (ICC 0). By comparing relative amounts of hTERT protein levels in different lymphocyte subgroups of twin subjects, in Treg cells significantly higher level could be detected compared to Tly, Th or Tc cell subgroups. This is the first study that simultaneously analyzed co-twin similarity in MZ twins for the above four variables and alongside assessed their relationship, whereby positive association was found between TL and mtDNAcn.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Alegria-Torres JA, Velazquez-Villafana M, Lopez-Gutierrez JM, Chagoyan-Martinez MM, Rocha-Amador DO, Costilla-Salazar R, Garcia-Torres L (2016) Association of Leukocyte Telomere Length and Mitochondrial DNA Copy Number in Children from Salamanca, Mexico. Genet Test Mol Biomarkers 20:654–659

    Article  PubMed  CAS  Google Scholar 

  2. Bates D, Mächler M, Bolker B, Walker S (2015) Fitting linear mixed-effects models using lme4. J Stat Softw 67(1):1–48

    Article  Google Scholar 

  3. Blackburn EH, Greider CW, Szostak JW (2006) Telomeres and telomerase: the path from maize, Tetrahymena and yeast to human cancer and aging. Nat Med 12:1133–1138

    Article  PubMed  CAS  Google Scholar 

  4. Bratic A, Larsson NG (2013) The role of mitochondria in aging. J Clin Invest 123:951–957

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Cairney CJ, Keith WN (2008) Telomerase redefined: integrated regulation of hTR and hTERT for telomere maintenance and telomerase activity. Biochimie 90:13–23

    Article  PubMed  CAS  Google Scholar 

  6. Chan SW, Blackburn EH (2002) New ways not to make ends meet: telomerase, DNA damage proteins and heterochromatin. Oncogene 21:553–563

    Article  PubMed  CAS  Google Scholar 

  7. Chou JP, Effros RB (2013) T cell replicative senescence in human aging. Curr Pharm Des 19:1680–1698

    PubMed  PubMed Central  CAS  Google Scholar 

  8. Cohen SB, Graham ME, Lovrecz GO, Bache N, Robinson PJ, Reddel RR (2007) Protein composition of catalytically active human telomerase from immortal cells. Science 315:1850–1853

    Article  PubMed  CAS  Google Scholar 

  9. Collins K, Mitchell JR (2002) Telomerase in the human organism. Oncogene 21:564–579

    Article  PubMed  CAS  Google Scholar 

  10. Correia-Melo C, Hewitt G, Passos JF (2014) Telomeres, oxidative stress and inflammatory factors: partners in cellular senescence? Longev Healthspan 3:1

    Article  PubMed  PubMed Central  Google Scholar 

  11. Counter CM, Gupta J, Harley CB, Leber B, Bacchetti S (1995) Telomerase activity in normal leukocytes and in hematologic malignancies. Blood 85:2315–2320

    PubMed  CAS  Google Scholar 

  12. D’hautcourt JL (2002) Quantitative flow cytometric analysis of membrane antigen expression. Curr Protoc Cytom, Chapter 6, Unit 6.12

  13. Fraga MF, Ballestar E, Paz MF, Ropero S, Setien F, Ballestar ML, Heine-Suner D, Cigudosa JC, Urioste M, Benitez J, Boix-Chornet M, Sanchez-Aguilera A, Ling C, Carlsson E, Poulsen P, Vaag A, Stephan Z, Spector TD, Wu YZ, Plass C, Esteller M (2005) Epigenetic differences arise during the lifetime of monozygotic twins. Proc Natl Acad Sci USA 102:10604–10609

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Hakonen AH, Isohanni P, Paetau A, Herva R, Suomalainen A, Lonnqvist T (2007) Recessive Twinkle mutations in early onset encephalopathy with mtDNA depletion. Brain 130:3032–3040

    Article  PubMed  Google Scholar 

  15. Handa H, Matsushima T, Nishimoto N, Inoue M, Saitoh T, Yokohama A, Tsukamoto N, Mitsui T, Nakahashi H, Toyama K, Karasawa M, Ogawara H, Nojima Y, Murakami H (2010) Flow cytometric detection of human telomerase reverse transcriptase (hTERT) expression in a subpopulation of bone marrow cells. Leuk Res 34:177–183

    Article  PubMed  CAS  Google Scholar 

  16. Hiyama K, Hirai Y, Kyoizumi S, Akiyama M, Hiyama E, Piatyszek MA, Shay JW, Ishioka S, Yamakido M (1995) Activation of telomerase in human lymphocytes and hematopoietic progenitor cells. J Immunol 155:3711–3715

    PubMed  CAS  Google Scholar 

  17. Kaszubowska L (2008) Telomere shortening and ageing of the immune system. J Physiol Pharmacol 59(Suppl 9):169–186

    PubMed  Google Scholar 

  18. Kazachkova N, Ramos A, Santos C, Lima M (2013) Mitochondrial DNA damage patterns and aging: revising the evidences for humans and mice. Aging Dis 4:337–350

    Article  PubMed  PubMed Central  Google Scholar 

  19. Kim J-H, Kim HK, Ko J-H, Bang H, Lee D-C (2013) The relationship between leukocyte mitochondrial DNA copy number and telomere length in community-dwelling elderly women. PLoS One 8:e67227

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Kim NW, Piatyszek MA, Prowse KR, Harley CB, West MD, Ho PL, Coviello GM, Wright WE, Weinrich SL, Shay JW (1994) Specific association of human telomerase activity with immortal cells and cancer. Science 266:2011–2015

    Article  PubMed  CAS  Google Scholar 

  21. Lee H, Cho J-H, Park W-J, Jung S-J, Choi I-J, Lee J-H (2017) Loss of the association between telomere length and mitochondrial DNA copy number contribute to colorectal carcinogenesis. Pathol Oncol Res. doi:10.1007/s12253-017-0245-z

  22. Li Z, Hu M, Zong X, He Y, Wang D, Dai L, Dong M, Zhou J, Cao H, Lv L, Chen X, Tang J (2015) Association of telomere length and mitochondrial DNA copy number with risperidone treatment response in first-episode antipsychotic-naïve schizophrenia. Scie Rep 5:18553

    Article  CAS  Google Scholar 

  23. Littvay L, Métneki J, Tárnoki ÁD, Tárnoki DL (2012) The Hungarian twin registry. Twin Res Human Genet 16:185–189

    Article  Google Scholar 

  24. Maida Y, Masutomi K (2015) Telomerase reverse transcriptase moonlights: therapeutic targets beyond telomerase. Cancer Sci 106:1486–1492

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Maini MK, Soares MV, Zilch CF, Akbar AN, Beverley PC (1999) Virus-induced CD8 + T cell clonal expansion is associated with telomerase up-regulation and telomere length preservation: a mechanism for rescue from replicative senescence. J Immunol 162:4521–4526

    PubMed  CAS  Google Scholar 

  26. Melicher D, Buzas EI, Falus A (2015) Genetic and epigenetic trends in telomere research: a novel way in immunoepigenetics. Cell Mol Life Sci 72:4095–4109

    Article  PubMed  CAS  Google Scholar 

  27. Morrison SJ, Prowse KR, Ho P, Weissman IL (1996) Telomerase activity in hematopoietic cells is associated with self-renewal potential. Immunity 5:207–216

    Article  PubMed  CAS  Google Scholar 

  28. O'Callaghan NJ, Dhillon VS, Thomas P, Fenech M (2008) A quantitative real-time PCR method for absolute telomere length. Biotechniques, 44:807–809

    Article  PubMed  CAS  Google Scholar 

  29. Otsuka I, Izumi T, Boku S, Kimura A, Zhang Y, Mouri K, Okazaki S, Shiroiwa K, Takahashi M, Ueno Y, Shirakawa O, Sora I, Hishimoto A (2017) Aberrant telomere length and mitochondrial DNA copy number in suicide completers. Sci Rep 7:3176

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Passos JF, Saretzki G, von Zglinicki T (2007) DNA damage in telomeres and mitochondria during cellular senescence: is there a connection? Nucleic Acids Res 35:7505–7513

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Petronis A (2006) Epigenetics and twins: three variations on the theme. Trends Genet 22:347–350

    Article  PubMed  CAS  Google Scholar 

  32. Pinheiro J, Bates D (2009) Mixed-effects models in S and S-plus. Springer, New York

    Google Scholar 

  33. Poulsen P, Esteller M, Vaag A, Fraga MF (2007) The epigenetic basis of twin discordance in age-related diseases. Pediatr Res 61:38r–42r

    Article  PubMed  Google Scholar 

  34. Qiu C, Enquobahrie DA, Gelaye B, Hevner K, Williams MA (2015) The association between leukocyte telomere length and mitochondrial DNA copy number in pregnant women: a pilot study. Clin Lab 61:363–369

    Article  PubMed  CAS  Google Scholar 

  35. R Core Team (2016) R: A language and environment for statistical computing. R Foundation for Statistical Computing

  36. Ramlee MK, Wang J, Toh WX, Li S (2016) Transcription regulation of the human telomerase reverse transcriptase (hTERT) gene. Genes 7:50

    Article  PubMed Central  CAS  Google Scholar 

  37. Roth A, Yssel H, Pene J, Chavez EA, Schertzer M, Lansdorp PM, Spits H, Luiten RM (2003) Telomerase levels control the lifespan of human T lymphocytes. Blood 102:849–857

    Article  PubMed  CAS  Google Scholar 

  38. Sahin E, Colla S, Liesa M, Moslehi J, Müller FL, Guo M, Cooper M, Kotton D, Fabian AJ, Walkey C, Maser RS, Tonon G, Foerster F, Xiong R, Wang YA, Shukla SA, Jaskelioff M, Martin ES, Heffernan TP, Protopopov A, Ivanova E, Mahoney JE, Kost-Alimova M, Perry SR, Bronson R, Liao R, Mulligan R, Shirihai OS, Chin L, Depinho RA (2011) Telomere dysfunction induces metabolic and mitochondrial compromise. Nature 470:359–365

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Sahin E, Depinho RA (2012) Axis of ageing: telomeres, p53 and mitochondria. Nat Rev Mol Cell Biol 13:397–404

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Sanderson SL, Simon AK (2017) In aged primary T cells, mitochondrial stress contributes to telomere attrition measured by a novel imaging flow cytometry assay. Aging Cell 16:1234–1243

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Tan Q, Christiansen L, Thomassen M, Kruse TA, Christensen K (2013) Twins for epigenetic studies of human aging and development. Ageing Res Rev 12:182–187

    Article  PubMed  Google Scholar 

  42. Tyrka AR, Carpenter LL, Kao H-T, Porton B, Philip NS, Ridout SJ, Ridout KK, Price LH (2015) Association of telomere length and mitochondrial DNA copy number in a community sample of healthy adults. Exp Gerontol 66:17–20

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Tyrka AR, Parade SH, Price LH, Kao H-T, Porton B, Philip NS, Welch ES, Carpenter LL (2016) Alterations of mitochondrial DNA copy number and telomere length with early adversity and psychopathology. Biol Psychiat 79:78–86

    Article  PubMed  CAS  Google Scholar 

  44. Untergasser A, Cutcutache I, Koressaar T, Ye J, Faircloth BC, Remm M, Rozen SG (2012) Primer3–new capabilities and interfaces. Nucleic Acids Res 40:e115

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Venteicher AS, Abreu EB, Meng Z, McCann KE, Terns RM, Veenstra TD, Terns MP, Artandi SE (2009) A human telomerase holoenzyme protein required for Cajal body localization and telomere synthesis. Science 323:644–648

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Wright WE, Piatyszek MA, Rainey WE, Byrd W, Shay JW (1996) Telomerase activity in human germline and embryonic tissues and cells. Dev Genet 18:173–179

    Article  PubMed  CAS  Google Scholar 

  47. Zhou J, Ding D, Wang M, Cong Y-S (2014) Telomerase reverse transcriptase in the regulation of gene expression. BMB Rep 47:8–14

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Zhu X, Mao Y, Huang T, Yan C, Yu F, Du J, Dai J, Ma H, Jin G (2017) High mitochondrial DNA copy number was associated with an increased gastric cancer risk in a Chinese population. Mol Carcinog 56:2593–2600

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Ms. Nora Fekete for her assistance throughout the experiments and preparations, to Mrs. Monika Banlaky for her assistance in blood draw and to Viktor Molnar, MD for his assistance in the validation of qPCR results. The authors would also like to thank Marcell Szily for his help in the logistics of sample transports.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to András Falus.

Ethics declarations

Conflict of interest

The authors have no conflict of interest to declare.

Funding

The study was supported by the grant of Hungarian Pulmonology Foundation (2015).

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Melicher, D., Illés, A., Pállinger, É. et al. Tight co-twin similarity of monozygotic twins for hTERT protein level of T cell subsets, for telomere length and mitochondrial DNA copy number, but not for telomerase activity. Cell. Mol. Life Sci. 75, 2447–2456 (2018). https://doi.org/10.1007/s00018-017-2738-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-017-2738-z

Keywords

Navigation