Cellular and Molecular Life Sciences

, Volume 75, Issue 12, pp 2227–2239 | Cite as

Evidence of G-protein-coupled receptor and substrate transporter heteromerization at a single molecule level

  • Jana Fischer
  • Gunnar Kleinau
  • Claudia Rutz
  • Denise Zwanziger
  • Noushafarin Khajavi
  • Anne Müller
  • Maren Rehders
  • Klaudia Brix
  • Catherine L. Worth
  • Dagmar Führer
  • Heiko Krude
  • Burkhard Wiesner
  • Ralf SchüleinEmail author
  • Heike BiebermannEmail author
Original Article


G-protein-coupled receptors (GPCRs) can constitute complexes with non-GPCR integral membrane proteins, while such interaction has not been demonstrated at a single molecule level so far. We here investigated the potential interaction between the thyrotropin receptor (TSHR) and the monocarboxylate transporter 8 (MCT8), a member of the major facilitator superfamily (MFS), using fluorescence cross-correlation spectroscopy (FCCS). Both the proteins are expressed endogenously on the basolateral plasma membrane of the thyrocytes and are involved in stimulation of thyroid hormone production and release. Indeed, we demonstrate strong interaction between both the proteins which causes a suppressed activation of Gq/11 by TSH-stimulated TSHR. Thus, we provide not only evidence for a novel interaction between the TSHR and MCT8, but could also prove this interaction on a single molecule level. Moreover, this interaction forces biased signaling at the TSHR. These results are of general interest for both the GPCR and the MFS research fields.


GPCR MCT8 MFS transporters Oligomerization TSHR 



Bimolecular fluorescence complementation


Fluorescence cross-correlation spectroscopy


Mono-carboxylate transporter 8


Thyrotropin receptor


G-protein-coupled receptor


Major facilitator superfamily


Single molecule total internal reflection microscopy


Angiotensin-1-receptor (AT1R)


Transient receptor potential cation channel subfamily C3


Muscarinic acetylcholine receptor 3 (rat)


Melanocortin receptor 4


Enzyme linked immunosorbent assay


Cyclic adenosine mono phosphate


Inositol triphosphate




Thyroid hormone


Thyroid stimulating hormone


Yellow fluorescent protein


Graves disease


Follicular adenoma


Follicular thyroid carcinoma


Papillary thyroid carcinoma



This work was supported by the Deutsche Forschungsgemeinschaft (DFG), projects BI 893/6-3, KL 2334/2-2, in the framework of the SPP 1629 “Thyroid Trans Act” BI893/5-2, BR 1308/11-2, KR1710/5-1, ZW 221/2-1, FU356/3-3 and FU356/7-2. We would like to acknowledge the assistance of the BCRT Flow Cytometry Lab (Charité-Universitätsmedizin Berlin). We would also like to thank Sabine Jyrch, Cigdem Cetindag and Jenny Eichhorst for excellent technical assistance, Vahid Asimi for independent reproduction of the FCCS data and Martin Lehmann for useful discussions.

Supplementary material

18_2017_2728_MOESM1_ESM.docx (628 kb)
Supplementary material 1 (DOCX 628 kb)


  1. 1.
    George SR, O’Dowd BF, Lee SP (2002) G-protein-coupled receptor oligomerization and its potential for drug discovery. Nat Rev Drug Discov 1:808–820CrossRefPubMedGoogle Scholar
  2. 2.
    Calebiro D et al (2013) Single-molecule analysis of fluorescently labeled G-protein-coupled receptors reveals complexes with distinct dynamics and organization. Proc Natl Acad Sci USA 110:743–748CrossRefPubMedGoogle Scholar
  3. 3.
    Lambert NA (2010) GPCR dimers fall apart. Sci Signal 3:pe12CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Teichmann A et al (2014) The specific monomer/dimer equilibrium of the corticotropin-releasing factor receptor type 1 is established in the endoplasmic reticulum. J Biol Chem 289:24250–24262CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Doupnik CA (2008) GPCR-Kir channel signaling complexes: defining rules of engagement. J Recept Signal Transduct Res 28:83–91CrossRefPubMedGoogle Scholar
  6. 6.
    Benleulmi-Chaachoua A et al (2016) Protein interactome mining defines melatonin MT1 receptors as integral component of presynaptic protein complexes of neurons. J Pineal Res 60:95–108CrossRefPubMedGoogle Scholar
  7. 7.
    Dehvari N et al (2012) beta(2)-Adrenoceptors increase translocation of GLUT4 via GPCR kinase sites in the receptor C-terminal tail. Br J Pharmacol 165:1442–1456CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Xie Z, Westmoreland SV, Miller GM (2008) Modulation of monoamine transporters by common biogenic amines via trace amine-associated receptor 1 and monoamine autoreceptors in human embryonic kidney 293 cells and brain synaptosomes. J Pharmacol Exp Ther 325:629–640CrossRefPubMedGoogle Scholar
  9. 9.
    Law CJ, Maloney PC, Wang DN (2008) Ins and outs of major facilitator superfamily antiporters. Annu Rev Microbiol 62:289–305CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Vassart G, Dumont JE (1992) The thyrotropin receptor and the regulation of thyrocyte function and growth. Endocr Rev 13:596–611PubMedGoogle Scholar
  11. 11.
    Biebermann H, Winkler F, Kleinau G (2010) Genetic defects, thyroid growth and malfunctions of the TSHR in pediatric patients. Front Biosci 15:913–933CrossRefGoogle Scholar
  12. 12.
    Latif R, Graves P, Davies TF (2001) Oligomerization of the human thyrotropin receptor: fluorescent protein-tagged hTSHR reveals post-translational complexes. J Biol Chem 276:45217–45224CrossRefPubMedGoogle Scholar
  13. 13.
    Davies T, Marians R, Latif R (2002) The TSH receptor reveals itself. J Clin Invest 110:161–164CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Friesema EC, Ganguly S, Abdalla A, Manning Fox JE, Halestrap AP, Visser TJ (2003) Identification of monocarboxylate transporter 8 as a specific thyroid hormone transporter. J Biol Chem 278:40128–40135CrossRefPubMedGoogle Scholar
  15. 15.
    Kinne A, Kleinau G, Hoefig CS, Gruters A, Kohrle J, Krause G, Schweizer U (2010) Essential molecular determinants for thyroid hormone transport and first structural implications for monocarboxylate transporter 8. J Biol Chem 285:28054–28063CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Di Cosmo C, Liao XH, Dumitrescu AM, Philp NJ, Weiss RE, Refetoff S (2010) Mice deficient in MCT8 reveal a mechanism regulating thyroid hormone secretion. J Clin Invest 120:3377–3388CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Sequeira M, Jasani B, Fuhrer D, Wheeler M, Ludgate M (2002) Demonstration of reduced in vivo surface expression of activating mutant thyrotrophin receptors in thyroid sections. Eur J Endocrinol 146:163–171CrossRefPubMedGoogle Scholar
  18. 18.
    Bartholomaus I et al (2008) Glycine transporter dimers: evidence for occurrence in the plasma membrane. J Biol Chem 283:10978–10991CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Keller T et al (2011) The large extracellular loop of organic cation transporter 1 influences substrate affinity and is pivotal for oligomerization. J Biol Chem 286:37874–37886CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Yin Y, He X, Szewczyk P, Nguyen T, Chang G (2006) Structure of the multidrug transporter EmrD from Escherichia coli. Science 312:741–744CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Seidel S et al (2005) Amphetamines take two to tango: an oligomer-based counter-transport model of neurotransmitter transport explores the amphetamine action. Mol Pharmacol 67:140–151PubMedGoogle Scholar
  22. 22.
    Kasai RS, Suzuki KG, Prossnitz ER, Koyama-Honda I, Nakada C, Fujiwara TK, Kusumi A (2011) Full characterization of GPCR monomer-dimer dynamic equilibrium by single molecule imaging. J Cell Biol 192:463–480CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Nyfeler B, Michnick SW, Hauri HP (2005) Capturing protein interactions in the secretory pathway of living cells. Proc Natl Acad Sci USA 102:6350–6355CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Elson EL (2001) Fluorescence correlation spectroscopy measures molecular transport in cells. Traffic 2:789–796CrossRefPubMedGoogle Scholar
  25. 25.
    Schwille P, Korlach J, Webb WW (1999) Fluorescence correlation spectroscopy with single-molecule sensitivity on cell and model membranes. Cytometry 36:176–182CrossRefPubMedGoogle Scholar
  26. 26.
    Haustein E, Schwille P (2003) Ultrasensitive investigations of biological systems by fluorescence correlation spectroscopy. Methods 29:153–166CrossRefPubMedGoogle Scholar
  27. 27.
    Teichmann A, Rutz C, Kreuchwig A, Krause G, Wiesner B, Schulein R (2012) The Pseudo signal peptide of the corticotropin-releasing factor receptor type 2A prevents receptor oligomerization. J Biol Chem 287:27265–27274CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Fischer J et al (2015) Modulation of monocarboxylate transporter 8 oligomerization by specific pathogenic mutations. J Mol Endocrinol 54:39–50CrossRefPubMedGoogle Scholar
  29. 29.
    Muller A et al (2013) G-protein coupled receptor 83 (GPR83) signaling determined by constitutive and zinc(II)-induced activity. PLoS One 8:e53347CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Winkler F et al (2010) A new phenotype of nongoitrous and nonautoimmune hyperthyroidism caused by a heterozygous thyrotropin receptor mutation in transmembrane helix 6. J Clin Endocrinol Metab 95:3605–3610CrossRefPubMedGoogle Scholar
  31. 31.
    Biebermann H, Krude H, Elsner A, Chubanov V, Gudermann T, Gruters A (2003) Autosomal-dominant mode of inheritance of a melanocortin-4 receptor mutation in a patient with severe early-onset obesity is due to a dominant-negative effect caused by receptor dimerization. Diabetes 52:2984–2988CrossRefPubMedGoogle Scholar
  32. 32.
    Zwanziger D, Rakov H, Engels K, Moeller LC, Fuhrer D (2015) Sex-dependent claudin-1 expression in the liver of euthyroid and hypothyroid mice. Eur Thyroid J 4:67–73CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Pfaffl MW (2001) A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res 29:e45CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Pfaffl MW, Tichopad A, Prgomet C, Neuvians TP (2004) Determination of stable housekeeping genes, differentially regulated target genes and sample integrity: BestKeeper—excel-based tool using pair-wise correlations. Biotechnol Lett 26:509–515CrossRefPubMedGoogle Scholar
  35. 35.
    Kleinau G, Neumann S, Gruters A, Krude H, Biebermann H (2013) Novel insights on thyroid-stimulating hormone receptor signal transduction. Endocr Rev 34:691–724CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Kero J, Ahmed K, Wettschureck N, Tunaru S, Wintermantel T, Greiner E, Schutz G, Offermanns S (2007) Thyrocyte-specific Gq/G11 deficiency impairs thyroid function and prevents goiter development. J Clin Invest 117:2399–2407CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Badziong J et al (2017) Differential regulation of monocarboxylate transporter 8 expression in thyroid cancer and hyperthyroidism. Eur J Endocrinol 177:243–250CrossRefPubMedGoogle Scholar
  38. 38.
    Allen MD, Neumann S, Gershengorn MC (2011) Occupancy of both sites on the thyrotropin (TSH) receptor dimer is necessary for phosphoinositide signaling. FASEB J 25:3687–3694CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2017

Authors and Affiliations

  • Jana Fischer
    • 1
  • Gunnar Kleinau
    • 1
    • 2
  • Claudia Rutz
    • 3
  • Denise Zwanziger
    • 4
  • Noushafarin Khajavi
    • 1
  • Anne Müller
    • 1
  • Maren Rehders
    • 5
  • Klaudia Brix
    • 5
  • Catherine L. Worth
    • 6
  • Dagmar Führer
    • 4
  • Heiko Krude
    • 1
  • Burkhard Wiesner
    • 3
    • 7
  • Ralf Schülein
    • 3
    Email author
  • Heike Biebermann
    • 1
    Email author
  1. 1.Institut für Experimentelle Pädiatrische EndokrinologieCharité – Universitätsmedizin BerlinBerlinGermany
  2. 2.Group Protein X-ray Crystallography and Signal Transduction, Institute of Medical Physics and BiophysicsCharité – Universitätsmedizin BerlinBerlinGermany
  3. 3.Protein Trafficking GroupLeibniz-Forschungsinstitut für Molekulare PharmakologieBerlinGermany
  4. 4.Division of Laboratory Research, Department of Endocrinology, Diabetology and MetabolismUniversity Hospital Essen, University Duisburg-EssenEssenGermany
  5. 5.Department of Life Sciences and ChemistryJacobs University BremenBremenGermany
  6. 6.Structural Bioinformatics and Protein Design GroupLeibniz-Forschungsinstitut für Molekulare PharmakologieBerlinGermany
  7. 7.Cellular Imaging GroupLeibniz-Forschungsinstitut für Molekulare PharmakologieBerlinGermany

Personalised recommendations