Cellular and Molecular Life Sciences

, Volume 75, Issue 11, pp 2027–2044 | Cite as

Sorting nexin 3 mutation impairs development and neuronal function in Caenorhabditis elegans

  • Neide Vieira
  • Carlos Bessa
  • Ana J. Rodrigues
  • Paulo Marques
  • Fung-Yi Chan
  • Ana Xavier de Carvalho
  • Margarida Correia-Neves
  • Nuno Sousa
Original Article


The sorting nexins family of proteins (SNXs) plays pleiotropic functions in protein trafficking and intracellular signaling and has been associated with several disorders, namely Alzheimer’s disease and Down’s syndrome. Despite the growing association of SNXs with neurodegeneration, not much is known about their function in the nervous system. The aim of this work was to use the nematode Caenorhabditis elegans that encodes in its genome eight SNXs orthologs, to dissect the role of distinct SNXs, particularly in the nervous system. By screening the C. elegans SNXs deletion mutants for morphological, developmental and behavioral alterations, we show here that snx-3 gene mutation leads to an array of developmental defects, such as delayed hatching, decreased brood size and life span and reduced body length. Additionally, ∆snx-3 worms present increased susceptibility to osmotic, thermo and oxidative stress and distinct behavioral deficits, namely, a chemotaxis defect which is independent of the described snx-3 role in Wnt secretion. ∆snx-3 animals also display abnormal GABAergic neuronal architecture and wiring and altered AIY interneuron structure. Pan-neuronal expression of C. elegans snx-3 cDNA in the ∆snx-3 mutant is able to rescue its locomotion defects, as well as its chemotaxis toward isoamyl alcohol. Altogether, the present work provides the first in vivo evidence of the SNX-3 role in the nervous system.


Behavior Neuronal defects Impaired development Nervous system Sorting nexins 



This work has been funded by FEDER funds, through the Competitiveness Factors Operational Programme (COMPETE), and by National funds, through the Foundation for Science and Technology (FCT), under the scope of the Project POCI-01-0145-FEDER-007038; and by a 2016 NARSAD Young Investigator Grant (#24929) from the Brain and Behavior Research Foundation. This work was developed under the scope of the Project NORTE-01-0145-FEDER-000013, supported by the Northern Portugal Regional Operational Programme (NORTE 2020), under the Portugal 2020 Partnership Agreement, through the European Regional Development Fund (FEDER). NV is supported by the FCT Fellowship SFRH/BPD/91250/2012. AJR is an FCT Investigator IF/00883/2013. CB is supported by a FCT Grant SFRH/BPD/74452/2010 (POPH/FS). PM is supported by a fellowship from the project “Envelhecimento cognitivo saudável–proporcionar saúde mental no processo biológico do envelhecimento” (Contract P-139977) funded by Calouste Gulbenkian–Inovar em Saúde. Research in AXC’s lab is funded by the European Research Council under the European Union’s Horizon 2020 research and innovation programme (Grant agreement 640553-ACTOMYO). AXC has a FCT Investigator position funded by FCT and co-funded by the European Social Fund through Programa Operacional Temático Potencial Type 4.2 promotion of scientific employment. FC is supported by the FCT fellowship SFRH/BPD/93528/2013. We would like to thank all the members of the NeRD research domain, ICVS, for fruitful discussion and advices.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    Cullen PJ (2008) Endosomal sorting and signalling: an emerging role for sorting nexins. Nat Rev Mol Cell Biol 9:574–582CrossRefPubMedGoogle Scholar
  2. 2.
    Teasdale RD, Collins BM (2012) Insights into the PX (phox-homology) domain and SNX (sorting nexin) protein families: structures, functions and roles in disease. Biochem J 441:39–59CrossRefPubMedGoogle Scholar
  3. 3.
    Thomas AC, Williams H, Seto-Salvia N, Bacchelli C, Jenkins D, O’Sullivan M, Mengrelis K, Ishida M, Ocaka L, Chanudet E, James C, Lescai F, Anderson G, Morrogh D, Ryten M, Duncan AJ, Pai YJ, Saraiva JM, Ramos F, Farren B, Saunders D, Vernay B, Gissen P, Straatmaan-Iwanowska A, Baas F, Wood NW, Hersheson J, Houlden H, Hurst J, Scott R, Bitner-Glindzicz M, Moore GE, Sousa SB, Stanier P (2014) Mutations in SNX14 cause a distinctive autosomal-recessive cerebellar ataxia and intellectual disability syndrome. Am J Hum Genet 95:611–621CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Zhao Y, Wang Y, Yang J, Wang X, Zhao Y, Zhang X, Zhang YW (2012) Sorting nexin 12 interacts with BACE1 and regulates BACE1-mediated APP processing. Mol Neurodegener 7:30CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Lee J, Retamal C, Cuitino L, Caruano-Yzermans A, Shin JE, van Kerkhof P, Marzolo MP, Bu G (2008) Adaptor protein sorting nexin 17 regulates amyloid precursor protein trafficking and processing in the early endosomes. J Biol Chem 283:11501–11508CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Schobel S, Neumann S, Hertweck M, Dislich B, Kuhn PH, Kremmer E, Seed B, Baumeister R, Haass C, Lichtenthaler SF (2008) A novel sorting nexin modulates endocytic trafficking and alpha-secretase cleavage of the amyloid precursor protein. J Biol Chem 283:14257–14268CrossRefPubMedGoogle Scholar
  7. 7.
    Vardarajan BN, Bruesegem SY, Harbour ME, Inzelberg R, Friedland R, St George-Hyslop P, Seaman MN, Farrer LA (2012) Identification of Alzheimer disease-associated variants in genes that regulate retromer function. Neurobiol Aging 33:2231 e15–2231 e30CrossRefGoogle Scholar
  8. 8.
    Wang X, Zhao Y, Zhang X, Badie H, Zhou Y, Mu Y, Loo LS, Cai L, Thompson RC, Yang B, Chen Y, Johnson PF, Wu C, Bu G, Mobley WC, Zhang D, Gage FH, Ranscht B, Zhang YW, Lipton SA, Hong W, Xu H (2013) Loss of sorting nexin 27 contributes to excitatory synaptic dysfunction by modulating glutamate receptor recycling in Down’s syndrome. Nat Med 19:473–480CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Zhu Z, Zhang F, Hu H, Bakshi A, Robinson MR, Powell JE, Montgomery GW, Goddard ME, Wray NR, Visscher PM, Yang J (2016) Integration of summary data from GWAS and eQTL studies predicts complex trait gene targets. Nat Genet 48:481–487CrossRefPubMedGoogle Scholar
  10. 10.
    Hauberg ME, Zhang W, Giambartolomei C, Franzen O, Morris DL, Vyse TJ, Ruusalepp A, CommonMind C, Sklar P, Schadt EE, Bjorkegren JLM, Roussos P (2017) Large-scale identification of common trait and disease variants affecting gene expression. Am J Hum Genet 101:157CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Fullard JF, Giambartolomei C, Hauberg ME, Xu K, Voloudakis G, Shao Z, Bare C, Dudley JT, Mattheisen M, Robakis NK, Haroutunian V, Roussos P (2017) Open chromatin profiling of human postmortem brain infers functional roles for non-coding schizophrenia loci. Hum Mol Genet 26:1942–1951CrossRefPubMedGoogle Scholar
  12. 12.
    Bessa C, Maciel P, Rodrigues AJ (2013) Using C. elegans to decipher the cellular and molecular mechanisms underlying neurodevelopmental disorders. Mol Neurobiol 48:465–489CrossRefPubMedGoogle Scholar
  13. 13.
    Sato K, Norris A, Sato M, Grant BD (2014) C. elegans as a model for membrane traffic. WormBook 1–47.
  14. 14.
    Seaman MN (2012) The retromer complex - endosomal protein recycling and beyond. J Cell Sci 125:4693–4702CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Harterink M, Port F, Lorenowicz MJ, McGough IJ, Silhankova M, Betist MC, van Weering JR, van Heesbeen RG, Middelkoop TC, Basler K, Cullen PJ, Korswagen HC (2011) A SNX3-dependent retromer pathway mediates retrograde transport of the Wnt sorting receptor Wntless and is required for Wnt secretion. Nat Cell Biol 13:914–923CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Loo LS, Tang N, Al-Haddawi M, Dawe GS, Hong W (2014) A role for sorting nexin 27 in AMPA receptor trafficking. Nat Commun 5:3176CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Mecozzi VJ, Berman DE, Simoes S, Vetanovetz C, Awal MR, Patel VM, Schneider RT, Petsko GA, Ringe D, Small SA (2014) Pharmacological chaperones stabilize retromer to limit APP processing. Nat Chem Biol 10:443–449CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Li C, Shah SZ, Zhao D, Yang L (2016) Role of the retromer complex in neurodegenerative diseases. Front Aging Neurosci 8:42PubMedPubMedCentralGoogle Scholar
  19. 19.
    Verges M (2007) Retromer and sorting nexins in development. Front Biosci 12:3825–3851CrossRefPubMedGoogle Scholar
  20. 20.
    Dang H, Klokk TI, Schaheen B, McLaughlin BM, Thomas AJ, Durns TA, Bitler BG, Sandvig K, Fares H (2011) Derlin-dependent retrograde transport from endosomes to the Golgi apparatus. Traffic 12:1417–1431CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Worby CA, Dixon JE (2002) Sorting out the cellular functions of sorting nexins. Nat Rev Mol Cell Biol 3:919–931CrossRefPubMedGoogle Scholar
  22. 22.
    Zhang Y, Grant B, Hirsh D (2001) RME-8, a conserved J-domain protein, is required for endocytosis in Caenorhabditis elegans. Mol Biol Cell 12:2011–2021CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Shi A, Sun L, Banerjee R, Tobin M, Zhang Y, Grant BD (2009) Regulation of endosomal clathrin and retromer-mediated endosome to Golgi retrograde transport by the J-domain protein RME-8. EMBO J 28:3290–3302CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Gleason RJ, Akintobi AM, Grant BD, Padgett RW (2014) BMP signaling requires retromer-dependent recycling of the type I receptor. Proc Natl Acad Sci USA 111:2578–2583CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Bai Z, Grant BD (2015) A TOCA/CDC-42/PAR/WAVE functional module required for retrograde endocytic recycling. Proc Natl Acad Sci USA 112:E1443–E1452PubMedPubMedCentralGoogle Scholar
  26. 26.
    van Weering JR, Verkade P, Cullen PJ (2010) SNX–BAR proteins in phosphoinositide-mediated, tubular-based endosomal sorting. Semin Cell Dev Biol 21:371–380CrossRefPubMedGoogle Scholar
  27. 27.
    Lu N, Shen Q, Mahoney TR, Liu X, Zhou Z (2011) Three sorting nexins drive the degradation of apoptotic cells in response to PtdIns(3)P signaling. Mol Biol Cell 22:354–374CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Popoff V, Mardones GA, Bai SK, Chambon V, Tenza D, Burgos PV, Shi A, Benaroch P, Urbe S, Lamaze C, Grant BD, Raposo G, Johannes L (2009) Analysis of articulation between clathrin and retromer in retrograde sorting on early endosomes. Traffic 10:1868–1880CrossRefPubMedGoogle Scholar
  29. 29.
    McGough IJ, Cullen PJ (2013) Clathrin is not required for SNX-BAR-retromer-mediated carrier formation. J Cell Sci 126:45–52CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Brenner S (1974) The genetics of Caenorhabditis elegans. Genetics 77:71–94PubMedPubMedCentralGoogle Scholar
  31. 31.
    Kuroyanagi H, Ohno G, Sakane H, Maruoka H, Hagiwara M (2010) Visualization and genetic analysis of alternative splicing regulation in vivo using fluorescence reporters in transgenic Caenorhabditis elegans. Nat Protoc 5:1495–1517CrossRefPubMedGoogle Scholar
  32. 32.
    Edgar RC (2004) MUSCLE: a multiple sequence alignment method with reduced time and space complexity. BMC Bioinform 5:113CrossRefGoogle Scholar
  33. 33.
    Pfaffl MW (2001) A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res 29:e45CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Zhang Y, Chen D, Smith MA, Zhang B, Pan X (2012) Selection of reliable reference genes in Caenorhabditis elegans for analysis of nanotoxicity. PLoS One 7:e31849CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Bargmann CI, Hartwieg E, Horvitz HR (1993) Odorant-selective genes and neurons mediate olfaction in C. elegans. Cell 74:515–527CrossRefPubMedGoogle Scholar
  36. 36.
    Prahlad V, Cornelius T, Morimoto RI (2008) Regulation of the cellular heat shock response in Caenorhabditis elegans by thermosensory neurons. Science 320:811–814CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Rodrigues AJ, Neves-Carvalho A, Teixeira-Castro A, Rokka A, Corthals G, Logarinho E, Maciel P (2011) Absence of ataxin-3 leads to enhanced stress response in C. elegans. PLoS One 6:e18512CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Lamitina ST, Morrison R, Moeckel GW, Strange K (2004) Adaptation of the nematode Caenorhabditis elegans to extreme osmotic stress. Am J Physiol Cell Physiol 286:C785–C791CrossRefPubMedGoogle Scholar
  39. 39.
    Vertino A, Ayyadevara S, Thaden JJ, Shmookler Reis RJ (2011) A narrow quantitative trait locus in C. elegans coordinately affects longevity, thermotolerance, and resistance to paraquat. Front Genet 2:63CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Preibisch S, Saalfeld S, Tomancak P (2009) Globally optimal stitching of tiled 3D microscopic image acquisitions. Bioinformatics 25:1463–1465CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Carlton J, Bujny M, Rutherford A, Cullen P (2005) Sorting nexins—unifying trends and new perspectives. Traffic 6:75–82CrossRefPubMedGoogle Scholar
  42. 42.
    Zuryn S, Le Gras S, Jamet K, Jarriault S (2010) A strategy for direct mapping and identification of mutations by whole-genome sequencing. Genetics 186:427–430CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Wadsworth WG, Riddle DL (1989) Developmental regulation of energy metabolism in Caenorhabditis elegans. Dev Biol 132:167–173CrossRefPubMedGoogle Scholar
  44. 44.
    Kenyon C, Chang J, Gensch E, Rudner A, Tabtiang R (1993) A C. elegans mutant that lives twice as long as wild type. Nature 366:461–464CrossRefPubMedGoogle Scholar
  45. 45.
    Lin K, Dorman JB, Rodan A, Kenyon C (1997) daf-16: an HNF-3/forkhead family member that can function to double the life-span of Caenorhabditis elegans. Science 278:1319–1322CrossRefPubMedGoogle Scholar
  46. 46.
    Wes PD, Bargmann CI (2001) C. elegans odour discrimination requires asymmetric diversity in olfactory neurons. Nature 410:698–701CrossRefPubMedGoogle Scholar
  47. 47.
    Kimata T, Sasakura H, Ohnishi N, Nishio N, Mori I (2012) Thermotaxis of C. elegans as a model for temperature perception, neural information processing and neural plasticity. Worm 1:31–41CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Hedgecock EM, Russell RL (1975) Normal and mutant thermotaxis in the nematode Caenorhabditis elegans. Proc Natl Acad Sci USA 72:4061–4065CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Lant B, Storey KB (2010) An overview of stress response and hypometabolic strategies in Caenorhabditis elegans: conserved and contrasting signals with the mammalian system. Int J Biol Sci 6:9–50CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Rodriguez M, Snoek LB, De Bono M, Kammenga JE (2013) Worms under stress: C. elegans stress response and its relevance to complex human disease and aging. Trends Genet 29:367–374CrossRefPubMedGoogle Scholar
  51. 51.
    Kanamori T, Inoue T, Sakamoto T, Gengyo-Ando K, Tsujimoto M, Mitani S, Sawa H, Aoki J, Arai H (2008) Beta-catenin asymmetry is regulated by PLA1 and retrograde traffic in C. elegans stem cell divisions. EMBO J 27:1647–1657CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Oikonomou G, Perens EA, Lu Y, Shaham S (2012) Some, but not all, retromer components promote morphogenesis of C. elegans sensory compartments. Dev Biol 362:42–49CrossRefPubMedGoogle Scholar
  53. 53.
    Krishna S, Maduzia LL, Padgett RW (1999) Specificity of TGFbeta signaling is conferred by distinct type I receptors and their associated SMAD proteins in Caenorhabditis elegans. Development 126:251–260PubMedGoogle Scholar
  54. 54.
    Xu Y, Hortsman H, Seet L, Wong SH, Hong W (2001) SNX3 regulates endosomal function through its PX-domain-mediated interaction with PtdIns(3)P. Nat Cell Biol 3:658–666CrossRefPubMedGoogle Scholar
  55. 55.
    Pons V, Luyet PP, Morel E, Abrami L, van der Goot FG, Parton RG, Gruenberg J (2008) Hrs and SNX3 functions in sorting and membrane invagination within multivesicular bodies. PLoS Biol 6:e214CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Chen C, Garcia-Santos D, Ishikawa Y, Seguin A, Li L, Fegan KH, Hildick-Smith GJ, Shah DI, Cooney JD, Chen W, King MJ, Yien YY, Schultz IJ, Anderson H, Dalton AJ, Freedman ML, Kingsley PD, Palis J, Hattangadi SM, Lodish HF, Ward DM, Kaplan J, Maeda T, Ponka P, Paw BH (2013) Snx3 regulates recycling of the transferrin receptor and iron assimilation. Cell Metab 17:343–352CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Mizutani R, Yamauchi J, Kusakawa S, Nakamura K, Sanbe A, Torii T, Miyamoto Y, Tanoue A (2009) Sorting nexin 3, a protein upregulated by lithium, contains a novel phosphatidylinositol-binding sequence and mediates neurite outgrowth in N1E-115 cells. Cell Signal 21:1586–1594CrossRefPubMedGoogle Scholar
  58. 58.
    Mizutani R, Nakamura K, Yokoyama S, Sanbe A, Kusakawa S, Miyamoto Y, Torii T, Asahara H, Okado H, Yamauchi J, Tanoue A (2011) Developmental expression of sorting nexin 3 in the mouse central nervous system. Gene Expr Patterns 11:33–40CrossRefPubMedGoogle Scholar
  59. 59.
    Rosso SB, Inestrosa NC (2013) WNT signaling in neuronal maturation and synaptogenesis. Front Cell Neurosci 7:103CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Chalfie M, Sulston JE, White JG, Southgate E, Thomson JN, Brenner S (1985) The neural circuit for touch sensitivity in Caenorhabditis elegans. J Neurosci 5:956–964CrossRefPubMedGoogle Scholar
  61. 61.
    Schuske K, Beg AA, Jorgensen EM (2004) The GABA nervous system in C. elegans. Trends Neurosci 27:407–414CrossRefPubMedGoogle Scholar
  62. 62.
    Mas C, Norwood SJ, Bugarcic A, Kinna G, Leneva N, Kovtun O, Ghai R, Ona Yanez LE, Davis JL, Teasdale RD, Collins BM (2014) Structural basis for different phosphoinositide specificities of the PX domains of sorting nexins regulating G-protein signaling. J Biol Chem 289:28554–28568CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    Wang Y, Zhou Y, Szabo K, Haft CR, Trejo J (2002) Down-regulation of protease-activated receptor-1 is regulated by sorting nexin 1. Mol Biol Cell 13:1965–1976CrossRefPubMedPubMedCentralGoogle Scholar
  64. 64.
    Moreno JL, Holloway T, Gonzalez-Maeso J (2013) G protein-coupled receptor heterocomplexes in neuropsychiatric disorders. Prog Mol Biol Transl Sci 117:187–205CrossRefPubMedPubMedCentralGoogle Scholar
  65. 65.
    Zhou KI, Pincus Z, Slack FJ (2011) Longevity and stress in Caenorhabditis elegans. Aging (Albany NY) 3:733–753CrossRefGoogle Scholar
  66. 66.
    Hao X, Wang Y, Ren F, Zhu S, Ren Y, Jia B, Li YP, Shi Y, Chang Z (2011) SNX25 regulates TGF-beta signaling by enhancing the receptor degradation. Cell Signal 23:935–946CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2017

Authors and Affiliations

  • Neide Vieira
    • 1
    • 2
  • Carlos Bessa
    • 1
    • 2
  • Ana J. Rodrigues
    • 1
    • 2
  • Paulo Marques
    • 1
    • 2
  • Fung-Yi Chan
    • 3
    • 4
  • Ana Xavier de Carvalho
    • 3
    • 4
  • Margarida Correia-Neves
    • 1
    • 2
  • Nuno Sousa
    • 1
    • 2
  1. 1.School of Medicine, Life and Health Sciences Research Institute (ICVS)University of MinhoBragaPortugal
  2. 2.ICVS/3B’s-PT Government Associate LaboratoryBraga/GuimarãesPortugal
  3. 3.i3S-Instituto de Investigação e Inovação em SaúdeUniversidade do PortoPortoPortugal
  4. 4.Instituto de Biologia Molecular e Celular-IBMCPortoPortugal

Personalised recommendations