Cellular and Molecular Life Sciences

, Volume 75, Issue 6, pp 1027–1041 | Cite as

Molecular components and polarity of radial glial cells during cerebral cortex development

  • Fu-Sheng Chou
  • Rong Li
  • Pei-Shan WangEmail author


Originating from ectodermal epithelium, radial glial cells (RGCs) retain apico-basolateral polarity and comprise a pseudostratified epithelial layer in the developing cerebral cortex. The apical endfeet of the RGCs faces the fluid-filled ventricles, while the basal processes extend across the entire cortical span towards the pial surface. RGC functions are largely dependent on this polarized structure and the molecular components that define it. In this review, we will dissect existing molecular evidence on RGC polarity establishment and during cerebral cortex development and provide our perspective on the remaining key questions.


Radial glia Embryonic neural stem cell Cerebral cortex development Neurogenesis Epithelial polarity Pseudostratified epithelium 



This work is supported by Children’s Mercy-Kansas City Children’s Research Institute. The authors would also like to acknowledge the editing services of the Medical Writing Center at Children’s Mercy-Kansas City for reviewing the manuscript.


  1. 1.
    Kriegstein A, Alvarez-Buylla A (2009) The glial nature of embryonic and adult neural stem cells. Annu Rev Neurosci 32:149–184PubMedPubMedCentralCrossRefGoogle Scholar
  2. 2.
    Paridaen JTML, Huttner WB (2014) Neurogenesis during development of the vertebrate central nervous system. EMBO Rep 15:351–364PubMedPubMedCentralCrossRefGoogle Scholar
  3. 3.
    Rodriguez-Boulan E, Macara IG (2014) Organization and execution of the epithelial polarity programme. Nat Rev Mol Cell Biol 15:225–242PubMedPubMedCentralCrossRefGoogle Scholar
  4. 4.
    O’Brien LE, Jou TS, Pollack AL et al (2001) Rac1 orientates epithelial apical polarity through effects on basolateral laminin assembly. Nat Cell Biol 3:831–838PubMedCrossRefGoogle Scholar
  5. 5.
    Yu W, Datta A, Leroy P et al (2005) β1-integrin orients epithelial polarity via Rac1 and laminin. Mol Biol Cell 16:433–445PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    Fernandes VM, McCormack K, Lewellyn L, Verheyen EM (2014) Integrins regulate apical constriction via microtubule stabilization in the drosophila eye disc epithelium. Cell Rep 9:2043–2055PubMedCrossRefGoogle Scholar
  7. 7.
    Martin AC, Kaschube M, Wieschaus EF (2009) Pulsed contractions of an actin–myosin network drive apical constriction. Nature 457:495PubMedCrossRefGoogle Scholar
  8. 8.
    Sawyer JM, Harrell JR, Shemer G et al (2010) Apical constriction: a cell shape change that can drive morphogenesis. Dev Biol 341:5–19PubMedCrossRefGoogle Scholar
  9. 9.
    Campanale JP, Sun TY, Montell DJ (2017) Development and dynamics of cell polarity at a glance. J Cell Sci 130:1201–1207PubMedCrossRefGoogle Scholar
  10. 10.
    Assémat E, Bazellières E, Pallesi-Pocachard E et al (2008) Polarity complex proteins. Biochim et Biophys Acta (BBA) Biomembr 1778:614–630CrossRefGoogle Scholar
  11. 11.
    Bulgakova NA, Knust E (2009) The Crumbs complex: from epithelial-cell polarity to retinal degeneration. J Cell Sci 122:2587–2596PubMedCrossRefGoogle Scholar
  12. 12.
    Su W-H, Mruk DD, Wong EWP et al (2012) Polarity protein complex scribble/Lgl/Dlg and epithelial cell barriers. Adv Exp Med Biol 763:149–170PubMedPubMedCentralGoogle Scholar
  13. 13.
    Gassama-Diagne A, Yu W, ter Beest M et al (2006) Phosphatidylinositol-3, 4, 5-trisphosphate regulates the formation of the basolateral plasma membrane in epithelial cells. Nat Cell Biol 8:963–970PubMedCrossRefGoogle Scholar
  14. 14.
    Martin-Belmonte F, Gassama A, Datta A et al (2007) PTEN-mediated apical segregation of phosphoinositides controls epithelial morphogenesis through Cdc42. Cell 128:383–397PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Chartier FJ-M, Hardy ÉJ-L, Laprise P (2011) Crumbs controls epithelial integrity by inhibiting Rac1 and PI3K. J Cell Sci 124:3393–3398PubMedCrossRefGoogle Scholar
  16. 16.
    Rajasekaran AK, Hojo M, Huima T, Rodriguez-Boulan E (1996) Catenins and zonula occludens-1 form a complex during early stages in the assembly of tight junctions. J Cell Biol 132:451–463PubMedCrossRefGoogle Scholar
  17. 17.
    Campbell HK, Maiers JL, DeMali KA (2017) Interplay between tight junctions & adherens junctions. Exp Cell Res. doi: 10.1016/j.yexcr.2017.03.061 PubMedGoogle Scholar
  18. 18.
    Hansen AH, Duellberg C, Mieck C et al (2017) Cell polarity in cerebral cortex development-cellular architecture shaped by biochemical networks. Front Cell Neurosci 11:176PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    Dwyer ND, Chen B, Chou S-J et al (2016) Neural stem cells to cerebral cortex: emerging mechanisms regulating progenitor behavior and productivity. J Neurosci 36:11394–11401PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Den Hollander AI, Ten Brink JB, De Kok YJM et al (1999) Mutations in a human homologue of drosophila crumbs cause retinitis pigmentosa (RP12). Nat Genet 23:217–221CrossRefGoogle Scholar
  21. 21.
    den Hollander AI, Heckenlively JR, van den Born LI et al (2001) Leber congenital amaurosis and retinitis pigmentosa with Coats-like exudative vasculopathy are associated with mutations in the crumbs homologue 1 (CRB1) gene. Am J Hum Genet 69:198–203PubMedCentralCrossRefGoogle Scholar
  22. 22.
    van de Pavert SA, Kantardzhieva A, Malysheva A et al (2004) Crumbs homologue 1 is required for maintenance of photoreceptor cell polarization and adhesion during light exposure. J Cell Sci 117:4169–4177PubMedCrossRefGoogle Scholar
  23. 23.
    Xiao Z, Patrakka J, Nukui M et al (2011) Deficiency in crumbs homolog 2 (Crb2) affects gastrulation and results in embryonic lethality in mice. Dev Dyn 240:2646–2656PubMedCrossRefGoogle Scholar
  24. 24.
    Whiteman EL, Fan S, Harder JL et al (2014) Crumbs3 is essential for proper epithelial development and viability. Mol Cell Biol 34:43–56PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Hsu Y-C, Willoughby JJ, Christensen AK, Jensen AM (2006) Mosaic eyes is a novel component of the crumbs complex and negatively regulates photoreceptor apical size. Development 133:4849–4859PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Boroviak T, Rashbass P (2011) The apical polarity determinant crumbs 2 is a novel regulator of ESC-derived neural progenitors. Stem Cells 29:193–205PubMedCrossRefGoogle Scholar
  27. 27.
    Ohata S, Aoki R, Kinoshita S et al (2011) Dual roles of notch in regulation of apically restricted mitosis and apicobasal polarity of neuroepithelial cells. Neuron 69:215–230PubMedCrossRefGoogle Scholar
  28. 28.
    Johnson MW, Miyata H, Vinters HV (2002) Ezrin and moesin expression within the developing human cerebrum and tuberous sclerosis-associated cortical tubers. Acta Neuropathol 104:188–196PubMedCrossRefGoogle Scholar
  29. 29.
    Kim S, Lehtinen MK, Sessa A et al (2010) The apical complex couples cell fate and cell survival to cerebral cortical development. Neuron 66:69–84PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    Graybill C, Wee B, Atwood SX, Prehoda KE (2012) Partitioning-defective protein 6 (Par-6) activates atypical protein kinase C (aPKC) by pseudosubstrate displacement. J Biol Chem 287:21003–21011PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Tobias IS, Newton AC (2016) Protein scaffolds control localized protein kinase Cζ activity. J Biol Chem 291:13809–13822PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Lin D, Edwards AS, Fawcett JP et al (2000) A mammalian PAR-3-PAR-6 complex implicated in Cdc42/Rac1 and aPKC signalling and cell polarity. Nat Cell Biol 2:540–547PubMedCrossRefGoogle Scholar
  33. 33.
    Plant PJ, Fawcett JP, Lin DCC et al (2003) A polarity complex of mPar-6 and atypical PKC binds, phosphorylates and regulates mammalian Lgl. Nat Cell Biol 5:301–308PubMedCrossRefGoogle Scholar
  34. 34.
    Bultje RS, Castaneda-Castellanos DR, Jan LY et al (2009) Mammalian Par3 regulates progenitor cell asymmetric division via notch signaling in the developing neocortex. Neuron 63:189–202PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Cappello S, Attardo A, Wu X et al (2006) The Rho-GTPase cdc42 regulates neural progenitor fate at the apical surface. Nat Neurosci 9:1099–1107PubMedCrossRefGoogle Scholar
  36. 36.
    Chen L, Liao G, Yang L et al (2006) Cdc42 deficiency causes Sonic hedgehog-independent holoprosencephaly. Proc Natl Acad Sci USA 103:16520–16525PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    Hartsock A, Nelson WJ (2008) Adherens and tight junctions: structure, function and connections to the actin cytoskeleton. Biochim Biophys Acta 1778:660–669PubMedCrossRefGoogle Scholar
  38. 38.
    Classen A-K, Anderson KI, Marois E, Eaton S (2005) Hexagonal packing of drosophila wing epithelial cells by the planar cell polarity pathway. Dev Cell 9:805–817PubMedCrossRefGoogle Scholar
  39. 39.
    Desclozeaux M, Venturato J, Wylie FG et al (2008) Active Rab11 and functional recycling endosome are required for E-cadherin trafficking and lumen formation during epithelial morphogenesis. Am J Physiol Cell Physiol 295:C545–C556PubMedCrossRefGoogle Scholar
  40. 40.
    Sato K, Watanabe T, Wang S et al (2011) Numb controls E-cadherin endocytosis through p120 catenin with aPKC. Mol Biol Cell 22:3103–3119PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Brüser L, Bogdan S (2017) Adherens Junctions on the move-membrane trafficking of E-Cadherin. Cold Spring Harb Perspect Biol. doi: 10.1101/cshperspect.a029140 PubMedGoogle Scholar
  42. 42.
    Stocker AM, Chenn A (2015) The role of adherens junctions in the developing neocortex. Cell Adh Migr 9:167–174PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Malatesta P, Appolloni I, Calzolari F (2008) Radial glia and neural stem cells. Cell Tissue Res 331:165–178PubMedCrossRefGoogle Scholar
  44. 44.
    Gänzler-Odenthal SI, Redies C (1998) Blocking N-cadherin function disrupts the epithelial structure of differentiating neural tissue in the embryonic chicken brain. J Neurosci 18:5415–5425PubMedGoogle Scholar
  45. 45.
    Kadowaki M, Nakamura S, Machon O et al (2007) N-cadherin mediates cortical organization in the mouse brain. Dev Biol 304:22–33PubMedCrossRefGoogle Scholar
  46. 46.
    Zhang J, Woodhead GJ, Swaminathan SK et al (2010) Cortical neural precursors inhibit their own differentiation via N-cadherin maintenance of β-catenin signaling. Dev Cell 18:472–479PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    Woodhead GJ, Mutch CA, Olson EC, Chenn A (2006) Cell-autonomous beta-catenin signaling regulates cortical precursor proliferation. J Neurosci 26:12620–12630PubMedPubMedCentralCrossRefGoogle Scholar
  48. 48.
    Chenn A, Walsh CA (2002) Regulation of cerebral cortical size by control of cell cycle exit in neural precursors. Science 297:365–369PubMedCrossRefGoogle Scholar
  49. 49.
    Lien W-H, Klezovitch O, Fernandez TE et al (2006) alphaE-catenin controls cerebral cortical size by regulating the hedgehog signaling pathway. Science 311:1609–1612PubMedPubMedCentralCrossRefGoogle Scholar
  50. 50.
    Schmid M-T, Weinandy F, Wilsch-Bräuninger M et al (2014) The role of α-E-catenin in cerebral cortex development: radial glia specific effect on neuronal migration. Front Cell Neurosci 8:215PubMedPubMedCentralCrossRefGoogle Scholar
  51. 51.
    Martínez-Martínez MÁ, De Juan Romero C, Fernández V et al (2016) A restricted period for formation of outer subventricular zone defined by Cdh1 and Trnp1 levels. Nat Commun 7:11812PubMedPubMedCentralCrossRefGoogle Scholar
  52. 52.
    Petersen PH, Zou K, Hwang JK et al (2002) Progenitor cell maintenance requires numb and numblike during mouse neurogenesis. Nature 419:929–934PubMedCrossRefGoogle Scholar
  53. 53.
    Li HS, Wang D, Shen Q et al (2003) Inactivation of Numb and Numblike in embryonic dorsal forebrain impairs neurogenesis and disrupts cortical morphogenesis. Neuron 40:1105–1118PubMedCrossRefGoogle Scholar
  54. 54.
    Rašin M-R, Gazula V-R, Breunig JJ et al (2007) Numb and Numbl are required for maintenance of cadherin-based adhesion and polarity of neural progenitors. Nat Neurosci 10:819–827PubMedCrossRefGoogle Scholar
  55. 55.
    Wang P-S, Chou F-S, Ramachandran S et al (2016) Crucial roles of the Arp2/3 complex during mammalian corticogenesis. Development 143:2741–2752PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    Chou F-S, Wang P-S (2016) The Arp2/3 complex is essential at multiple stages of neural development. Neurogenesis 3:e1261653PubMedPubMedCentralCrossRefGoogle Scholar
  57. 57.
    Shah B, Lutter D, Tsytsyura Y et al (2016) Rap1 GTPases are master regulators of neural cell polarity in the developing neocortex. Cereb Cortex. doi: 10.1093/cercor/bhv341 Google Scholar
  58. 58.
    Maeta K, Edamatsu H, Nishihara K et al (2016) Crucial role of Rapgef2 and Rapgef6, a family of guanine nucleotide exchange factors for Rap1 small GTPase, in formation of apical surface adherens junctions and neural progenitor development in the mouse cerebral cortex. eNeuro. doi: 10.1523/ENEURO.0142-16.2016 PubMedPubMedCentralGoogle Scholar
  59. 59.
    Marthiens V, ffrench-Constant C (2009) Adherens junction domains are split by asymmetric division of embryonic neural stem cells. EMBO Rep 10:515–520PubMedPubMedCentralCrossRefGoogle Scholar
  60. 60.
    Pedersen LB, Veland IR, Schrøder JM, Christensen ST (2008) Assembly of primary cilia. Dev Dyn 237:1993–2006PubMedCrossRefGoogle Scholar
  61. 61.
    Wong SY, Reiter JF (2008) The primary cilium at the crossroads of mammalian hedgehog signaling. Curr Top Dev Biol 85:225–260PubMedPubMedCentralCrossRefGoogle Scholar
  62. 62.
    Mariani LE, Bijlsma MF, Ivanova AI et al (2016) Arl13b regulates Shh signaling from both inside and outside the cilium. Mol Biol Cell. doi: 10.1091/mbc.E16-03-0189 PubMedPubMedCentralGoogle Scholar
  63. 63.
    Bhattacharyya S, Rainey MA, Arya P et al (2016) Endocytic recycling protein EHD1 regulates primary cilia morphogenesis and SHH signaling during neural tube development. Sci Rep 6:20727PubMedPubMedCentralCrossRefGoogle Scholar
  64. 64.
    Choi H, Shin JH, Kim ES et al (2016) Primary cilia negatively regulate melanogenesis in melanocytes and pigmentation in a human skin model. PLoS One 11:e0168025PubMedPubMedCentralCrossRefGoogle Scholar
  65. 65.
    Kaku M, Komatsu Y (2017) Functional diversity of ciliary proteins in bone development and disease. Curr Osteoporos Rep. doi: 10.1007/s11914-017-0351-6 PubMedGoogle Scholar
  66. 66.
    Snedeker J, Schock EN, Struve JN et al (2017) Unique spatiotemporal requirements for intraflagellar transport genes during forebrain development. PLoS One 12:e0173258PubMedPubMedCentralCrossRefGoogle Scholar
  67. 67.
    Millington G, Elliott KH, Chang Y-T et al (2017) Cilia-dependent GLI processing in neural crest cells is required for tongue development. Dev Biol. doi: 10.1016/j.ydbio.2017.02.021 PubMedGoogle Scholar
  68. 68.
    Wheatley DN (2005) Landmarks in the first hundred years of primary (9 + 0) cilium research. Cell Biol Int 29:333–339PubMedCrossRefGoogle Scholar
  69. 69.
    Satir P, Christensen ST (2007) Overview of structure and function of mammalian cilia. Annu Rev Physiol 69:377–400PubMedCrossRefGoogle Scholar
  70. 70.
    Wong MY, McCaughan GW, Strasser SI (2017) An update on the pathophysiology and management of polycystic liver disease. Expert Rev Gastroenterol Hepatol. doi: 10.1080/17474124.2017.1309280 PubMedGoogle Scholar
  71. 71.
    Ma M, Gallagher A-R, Somlo S (2017) Ciliary mechanisms of cyst formation in polycystic kidney disease. Cold Spring Harb Perspect Biol. doi: 10.1101/cshperspect.a028209 PubMedGoogle Scholar
  72. 72.
    Goetz SC, Bangs F, Barrington CL et al (2017) The Meckel syndrome—associated protein MKS1 functionally interacts with components of the BBSome and IFT complexes to mediate ciliary trafficking and hedgehog signaling. PLoS One 12:e0173399PubMedPubMedCentralCrossRefGoogle Scholar
  73. 73.
    Lehtinen MK, Zappaterra MW, Chen X et al (2011) The cerebrospinal fluid provides a proliferative niche for neural progenitor cells. Neuron 69:893–905PubMedPubMedCentralCrossRefGoogle Scholar
  74. 74.
    Paridaen JTML, Wilsch-Bräuninger M, Huttner WB (2013) Asymmetric inheritance of centrosome-associated primary cilium membrane directs ciliogenesis after cell division. Cell 155:333–344PubMedCrossRefGoogle Scholar
  75. 75.
    Wilsch-Bräuninger M, Florio M, Huttner WB (2016) Neocortex expansion in development and evolution—from cell biology to single genes. Curr Opin Neurobiol 39:122–132PubMedCrossRefGoogle Scholar
  76. 76.
    Huangfu D, Liu A, Rakeman AS et al (2003) Hedgehog signalling in the mouse requires intraflagellar transport proteins. Nature 426:83–87PubMedCrossRefGoogle Scholar
  77. 77.
    Corbit KC, Aanstad P, Singla V et al (2005) Vertebrate smoothened functions at the primary cilium. Nature 437:1018–1021PubMedCrossRefGoogle Scholar
  78. 78.
    Haycraft CJ, Banizs B, Aydin-Son Y et al (2005) Gli2 and Gli3 localize to cilia and require the intraflagellar transport protein polaris for processing and function. PLoS Genet 1:e53PubMedPubMedCentralCrossRefGoogle Scholar
  79. 79.
    Ma Y, Erkner A, Gong R et al (2002) Hedgehog-mediated patterning of the mammalian embryo requires transporter-like function of dispatched. Cell 111:63–75PubMedCrossRefGoogle Scholar
  80. 80.
    Higginbotham H, Guo J, Yokota Y et al (2013) Arl13b-regulated cilia activities are essential for polarized radial glial scaffold formation. Nat Neurosci 16:1000–1007PubMedPubMedCentralCrossRefGoogle Scholar
  81. 81.
    Ezratty EJ, Stokes N, Chai S et al (2011) A role for the primary cilium in notch signaling and epidermal differentiation during skin development. Cell 145:1129–1141PubMedPubMedCentralCrossRefGoogle Scholar
  82. 82.
    Bergstralh DT, Haack T, St Johnston D (2013) Epithelial polarity and spindle orientation: intersecting pathways. Philos Trans R Soc Lond B Biol Sci 368:20130291PubMedPubMedCentralCrossRefGoogle Scholar
  83. 83.
    Vorhagen S, Niessen CM (2014) Mammalian aPKC/Par polarity complex mediated regulation of epithelial division orientation and cell fate. Exp Cell Res 328:296–302PubMedCrossRefGoogle Scholar
  84. 84.
    Durgan J, Kaji N, Jin D, Hall A (2011) Par6B and atypical PKC regulate mitotic spindle orientation during epithelial morphogenesis. J Biol Chem 286:12461–12474PubMedPubMedCentralCrossRefGoogle Scholar
  85. 85.
    Carvalho CA, Moreira S, Ventura G et al (2015) Aurora A triggers Lgl cortical release during symmetric division to control planar spindle orientation. Curr Biol 25:53–60PubMedCrossRefGoogle Scholar
  86. 86.
    Lancaster MA, Knoblich JA (2012) Spindle orientation in mammalian cerebral cortical development. Curr Opin Neurobiol 22:737–746PubMedPubMedCentralCrossRefGoogle Scholar
  87. 87.
    di Pietro F, Echard A, Morin X (2016) Regulation of mitotic spindle orientation: an integrated view. EMBO Rep 17:1106–1130PubMedPubMedCentralCrossRefGoogle Scholar
  88. 88.
    Lamouille S, Xu J, Derynck R (2014) Molecular mechanisms of epithelial–mesenchymal transition. Nat Rev Mol Cell Biol 15:178–196PubMedPubMedCentralCrossRefGoogle Scholar
  89. 89.
    Wheelock MJ, Shintani Y, Maeda M et al (2008) Cadherin switching. J Cell Sci 121:727–735PubMedCrossRefGoogle Scholar
  90. 90.
    Noctor SC, Flint AC, Weissman TA et al (2001) Neurons derived from radial glial cells establish radial units in neocortex. Nature 409:714–720PubMedCrossRefGoogle Scholar
  91. 91.
    Noctor SC, Martínez-Cerdeño V, Ivic L, Kriegstein AR (2004) Cortical neurons arise in symmetric and asymmetric division zones and migrate through specific phases. Nat Neurosci 7:136–144PubMedCrossRefGoogle Scholar
  92. 92.
    Noctor SC, Martínez-Cerdeño V, Kriegstein AR (2008) Distinct behaviors of neural stem and progenitor cells underlie cortical neurogenesis. J Comp Neurol 508:28–44PubMedPubMedCentralCrossRefGoogle Scholar
  93. 93.
    Konno D, Shioi G, Shitamukai A et al (2008) Neuroepithelial progenitors undergo LGN-dependent planar divisions to maintain self-renewability during mammalian neurogenesis. Nat Cell Biol 10:93–101PubMedCrossRefGoogle Scholar
  94. 94.
    Shitamukai A, Konno D, Matsuzaki F (2011) Oblique radial glial divisions in the developing mouse neocortex induce self-renewing progenitors outside the germinal zone that resemble primate outer subventricular zone progenitors. J Neurosci 31:3683–3695PubMedCrossRefGoogle Scholar
  95. 95.
    Subramanian L, Bershteyn M, Paredes MF, Kriegstein AR (2017) Dynamic behaviour of human neuroepithelial cells in the developing forebrain. Nat Commun 8:14167PubMedPubMedCentralCrossRefGoogle Scholar
  96. 96.
    Haydar TF, Ang E Jr, Rakic P (2003) Mitotic spindle rotation and mode of cell division in the developing telencephalon. Proc Natl Acad Sci USA 100:2890–2895PubMedPubMedCentralCrossRefGoogle Scholar
  97. 97.
    Yingling J, Youn YH, Darling D et al (2008) Neuroepithelial stem cell proliferation requires LIS1 for precise spindle orientation and symmetric division. Cell 132:474–486PubMedPubMedCentralCrossRefGoogle Scholar
  98. 98.
    Falk S, Bugeon S, Ninkovic J et al (2017) Time-specific effects of spindle positioning on embryonic progenitor pool composition and adult neural stem cell seeding. Neuron 93(777–791):e3Google Scholar
  99. 99.
    Itoh Y, Moriyama Y, Hasegawa T et al (2013) Scratch regulates neuronal migration onset via an epithelial-mesenchymal transition-like mechanism. Nat Neurosci 16:416–425PubMedCrossRefGoogle Scholar
  100. 100.
    Stipursky J, Francis D, Dezonne RS et al (2014) TGF-β1 promotes cerebral cortex radial glia-astrocyte differentiation in vivo. Front Cell Neurosci 8:393PubMedPubMedCentralCrossRefGoogle Scholar
  101. 101.
    Klezovitch O, Fernandez TE, Tapscott SJ, Vasioukhin V (2004) Loss of cell polarity causes severe brain dysplasia in Lgl1 knockout mice. Genes Dev 18:559–571PubMedPubMedCentralCrossRefGoogle Scholar
  102. 102.
    Jossin Y, Lee M, Klezovitch O et al (2017) Llgl1 connects cell polarity with cell–cell adhesion in embryonic neural stem cells. Dev Cell. doi: 10.1016/j.devcel.2017.05.002 PubMedGoogle Scholar
  103. 103.
    Yokota Y, Eom T-Y, Stanco A et al (2010) Cdc42 and Gsk3 modulate the dynamics of radial glial growth, inter-radial glial interactions and polarity in the developing cerebral cortex. Development 137:4101–4110PubMedPubMedCentralCrossRefGoogle Scholar
  104. 104.
    Miyata T, Ogawa M (2007) Twisting of neocortical progenitor cells underlies a spring-like mechanism for daughter-cell migration. Curr Biol 17:146–151PubMedCrossRefGoogle Scholar
  105. 105.
    Siegenthaler JA, Ashique AM, Zarbalis K et al (2009) Retinoic acid from the meninges regulates cortical neuron generation. Cell 139:597–609PubMedPubMedCentralCrossRefGoogle Scholar
  106. 106.
    Seuntjens E, Nityanandam A, Miquelajauregui A et al (2009) Sip1 regulates sequential fate decisions by feedback signaling from postmitotic neurons to progenitors. Nat Neurosci 12:1373–1380PubMedCrossRefGoogle Scholar
  107. 107.
    Griveau A, Borello U, Causeret F et al (2010) A novel role for Dbx1-derived Cajal-Retzius cells in early regionalization of the cerebral cortical neuroepithelium. PLoS Biol 8:e1000440PubMedPubMedCentralCrossRefGoogle Scholar
  108. 108.
    Miyata T, Kawaguchi A, Okano H, Ogawa M (2001) Asymmetric inheritance of radial glial fibers by cortical neurons. Neuron 31:727–741PubMedCrossRefGoogle Scholar
  109. 109.
    Yokota Y, Kim W-Y, Chen Y et al (2009) The adenomatous polyposis coli protein is an essential regulator of radial glial polarity and construction of the cerebral cortex. Neuron 61:42–56PubMedPubMedCentralCrossRefGoogle Scholar
  110. 110.
    Tsunekawa Y, Britto JM, Takahashi M et al (2012) Cyclin D2 in the basal process of neural progenitors is linked to non-equivalent cell fates. EMBO J 31:1879–1892PubMedPubMedCentralCrossRefGoogle Scholar
  111. 111.
    Pilaz L-J, Lennox AL, Rouanet JP, Silver DL (2016) Dynamic mRNA transport and local translation in radial glial progenitors of the developing brain. Curr Biol 26:3383–3392PubMedPubMedCentralCrossRefGoogle Scholar
  112. 112.
    Taverna E, Huttner WB (2010) Neural progenitor nuclei IN motion. Neuron 67:906–914PubMedCrossRefGoogle Scholar
  113. 113.
    Miyata T, Okamoto M, Shinoda T, Kawaguchi A (2014) Interkinetic nuclear migration generates and opposes ventricular-zone crowding: insight into tissue mechanics. Front Cell Neurosci 8:473PubMedGoogle Scholar
  114. 114.
    Georges-Labouesse E, Mark M, Messaddeq N, Gansmüller A (1998) Essential role of α6 integrins in cortical and retinal lamination. Curr Biol 8:983–986PubMedCrossRefGoogle Scholar
  115. 115.
    Graus-Porta D, Blaess S, Senften M et al (2001) Beta1-class integrins regulate the development of laminae and folia in the cerebral and cerebellar cortex. Neuron 31:367–379PubMedCrossRefGoogle Scholar
  116. 116.
    Beggs HE, Schahin-Reed D, Zang K et al (2003) FAK deficiency in cells contributing to the basal lamina results in cortical abnormalities resembling congenital muscular dystrophies. Neuron 40:501–514PubMedPubMedCentralCrossRefGoogle Scholar
  117. 117.
    Halfter W, Dong S, Yip Y-P et al (2002) A critical function of the pial basement membrane in cortical histogenesis. J Neurosci 22:6029–6040PubMedGoogle Scholar
  118. 118.
    Haubst N, Georges-Labouesse E, De Arcangelis A et al (2006) Basement membrane attachment is dispensable for radial glial cell fate and for proliferation, but affects positioning of neuronal subtypes. Development 133:3245–3254PubMedCrossRefGoogle Scholar
  119. 119.
    Zarbalis K, Siegenthaler JA, Choe Y et al (2007) Cortical dysplasia and skull defects in mice with a Foxc1 allele reveal the role of meningeal differentiation in regulating cortical development. Proc Natl Acad Sci USA 104:14002–14007PubMedPubMedCentralCrossRefGoogle Scholar
  120. 120.
    Zheng C, Heintz N, Hatten ME (1996) CNS gene encoding astrotactin, which supports neuronal migration along glial fibers. Science 272:417–419PubMedCrossRefGoogle Scholar
  121. 121.
    Anton ES, Marchionni MA, Lee KF, Rakic P (1997) Role of GGF/neuregulin signaling in interactions between migrating neurons and radial glia in the developing cerebral cortex. Development 124:3501–3510PubMedGoogle Scholar
  122. 122.
    Schmid RS, McGrath B, Berechid BE et al (2003) Neuregulin 1–erbB2 signaling is required for the establishment of radial glia and their transformation into astrocytes in cerebral cortex. Proc Natl Acad Sci 100:4251–4256PubMedPubMedCentralCrossRefGoogle Scholar
  123. 123.
    Patten BA, Peyrin JM, Weinmaster G, Corfas G (2003) Sequential signaling through Notch1 and erbB receptors mediates radial glia differentiation. J Neurosci 23:6132–6140PubMedGoogle Scholar
  124. 124.
    Anthony TE, Mason HA, Gridley T et al (2005) Brain lipid-binding protein is a direct target of notch signaling in radial glial cells. Genes Dev 19:1028–1033PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Department of PediatricsUniversity of Kansas Medical CenterKansas CityUSA
  2. 2.Department of PediatricsUniversity of Missouri-Kansas CityKansas CityUSA
  3. 3.Division of NeonatologyChildren’s Mercy-Kansas CityKansas CityUSA
  4. 4.Department of Cell BiologyThe Johns Hopkins University School of MedicineBaltimoreUSA

Personalised recommendations