Cellular and Molecular Life Sciences

, Volume 74, Issue 19, pp 3553–3575 | Cite as

Small molecules for reprogramming and transdifferentiation

Review

Abstract

Pluripotency reprogramming and transdifferentiation induced by transcription factors can generate induced pluripotent stem cells, adult stem cells or specialized cells. However, the induction efficiency and the reintroduction of exogenous genes limit their translation into clinical applications. Small molecules that target signaling pathways, epigenetic modifications, or metabolic processes can regulate cell development, cell fate, and function. In the recent decade, small molecules have been widely used in reprogramming and transdifferentiation fields, which can promote the induction efficiency, replace exogenous genes, or even induce cell fate conversion alone. Small molecules are expected as novel approaches to generate new cells from somatic cells in vitro and in vivo. Here, we will discuss the recent progress, new insights, and future challenges about the use of small molecules in cell fate conversion.

Keywords

Adult cells Chemical compound Direct conversion Tissue repair Regeneration 

Notes

Acknowledgements

This research was supported in part by the National Nature Science Foundation of China (81121004, 81230041) and the National Basic Science and Development Program (973 Program, 2012CB518105).

Compliance with ethical standards

Conflict of interest

There is no conflict of interest declared by any of the authors.

References

  1. 1.
    Gurdon JB, Elsdale TR, Fischberg M (1958) Sexually mature individuals of Xenopus laevis from the transplantation of single somatic nuclei. Nature 182(4627):64–65CrossRefPubMedGoogle Scholar
  2. 2.
    Takahashi K, Yamanaka S (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126(4):663–676. doi: 10.1016/j.cell.2006.07.024 CrossRefPubMedGoogle Scholar
  3. 3.
    Ieda M, Fu JD, Delgado-Olguin P, Vedantham V, Hayashi Y, Bruneau BG, Srivastava D (2010) Direct reprogramming of fibroblasts into functional cardiomyocytes by defined factors. Cell 142(3):375–386. doi: 10.1016/j.cell.2010.07.002 PubMedCentralCrossRefPubMedGoogle Scholar
  4. 4.
    Zhang Y, Cao N, Huang Y, Spencer CI, Fu JD, Yu C, Liu K, Nie B, Xu T, Li K, Xu S, Bruneau BG, Srivastava D, Ding S (2016) Expandable cardiovascular progenitor cells reprogrammed from fibroblasts. Cell Stem Cell 18(3):368–381. doi: 10.1016/j.stem.2016.02.001 CrossRefPubMedGoogle Scholar
  5. 5.
    Vierbuchen T, Ostermeier A, Pang ZP, Kokubu Y, Sudhof TC, Wernig M (2010) Direct conversion of fibroblasts to functional neurons by defined factors. Nature 463(7284):1035–1041. doi: 10.1038/nature08797 PubMedCentralCrossRefPubMedGoogle Scholar
  6. 6.
    Colasante G, Lignani G, Rubio A, Medrihan L, Yekhlef L, Sessa A, Massimino L, Giannelli SG, Sacchetti S, Caiazzo M, Leo D, Alexopoulou D, Dell’Anno MT, Ciabatti E, Orlando M, Studer M, Dahl A, Gainetdinov RR, Taverna S, Benfenati F, Broccoli V (2015) Rapid conversion of fibroblasts into functional forebrain GABAergic interneurons by direct genetic reprogramming. Cell Stem Cell 17(6):719–734. doi: 10.1016/j.stem.2015.09.002 CrossRefPubMedGoogle Scholar
  7. 7.
    Huang P, He Z, Ji S, Sun H, Xiang D, Liu C, Hu Y, Wang X, Hui L (2011) Induction of functional hepatocyte-like cells from mouse fibroblasts by defined factors. Nature 475(7356):386–389. doi: 10.1038/nature10116 CrossRefPubMedGoogle Scholar
  8. 8.
    Wang L, Wang L, Huang W, Su H, Xue Y, Su Z, Liao B, Wang H, Bao X, Qin D, He J, Wu W, So KF, Pan G, Pei D (2013) Generation of integration-free neural progenitor cells from cells in human urine. Nat Methods 10(1):84–89. doi: 10.1038/nmeth.2283 CrossRefPubMedGoogle Scholar
  9. 9.
    Caiazzo M, Dell’Anno MT, Dvoretskova E, Lazarevic D, Taverna S, Leo D, Sotnikova TD, Menegon A, Roncaglia P, Colciago G, Russo G, Carninci P, Pezzoli G, Gainetdinov RR, Gustincich S, Dityatev A, Broccoli V (2011) Direct generation of functional dopaminergic neurons from mouse and human fibroblasts. Nature 476(7359):224–227. doi: 10.1038/nature10284 CrossRefPubMedGoogle Scholar
  10. 10.
    Kim YJ, Lim H, Li Z, Oh Y, Kovlyagina I, Choi IY, Dong X, Lee G (2014) Generation of multipotent induced neural crest by direct reprogramming of human postnatal fibroblasts with a single transcription factor. Cell Stem Cell 15(4):497–506. doi: 10.1016/j.stem.2014.07.013 CrossRefPubMedGoogle Scholar
  11. 11.
    Xu Y, Shi Y, Ding S (2008) A chemical approach to stem-cell biology and regenerative medicine. Nature 453(7193):338–344. doi: 10.1038/nature07042 CrossRefPubMedGoogle Scholar
  12. 12.
    Li W, Ding S (2010) Small molecules that modulate embryonic stem cell fate and somatic cell reprogramming. Trends Pharmacol Sci 31(1):36–45. doi: 10.1016/j.tips.2009.10.002 CrossRefPubMedGoogle Scholar
  13. 13.
    Federation AJ, Bradner JE, Meissner A (2014) The use of small molecules in somatic-cell reprogramming. Trends Cell Biol 24(3):179–187. doi: 10.1016/j.tcb.2013.09.011 CrossRefPubMedGoogle Scholar
  14. 14.
    Hou P, Li Y, Zhang X, Liu C, Guan J, Li H, Zhao T, Ye J, Yang W, Liu K, Ge J, Xu J, Zhang Q, Zhao Y, Deng H (2013) Pluripotent stem cells induced from mouse somatic cells by small-molecule compounds. Science 341(6146):651–654. doi: 10.1126/science.1239278 CrossRefPubMedGoogle Scholar
  15. 15.
    Cheng L, Gao L, Guan W, Mao J, Hu W, Qiu B, Zhao J, Yu Y, Pei G (2015) Direct conversion of astrocytes into neuronal cells by drug cocktail. Cell Res 25(11):1269–1272. doi: 10.1038/cr.2015.120 PubMedCentralCrossRefPubMedGoogle Scholar
  16. 16.
    Fu Y, Huang C, Xu X, Gu H, Ye Y, Jiang C, Qiu Z, Xie X (2015) Direct reprogramming of mouse fibroblasts into cardiomyocytes with chemical cocktails. Cell Res 25(9):1013–1024. doi: 10.1038/cr.2015.99 PubMedCentralCrossRefPubMedGoogle Scholar
  17. 17.
    Hu W, Qiu B, Guan W, Wang Q, Wang M, Li W, Gao L, Shen L, Huang Y, Xie G, Zhao H, Jin Y, Tang B, Yu Y, Zhao J, Pei G (2015) Direct conversion of normal and Alzheimer’s disease human fibroblasts into neuronal cells by small molecules. Cell Stem Cell 17(2):204–212. doi: 10.1016/j.stem.2015.07.006 CrossRefPubMedGoogle Scholar
  18. 18.
    Ye J, Ge J, Zhang X, Cheng L, Zhang Z, He S, Wang Y, Lin H, Yang W, Liu J, Zhao Y, Deng H (2016) Pluripotent stem cells induced from mouse neural stem cells and small intestinal epithelial cells by small molecule compounds. Cell Res 26(1):34–45. doi: 10.1038/cr.2015.142 CrossRefPubMedGoogle Scholar
  19. 19.
    Cao N, Huang Y, Zheng J, Spencer CI, Zhang Y, Fu JD, Nie B, Xie M, Zhang M, Wang H, Ma T, Xu T, Shi G, Srivastava D, Ding S (2016) Conversion of human fibroblasts into functional cardiomyocytes by small molecules. Science 352(6290):1216–1220. doi: 10.1126/science.aaf1502 CrossRefPubMedGoogle Scholar
  20. 20.
    Xu J, Du Y, Deng H (2015) Direct lineage reprogramming: strategies, mechanisms, and applications. Cell Stem Cell 16(2):119–134. doi: 10.1016/j.stem.2015.01.013 CrossRefPubMedGoogle Scholar
  21. 21.
    Gonzalez F, Boue S, Izpisua Belmonte JC (2011) Methods for making induced pluripotent stem cells: reprogramming a la carte. Nat Rev Genet 12(4):231–242. doi: 10.1038/nrg2937 CrossRefPubMedGoogle Scholar
  22. 22.
    Ao A, Hao J, Hong CC (2011) Regenerative chemical biology: current challenges and future potential. Chem Biol 18(4):413–424. doi: 10.1016/j.chembiol.2011.03.011 PubMedCentralCrossRefPubMedGoogle Scholar
  23. 23.
    Takahashi K, Yamanaka S (2016) A decade of transcription factor-mediated reprogramming to pluripotency. Nat Rev Mol Cell Biol 17(3):183–193. doi: 10.1038/nrm.2016.8 CrossRefPubMedGoogle Scholar
  24. 24.
    Smith ZD, Sindhu C, Meissner A (2016) Molecular features of cellular reprogramming and development. Nat Rev Mol Cell Biol 17(3):139–154. doi: 10.1038/nrm.2016.6 CrossRefPubMedGoogle Scholar
  25. 25.
    Cole MF, Johnstone SE, Newman JJ, Kagey MH, Young RA (2008) Tcf3 is an integral component of the core regulatory circuitry of embryonic stem cells. Genes Dev 22(6):746–755. doi: 10.1101/gad.1642408 PubMedCentralCrossRefPubMedGoogle Scholar
  26. 26.
    Tam WL, Lim CY, Han J, Zhang J, Ang YS, Ng HH, Yang H, Lim B (2008) T-cell factor 3 regulates embryonic stem cell pluripotency and self-renewal by the transcriptional control of multiple lineage pathways. Stem Cells 26(8):2019–2031. doi: 10.1634/stemcells.2007-1115 PubMedCentralCrossRefPubMedGoogle Scholar
  27. 27.
    Li W, Zhou H, Abujarour R, Zhu S, Young Joo J, Lin T, Hao E, Scholer HR, Hayek A, Ding S (2009) Generation of human-induced pluripotent stem cells in the absence of exogenous Sox2. Stem Cells 27(12):2992–3000. doi: 10.1002/stem.240 PubMedCentralPubMedGoogle Scholar
  28. 28.
    Silva J, Barrandon O, Nichols J, Kawaguchi J, Theunissen TW, Smith A (2008) Promotion of reprogramming to ground state pluripotency by signal inhibition. PLoS Biol 6(10):e253. doi: 10.1371/journal.pbio.0060253 PubMedCentralCrossRefPubMedGoogle Scholar
  29. 29.
    Lyssiotis CA, Foreman RK, Staerk J, Garcia M, Mathur D, Markoulaki S, Hanna J, Lairson LL, Charette BD, Bouchez LC, Bollong M, Kunick C, Brinker A, Cho CY, Schultz PG, Jaenisch R (2009) Reprogramming of murine fibroblasts to induced pluripotent stem cells with chemical complementation of Klf4. Proc Natl Acad Sci USA 106(22):8912–8917. doi: 10.1073/pnas.0903860106 PubMedCentralCrossRefPubMedGoogle Scholar
  30. 30.
    Niwa H, Burdon T, Chambers I, Smith A (1998) Self-renewal of pluripotent embryonic stem cells is mediated via activation of STAT3. Genes Dev 12(13):2048–2060PubMedCentralCrossRefPubMedGoogle Scholar
  31. 31.
    Yang J, van Oosten AL, Theunissen TW, Guo G, Silva JC, Smith A (2010) Stat3 activation is limiting for reprogramming to ground state pluripotency. Cell Stem Cell 7(3):319–328. doi: 10.1016/j.stem.2010.06.022 PubMedCentralCrossRefPubMedGoogle Scholar
  32. 32.
    Ying QL, Wray J, Nichols J, Batlle-Morera L, Doble B, Woodgett J, Cohen P, Smith A (2008) The ground state of embryonic stem cell self-renewal. Nature 453(7194):519–523. doi: 10.1038/nature06968 PubMedCentralCrossRefPubMedGoogle Scholar
  33. 33.
    Shi Y, Do JT, Desponts C, Hahm HS, Scholer HR, Ding S (2008) A combined chemical and genetic approach for the generation of induced pluripotent stem cells. Cell Stem Cell 2(6):525–528. doi: 10.1016/j.stem.2008.05.011 CrossRefPubMedGoogle Scholar
  34. 34.
    Li R, Liang J, Ni S, Zhou T, Qing X, Li H, He W, Chen J, Li F, Zhuang Q, Qin B, Xu J, Li W, Yang J, Gan Y, Qin D, Feng S, Song H, Yang D, Zhang B, Zeng L, Lai L, Esteban MA, Pei D (2010) A mesenchymal-to-epithelial transition initiates and is required for the nuclear reprogramming of mouse fibroblasts. Cell Stem Cell 7(1):51–63. doi: 10.1016/j.stem.2010.04.014 CrossRefPubMedGoogle Scholar
  35. 35.
    Samavarchi-Tehrani P, Golipour A, David L, Sung HK, Beyer TA, Datti A, Woltjen K, Nagy A, Wrana JL (2010) Functional genomics reveals a BMP-driven mesenchymal-to-epithelial transition in the initiation of somatic cell reprogramming. Cell Stem Cell 7(1):64–77. doi: 10.1016/j.stem.2010.04.015 CrossRefPubMedGoogle Scholar
  36. 36.
    Aguirre A, Rubio ME, Gallo V (2010) Notch and EGFR pathway interaction regulates neural stem cell number and self-renewal. Nature 467(7313):323–327. doi: 10.1038/nature09347 PubMedCentralCrossRefPubMedGoogle Scholar
  37. 37.
    Ichida JK, Blanchard J, Lam K, Son EY, Chung JE, Egli D, Loh KM, Carter AC, Di Giorgio FP, Koszka K, Huangfu D, Akutsu H, Liu DR, Rubin LL, Eggan K (2009) A small-molecule inhibitor of tgf-Beta signaling replaces sox2 in reprogramming by inducing nanog. Cell Stem Cell 5(5):491–503. doi: 10.1016/j.stem.2009.09.012 PubMedCentralCrossRefPubMedGoogle Scholar
  38. 38.
    Lin T, Ambasudhan R, Yuan X, Li W, Hilcove S, Abujarour R, Lin X, Hahm HS, Hao E, Hayek A, Ding S (2009) A chemical platform for improved induction of human iPSCs. Nat Methods 6(11):805–808. doi: 10.1038/nmeth.1393 PubMedCentralCrossRefPubMedGoogle Scholar
  39. 39.
    Nashun B, Hill PW, Hajkova P (2015) Reprogramming of cell fate: epigenetic memory and the erasure of memories past. EMBO J 34(10):1296–1308. doi: 10.15252/embj.201490649 PubMedCentralCrossRefPubMedGoogle Scholar
  40. 40.
    Bird A (2002) DNA methylation patterns and epigenetic memory. Genes Dev 16(1):6–21. doi: 10.1101/gad.947102 CrossRefPubMedGoogle Scholar
  41. 41.
    Meissner A, Mikkelsen TS, Gu H, Wernig M, Hanna J, Sivachenko A, Zhang X, Bernstein BE, Nusbaum C, Jaffe DB, Gnirke A, Jaenisch R, Lander ES (2008) Genome-scale DNA methylation maps of pluripotent and differentiated cells. Nature 454(7205):766–770. doi: 10.1038/nature07107 PubMedCentralPubMedGoogle Scholar
  42. 42.
    Lister R, Pelizzola M, Dowen RH, Hawkins RD, Hon G, Tonti-Filippini J, Nery JR, Lee L, Ye Z, Ngo QM, Edsall L, Antosiewicz-Bourget J, Stewart R, Ruotti V, Millar AH, Thomson JA, Ren B, Ecker JR (2009) Human DNA methylomes at base resolution show widespread epigenomic differences. Nature 462(7271):315–322. doi: 10.1038/nature08514 PubMedCentralCrossRefPubMedGoogle Scholar
  43. 43.
    Mikkelsen TS, Hanna J, Zhang X, Ku M, Wernig M, Schorderet P, Bernstein BE, Jaenisch R, Lander ES, Meissner A (2008) Dissecting direct reprogramming through integrative genomic analysis. Nature 454(7200):49–55. doi: 10.1038/nature07056 PubMedCentralCrossRefPubMedGoogle Scholar
  44. 44.
    Shi Y, Desponts C, Do JT, Hahm HS, Scholer HR, Ding S (2008) Induction of pluripotent stem cells from mouse embryonic fibroblasts by Oct4 and Klf4 with small-molecule compounds. Cell Stem Cell 3(5):568–574. doi: 10.1016/j.stem.2008.10.004 CrossRefPubMedGoogle Scholar
  45. 45.
    Christman JK (2002) 5-Azacytidine and 5-aza-2′-deoxycytidine as inhibitors of DNA methylation: mechanistic studies and their implications for cancer therapy. Oncogene 21(35):5483–5495. doi: 10.1038/sj.onc.1205699 CrossRefPubMedGoogle Scholar
  46. 46.
    Brueckner B, Garcia Boy R, Siedlecki P, Musch T, Kliem HC, Zielenkiewicz P, Suhai S, Wiessler M, Lyko F (2005) Epigenetic reactivation of tumor suppressor genes by a novel small-molecule inhibitor of human DNA methyltransferases. Cancer Res 65(14):6305–6311. doi: 10.1158/0008-5472.CAN-04-2957 CrossRefPubMedGoogle Scholar
  47. 47.
    Kouzarides T (2007) Chromatin modifications and their function. Cell 128(4):693–705. doi: 10.1016/j.cell.2007.02.005 CrossRefPubMedGoogle Scholar
  48. 48.
    Barski A, Cuddapah S, Cui K, Roh TY, Schones DE, Wang Z, Wei G, Chepelev I, Zhao K (2007) High-resolution profiling of histone methylations in the human genome. Cell 129(4):823–837. doi: 10.1016/j.cell.2007.05.009 CrossRefPubMedGoogle Scholar
  49. 49.
    Boyer LA, Plath K, Zeitlinger J, Brambrink T, Medeiros LA, Lee TI, Levine SS, Wernig M, Tajonar A, Ray MK, Bell GW, Otte AP, Vidal M, Gifford DK, Young RA, Jaenisch R (2006) Polycomb complexes repress developmental regulators in murine embryonic stem cells. Nature 441(7091):349–353. doi: 10.1038/nature04733 CrossRefPubMedGoogle Scholar
  50. 50.
    Struhl K (1998) Histone acetylation and transcriptional regulatory mechanisms. Genes Dev 12(5):599–606CrossRefPubMedGoogle Scholar
  51. 51.
    Chen J, Liu H, Liu J, Qi J, Wei B, Yang J, Liang H, Chen Y, Chen J, Wu Y, Guo L, Zhu J, Zhao X, Peng T, Zhang Y, Chen S, Li X, Li D, Wang T, Pei D (2013) H3K9 methylation is a barrier during somatic cell reprogramming into iPSCs. Nat Genet 45(1):34–42. doi: 10.1038/ng.2491 CrossRefPubMedGoogle Scholar
  52. 52.
    Esteban MA, Wang T, Qin B, Yang J, Qin D, Cai J, Li W, Weng Z, Chen J, Ni S, Chen K, Li Y, Liu X, Xu J, Zhang S, Li F, He W, Labuda K, Song Y, Peterbauer A, Wolbank S, Redl H, Zhong M, Cai D, Zeng L, Pei D (2010) Vitamin C enhances the generation of mouse and human induced pluripotent stem cells. Cell Stem Cell 6(1):71–79. doi: 10.1016/j.stem.2009.12.001 CrossRefPubMedGoogle Scholar
  53. 53.
    Tran KA, Jackson SA, Olufs ZP, Zaidan NZ, Leng N, Kendziorski C, Roy S, Sridharan R (2015) Collaborative rewiring of the pluripotency network by chromatin and signalling modulating pathways. Nat Commun 6:6188. doi: 10.1038/ncomms7188 PubMedCentralCrossRefPubMedGoogle Scholar
  54. 54.
    Wei X, Chen Y, Xu Y, Zhan Y, Zhang R, Wang M, Hua Q, Gu H, Nan F, Xie X (2014) Small molecule compound induces chromatin de-condensation and facilitates induced pluripotent stem cell generation. J Mol Cell Biol 6(5):409–420. doi: 10.1093/jmcb/mju024 CrossRefPubMedGoogle Scholar
  55. 55.
    Huang K, Zhang X, Shi J, Yao M, Lin J, Li J, Liu H, Li H, Shi G, Wang Z, Zhang B, Chen J, Pan G, Jiang C, Pei D, Yao H (2015) Dynamically reorganized chromatin is the key for the reprogramming of somatic cells to pluripotent cells. Sci Rep 5:17691. doi: 10.1038/srep17691 PubMedCentralCrossRefPubMedGoogle Scholar
  56. 56.
    Onder TT, Kara N, Cherry A, Sinha AU, Zhu N, Bernt KM, Cahan P, Marcarci BO, Unternaehrer J, Gupta PB, Lander ES, Armstrong SA, Daley GQ (2012) Chromatin-modifying enzymes as modulators of reprogramming. Nature 483(7391):598–602. doi: 10.1038/nature10953 PubMedCentralCrossRefPubMedGoogle Scholar
  57. 57.
    Li Y, Zhang Q, Yin X, Yang W, Du Y, Hou P, Ge J, Liu C, Zhang W, Zhang X, Wu Y, Li H, Liu K, Wu C, Song Z, Zhao Y, Shi Y, Deng H (2011) Generation of iPSCs from mouse fibroblasts with a single gene, Oct4, and small molecules. Cell Res 21(1):196–204. doi: 10.1038/cr.2010.142 CrossRefPubMedGoogle Scholar
  58. 58.
    Stadtfeld M, Apostolou E, Ferrari F, Choi J, Walsh RM, Chen T, Ooi SS, Kim SY, Bestor TH, Shioda T, Park PJ, Hochedlinger K (2012) Ascorbic acid prevents loss of Dlk1-Dio3 imprinting and facilitates generation of all-iPS cell mice from terminally differentiated B cells. Nat Genet 44(4):398–405, S391–S392. doi: 10.1038/ng.1110 PubMedCentralCrossRefPubMedGoogle Scholar
  59. 59.
    Wang T, Chen K, Zeng X, Yang J, Wu Y, Shi X, Qin B, Zeng L, Esteban MA, Pan G, Pei D (2011) The histone demethylases Jhdm1a/1b enhance somatic cell reprogramming in a vitamin-C-dependent manner. Cell Stem Cell 9(6):575–587. doi: 10.1016/j.stem.2011.10.005 CrossRefPubMedGoogle Scholar
  60. 60.
    Huangfu D, Maehr R, Guo W, Eijkelenboom A, Snitow M, Chen AE, Melton DA (2008) Induction of pluripotent stem cells by defined factors is greatly improved by small-molecule compounds. Nat Biotechnol 26(7):795–797. doi: 10.1038/nbt1418 CrossRefPubMedGoogle Scholar
  61. 61.
    Mali P, Chou BK, Yen J, Ye Z, Zou J, Dowey S, Brodsky RA, Ohm JE, Yu W, Baylin SB, Yusa K, Bradley A, Meyers DJ, Mukherjee C, Cole PA, Cheng L (2010) Butyrate greatly enhances derivation of human induced pluripotent stem cells by promoting epigenetic remodeling and the expression of pluripotency-associated genes. Stem Cells 28(4):713–720. doi: 10.1002/stem.402 PubMedCentralCrossRefPubMedGoogle Scholar
  62. 62.
    Li D, Wang L, Hou J, Shen Q, Chen Q, Wang X, Du J, Cai X, Shan Y, Zhang T, Zhou T, Shi X, Li Y, Zhang H, Pan G (2016) Optimized approaches for generation of integration-free iPSCs from human urine-derived cells with small molecules and autologous feeder. Stem Cell Rep 6(5):717–728. doi: 10.1016/j.stemcr.2016.04.001 CrossRefGoogle Scholar
  63. 63.
    Cho YM, Kwon S, Pak YK, Seol HW, Choi YM, Park DJ, Park KS, Lee HK (2006) Dynamic changes in mitochondrial biogenesis and antioxidant enzymes during the spontaneous differentiation of human embryonic stem cells. Biochem Biophys Res Commun 348(4):1472–1478. doi: 10.1016/j.bbrc.2006.08.020 CrossRefPubMedGoogle Scholar
  64. 64.
    Lee J, Xia Y, Son MY, Jin G, Seol B, Kim MJ, Son MJ, Do M, Lee M, Kim D, Lee K, Cho YS (2012) A novel small molecule facilitates the reprogramming of human somatic cells into a pluripotent state and supports the maintenance of an undifferentiated state of human pluripotent stem cells. Angew Chem Int Ed Engl 51(50):12509–12513. doi: 10.1002/anie.201206691 CrossRefPubMedGoogle Scholar
  65. 65.
    Yoshida Y, Takahashi K, Okita K, Ichisaka T, Yamanaka S (2009) Hypoxia enhances the generation of induced pluripotent stem cells. Cell Stem Cell 5(3):237–241. doi: 10.1016/j.stem.2009.08.001 CrossRefPubMedGoogle Scholar
  66. 66.
    Zhu S, Li W, Zhou H, Wei W, Ambasudhan R, Lin T, Kim J, Zhang K, Ding S (2010) Reprogramming of human primary somatic cells by OCT4 and chemical compounds. Cell Stem Cell 7(6):651–655. doi: 10.1016/j.stem.2010.11.015 CrossRefPubMedGoogle Scholar
  67. 67.
    Folmes CD, Nelson TJ, Martinez-Fernandez A, Arrell DK, Lindor JZ, Dzeja PP, Ikeda Y, Perez-Terzic C, Terzic A (2011) Somatic oxidative bioenergetics transitions into pluripotency-dependent glycolysis to facilitate nuclear reprogramming. Cell Metab 14(2):264–271. doi: 10.1016/j.cmet.2011.06.011 PubMedCentralCrossRefPubMedGoogle Scholar
  68. 68.
    Chen T, Shen L, Yu J, Wan H, Guo A, Chen J, Long Y, Zhao J, Pei G (2011) Rapamycin and other longevity-promoting compounds enhance the generation of mouse induced pluripotent stem cells. Aging Cell 10(5):908–911. doi: 10.1111/j.1474-9726.2011.00722.x CrossRefPubMedGoogle Scholar
  69. 69.
    Wang S, Xia P, Ye B, Huang G, Liu J, Fan Z (2013) Transient activation of autophagy via Sox2-mediated suppression of mTOR is an important early step in reprogramming to pluripotency. Cell Stem Cell 13(5):617–625. doi: 10.1016/j.stem.2013.10.005 CrossRefPubMedGoogle Scholar
  70. 70.
    Ma T, Li J, Xu Y, Yu C, Xu T, Wang H, Liu K, Cao N, Nie BM, Zhu SY, Xu S, Li K, Wei WG, Wu Y, Guan KL, Ding S (2015) Atg5-independent autophagy regulates mitochondrial clearance and is essential for iPSC reprogramming. Nat Cell Biol 17(11):1379–1387. doi: 10.1038/ncb3256 CrossRefPubMedGoogle Scholar
  71. 71.
    Liu K, Zhao Q, Liu P, Cao J, Gong J, Wang C, Wang W, Li X, Sun H, Zhang C, Li Y, Jiang M, Zhu S, Sun Q, Jiao J, Hu B, Zhao X, Li W, Chen Q, Zhou Q, Zhao T (2016) ATG3-dependent autophagy mediates mitochondrial homeostasis in pluripotency acquirement and maintenance. Autophagy 12(11):2000–2008. doi: 10.1080/15548627.2016.1212786 PubMedCentralCrossRefPubMedGoogle Scholar
  72. 72.
    Zhao Y, Zhao T, Guan J, Zhang X, Fu Y, Ye J, Zhu J, Meng G, Ge J, Yang S, Cheng L, Du Y, Zhao C, Wang T, Su L, Yang W, Deng H (2015) A XEN-like state bridges somatic cells to pluripotency during chemical reprogramming. Cell 163(7):1678–1691. doi: 10.1016/j.cell.2015.11.017 CrossRefPubMedGoogle Scholar
  73. 73.
    Polo JM, Anderssen E, Walsh RM, Schwarz BA, Nefzger CM, Lim SM, Borkent M, Apostolou E, Alaei S, Cloutier J, Bar-Nur O, Cheloufi S, Stadtfeld M, Figueroa ME, Robinton D, Natesan S, Melnick A, Zhu J, Ramaswamy S, Hochedlinger K (2012) A molecular roadmap of reprogramming somatic cells into iPS cells. Cell 151(7):1617–1632. doi: 10.1016/j.cell.2012.11.039 PubMedCentralCrossRefPubMedGoogle Scholar
  74. 74.
    Golipour A, David L, Liu Y, Jayakumaran G, Hirsch CL, Trcka D, Wrana JL (2012) A late transition in somatic cell reprogramming requires regulators distinct from the pluripotency network. Cell Stem Cell 11(6):769–782. doi: 10.1016/j.stem.2012.11.008 CrossRefPubMedGoogle Scholar
  75. 75.
    Sridharan R, Tchieu J, Mason MJ, Yachechko R, Kuoy E, Horvath S, Zhou Q, Plath K (2009) Role of the murine reprogramming factors in the induction of pluripotency. Cell 136(2):364–377. doi: 10.1016/j.cell.2009.01.001 PubMedCentralCrossRefPubMedGoogle Scholar
  76. 76.
    Efe JA, Hilcove S, Kim J, Zhou H, Ouyang K, Wang G, Chen J, Ding S (2011) Conversion of mouse fibroblasts into cardiomyocytes using a direct reprogramming strategy. Nat Cell Biol 13(3):215–222. doi: 10.1038/ncb2164 CrossRefPubMedGoogle Scholar
  77. 77.
    Snyder M, Huang XY, Zhang JJ (2010) Stat3 directly controls the expression of Tbx5, Nkx2.5, and GATA4 and is essential for cardiomyocyte differentiation of P19CL6 cells. J Biol Chem 285(31):23639–23646. doi: 10.1074/jbc.M110.101063 PubMedCentralCrossRefPubMedGoogle Scholar
  78. 78.
    Klaus A, Birchmeier W (2009) Developmental signaling in myocardial progenitor cells: a comprehensive view of Bmp- and Wnt/beta-catenin signaling. Pediatr Cardiol 30(5):609–616. doi: 10.1007/s00246-008-9352-7 CrossRefPubMedGoogle Scholar
  79. 79.
    Kattman SJ, Witty AD, Gagliardi M, Dubois NC, Niapour M, Hotta A, Ellis J, Keller G (2011) Stage-specific optimization of activin/nodal and BMP signaling promotes cardiac differentiation of mouse and human pluripotent stem cell lines. Cell Stem Cell 8(2):228–240. doi: 10.1016/j.stem.2010.12.008 CrossRefPubMedGoogle Scholar
  80. 80.
    Yang L, Soonpaa MH, Adler ED, Roepke TK, Kattman SJ, Kennedy M, Henckaerts E, Bonham K, Abbott GW, Linden RM, Field LJ, Keller GM (2008) Human cardiovascular progenitor cells develop from a KDR+ embryonic-stem-cell-derived population. Nature 453(7194):524–528. doi: 10.1038/nature06894 CrossRefPubMedGoogle Scholar
  81. 81.
    Burridge PW, Keller G, Gold JD, Wu JC (2012) Production of de novo cardiomyocytes: human pluripotent stem cell differentiation and direct reprogramming. Cell Stem Cell 10(1):16–28. doi: 10.1016/j.stem.2011.12.013 PubMedCentralCrossRefPubMedGoogle Scholar
  82. 82.
    Naito AT, Shiojima I, Akazawa H, Hidaka K, Morisaki T, Kikuchi A, Komuro I (2006) Developmental stage-specific biphasic roles of Wnt/beta-catenin signaling in cardiomyogenesis and hematopoiesis. Proc Natl Acad Sci USA 103(52):19812–19817. doi: 10.1073/pnas.0605768103 PubMedCentralCrossRefPubMedGoogle Scholar
  83. 83.
    Cheung C, Bernardo AS, Trotter MW, Pedersen RA, Sinha S (2012) Generation of human vascular smooth muscle subtypes provides insight into embryological origin-dependent disease susceptibility. Nat Biotechnol 30(2):165–173. doi: 10.1038/nbt.2107 PubMedCentralCrossRefPubMedGoogle Scholar
  84. 84.
    Wang H, Cao N, Spencer CI, Nie B, Ma T, Xu T, Zhang Y, Wang X, Srivastava D, Ding S (2014) Small molecules enable cardiac reprogramming of mouse fibroblasts with a single factor, Oct4. Cell Rep 6(5):951–960. doi: 10.1016/j.celrep.2014.01.038 PubMedCentralCrossRefPubMedGoogle Scholar
  85. 85.
    Chambers SM, Fasano CA, Papapetrou EP, Tomishima M, Sadelain M, Studer L (2009) Highly efficient neural conversion of human ES and iPS cells by dual inhibition of SMAD signaling. Nat Biotechnol 27(3):275–280. doi: 10.1038/nbt.1529 PubMedCentralCrossRefPubMedGoogle Scholar
  86. 86.
    Kitamura R, Takahashi T, Nakajima N, Isodono K, Asada S, Ueno H, Ueyama T, Yoshikawa T, Matsubara H, Oh H (2007) Stage-specific role of endogenous Smad2 activation in cardiomyogenesis of embryonic stem cells. Circ Res 101(1):78–87. doi: 10.1161/CIRCRESAHA.106.147264 CrossRefPubMedGoogle Scholar
  87. 87.
    Willems E, Cabral-Teixeira J, Schade D, Cai W, Reeves P, Bushway PJ, Lanier M, Walsh C, Kirchhausen T, Izpisua Belmonte JC, Cashman J, Mercola M (2012) Small molecule-mediated TGF-beta type II receptor degradation promotes cardiomyogenesis in embryonic stem cells. Cell Stem Cell 11(2):242–252. doi: 10.1016/j.stem.2012.04.025 PubMedCentralCrossRefPubMedGoogle Scholar
  88. 88.
    Matsumura K, Mayama T, Lin H, Sakamoto Y, Ogawa K, Imanaga I (2006) Effects of cyclic AMP on the function of the cardiac gap junction during hypoxia. Exp Clin Cardiol 11(4):286–293PubMedCentralPubMedGoogle Scholar
  89. 89.
    Hadad I, Veithen A, Springael JY, Sotiropoulou PA, Mendes Da Costa A, Miot F, Naeije R, De Deken X, Entee KM (2013) Stroma cell-derived factor-1alpha signaling enhances calcium transients and beating frequency in rat neonatal cardiomyocytes. PLoS One 8(2):e56007. doi: 10.1371/journal.pone.0056007 PubMedCentralCrossRefPubMedGoogle Scholar
  90. 90.
    Chen Y, Shao JZ, Xiang LX, Guo J, Zhou QJ, Yao X, Dai LC, Lu YL (2006) Cyclic adenosine 3′,5′-monophosphate induces differentiation of mouse embryonic stem cells into cardiomyocytes. Cell Biol Int 30(4):301–307. doi: 10.1016/j.cellbi.2005.12.002 CrossRefPubMedGoogle Scholar
  91. 91.
    Song K, Nam YJ, Luo X, Qi X, Tan W, Huang GN, Acharya A, Smith CL, Tallquist MD, Neilson EG, Hill JA, Bassel-Duby R, Olson EN (2012) Heart repair by reprogramming non-myocytes with cardiac transcription factors. Nature 485(7400):599–604. doi: 10.1038/nature11139 PubMedCentralCrossRefPubMedGoogle Scholar
  92. 92.
    Zhao Y, Londono P, Cao Y, Sharpe EJ, Proenza C, O’Rourke R, Jones KL, Jeong MY, Walker LA, Buttrick PM, McKinsey TA, Song K (2015) High-efficiency reprogramming of fibroblasts into cardiomyocytes requires suppression of pro-fibrotic signalling. Nat Commun 6:8243. doi: 10.1038/ncomms9243 PubMedCentralCrossRefPubMedGoogle Scholar
  93. 93.
    Abad M, Hashimoto H, Zhou H, Morales MG, Chen B, Bassel-Duby R, Olson EN (2017) Notch inhibition enhances cardiac reprogramming by increasing MEF2C transcriptional activity. Stem Cell Rep 8(3):548–560. doi: 10.1016/j.stemcr.2017.01.025 CrossRefGoogle Scholar
  94. 94.
    Mohamed TM, Stone NR, Berry EC, Radzinsky E, Huang Y, Pratt K, Ang YS, Yu P, Wang H, Tang S, Magnitsky S, Ding S, Ivey KN, Srivastava D (2017) Chemical enhancement of in vitro and in vivo direct cardiac reprogramming. Circulation 135(10):978–995. doi: 10.1161/CIRCULATIONAHA.116.024692 CrossRefPubMedGoogle Scholar
  95. 95.
    Liu L, Lei I, Karatas H, Li Y, Wang L, Gnatovskiy L, Dou Y, Wang S, Qian L, Wang Z (2016) Targeting Mll1 H3K4 methyltransferase activity to guide cardiac lineage specific reprogramming of fibroblasts. Cell Discov 2:16036. doi: 10.1038/celldisc.2016.36 PubMedCentralCrossRefPubMedGoogle Scholar
  96. 96.
    Park G, Yoon BS, Kim YS, Choi SC, Moon JH, Kwon S, Hwang J, Yun W, Kim JH, Park CY, Lim DS, Kim YI, Oh CH, You S (2015) Conversion of mouse fibroblasts into cardiomyocyte-like cells using small molecule treatments. Biomaterials 54:201–212. doi: 10.1016/j.biomaterials.2015.02.029 CrossRefPubMedGoogle Scholar
  97. 97.
    Mehta A, Chung YY, Ng A, Iskandar F, Atan S, Wei H, Dusting G, Sun W, Wong P, Shim W (2011) Pharmacological response of human cardiomyocytes derived from virus-free induced pluripotent stem cells. Cardiovasc Res 91(4):577–586. doi: 10.1093/cvr/cvr132 CrossRefPubMedGoogle Scholar
  98. 98.
    Pfisterer U, Ek F, Lang S, Soneji S, Olsson R, Parmar M (2016) Small molecules increase direct neural conversion of human fibroblasts. Sci Rep 6:38290. doi: 10.1038/srep38290 PubMedCentralCrossRefPubMedGoogle Scholar
  99. 99.
    Ladewig J, Mertens J, Kesavan J, Doerr J, Poppe D, Glaue F, Herms S, Wernet P, Kogler G, Muller FJ, Koch P, Brustle O (2012) Small molecules enable highly efficient neuronal conversion of human fibroblasts. Nat Methods 9(6):575–578. doi: 10.1038/nmeth.1972 CrossRefPubMedGoogle Scholar
  100. 100.
    Liu ML, Zang T, Zou Y, Chang JC, Gibson JR, Huber KM, Zhang CL (2013) Small molecules enable neurogenin 2 to efficiently convert human fibroblasts into cholinergic neurons. Nat Commun 4:2183. doi: 10.1038/ncomms3183 PubMedCentralPubMedGoogle Scholar
  101. 101.
    Smith DK, Yang J, Liu ML, Zhang CL (2016) Small molecules modulate chromatin accessibility to promote NEUROG2-mediated fibroblast-to-neuron reprogramming. Stem Cell Rep 7(5):955–969. doi: 10.1016/j.stemcr.2016.09.013 CrossRefGoogle Scholar
  102. 102.
    Shi Z, Zhang J, Chen S, Li Y, Lei X, Qiao H, Zhu Q, Hu B, Zhou Q, Jiao J (2016) Conversion of fibroblasts to parvalbumin neurons by one transcription factor, Ascl1, and the chemical compound forskolin. J Biol Chem 291(26):13560–13570. doi: 10.1074/jbc.M115.709808 PubMedCentralCrossRefPubMedGoogle Scholar
  103. 103.
    Jo AY, Park CH, Aizawa S, Lee SH (2007) Contrasting and brain region-specific roles of neurogenin2 and mash1 in GABAergic neuron differentiation in vitro. Exp Cell Res 313(19):4066–4081. doi: 10.1016/j.yexcr.2007.08.026 CrossRefPubMedGoogle Scholar
  104. 104.
    Parras CM, Schuurmans C, Scardigli R, Kim J, Anderson DJ, Guillemot F (2002) Divergent functions of the proneural genes Mash1 and Ngn2 in the specification of neuronal subtype identity. Genes Dev 16(3):324–338. doi: 10.1101/gad.940902 PubMedCentralCrossRefPubMedGoogle Scholar
  105. 105.
    Cheng L, Hu W, Qiu B, Zhao J, Yu Y, Guan W, Wang M, Yang W, Pei G (2014) Generation of neural progenitor cells by chemical cocktails and hypoxia. Cell Res 24(6):665–679. doi: 10.1038/cr.2014.32 PubMedCentralCrossRefPubMedGoogle Scholar
  106. 106.
    Zheng J, Choi KA, Kang PJ, Hyeon S, Kwon S, Moon JH, Hwang I, Kim YI, Kim YS, Yoon BS, Park G, Lee J, Hong S, You S (2016) A combination of small molecules directly reprograms mouse fibroblasts into neural stem cells. Biochem Biophys Res Commun 476(1):42–48. doi: 10.1016/j.bbrc.2016.05.080 CrossRefPubMedGoogle Scholar
  107. 107.
    Lie DC, Colamarino SA, Song HJ, Desire L, Mira H, Consiglio A, Lein ES, Jessberger S, Lansford H, Dearie AR, Gage FH (2005) Wnt signalling regulates adult hippocampal neurogenesis. Nature 437(7063):1370–1375. doi: 10.1038/nature04108 CrossRefPubMedGoogle Scholar
  108. 108.
    Lai K, Kaspar BK, Gage FH, Schaffer DV (2003) Sonic hedgehog regulates adult neural progenitor proliferation in vitro and in vivo. Nat Neurosci 6(1):21–27. doi: 10.1038/nn983 CrossRefPubMedGoogle Scholar
  109. 109.
    Koyanagi M, Takahashi J, Arakawa Y, Doi D, Fukuda H, Hayashi H, Narumiya S, Hashimoto N (2008) Inhibition of the Rho/ROCK pathway reduces apoptosis during transplantation of embryonic stem cell-derived neural precursors. J Neurosci Res 86(2):270–280. doi: 10.1002/jnr.21502 CrossRefPubMedGoogle Scholar
  110. 110.
    Zhang M, Lin YH, Sun YJ, Zhu S, Zheng J, Liu K, Cao N, Li K, Huang Y, Ding S (2016) Pharmacological reprogramming of fibroblasts into neural stem cells by signaling-directed transcriptional activation. Cell Stem Cell 18(5):653–667. doi: 10.1016/j.stem.2016.03.020 PubMedCentralCrossRefPubMedGoogle Scholar
  111. 111.
    Han YC, Lim Y, Duffieldl MD, Li H, Liu J, Abdul Manaph NP, Yang M, Keating DJ, Zhou XF (2016) Direct reprogramming of mouse fibroblasts to neural stem cells by small molecules. Stem Cells Int 2016:4304916. doi: 10.1155/2016/4304916 PubMedGoogle Scholar
  112. 112.
    Li X, Zuo X, Jing J, Ma Y, Wang J, Liu D, Zhu J, Du X, Xiong L, Du Y, Xu J, Xiao X, Wang J, Chai Z, Zhao Y, Deng H (2015) Small-molecule-driven direct reprogramming of mouse fibroblasts into functional neurons. Cell Stem Cell 17(2):195–203. doi: 10.1016/j.stem.2015.06.003 CrossRefPubMedGoogle Scholar
  113. 113.
    Dai P, Harada Y, Takamatsu T (2015) Highly efficient direct conversion of human fibroblasts to neuronal cells by chemical compounds. J Clin Biochem Nutr 56(3):166–170. doi: 10.3164/jcbn.15-39 PubMedCentralCrossRefPubMedGoogle Scholar
  114. 114.
    Wang Y, Yang H, Yang Q, Yang J, Wang H, Xu H, Gao WQ (2016) Chemical conversion of mouse fibroblasts into functional dopaminergic neurons. Exp Cell Res 347(2):283–292. doi: 10.1016/j.yexcr.2016.07.026 CrossRefPubMedGoogle Scholar
  115. 115.
    Zhang L, Yin JC, Yeh H, Ma NX, Lee G, Chen XA, Wang Y, Lin L, Chen L, Jin P, Wu GY, Chen G (2015) Small molecules efficiently reprogram human astroglial cells into functional neurons. Cell Stem Cell 17(6):735–747. doi: 10.1016/j.stem.2015.09.012 PubMedCentralCrossRefPubMedGoogle Scholar
  116. 116.
    Borghese L, Dolezalova D, Opitz T, Haupt S, Leinhaas A, Steinfarz B, Koch P, Edenhofer F, Hampl A, Brustle O (2010) Inhibition of notch signaling in human embryonic stem cell-derived neural stem cells delays G1/S phase transition and accelerates neuronal differentiation in vitro and in vivo. Stem Cells 28(5):955–964. doi: 10.1002/stem.408 CrossRefPubMedGoogle Scholar
  117. 117.
    Hitoshi S, Seaberg RM, Koscik C, Alexson T, Kusunoki S, Kanazawa I, Tsuji S, van der Kooy D (2004) Primitive neural stem cells from the mammalian epiblast differentiate to definitive neural stem cells under the control of Notch signaling. Genes Dev 18(15):1806–1811. doi: 10.1101/gad.1208404 PubMedCentralCrossRefPubMedGoogle Scholar
  118. 118.
    Gao L, Guan W, Wang M, Wang H, Yu J, Liu Q, Qiu B, Yu Y, Ping Y, Bian X, Shen L, Pei G (2017) Direct generation of human neuronal cells from adult astrocytes by small molecules. Stem Cell Rep 8(3):538–547. doi: 10.1016/j.stemcr.2017.01.014 CrossRefGoogle Scholar
  119. 119.
    Sayed N, Wong WT, Ospino F, Meng S, Lee J, Jha A, Dexheimer P, Aronow BJ, Cooke JP (2015) Transdifferentiation of human fibroblasts to endothelial cells: role of innate immunity. Circulation 131(3):300–309. doi: 10.1161/CIRCULATIONAHA.113.007394 CrossRefPubMedGoogle Scholar
  120. 120.
    Han X, Yu H, Huang D, Xu Y, Saadatpour A, Li X, Wang L, Yu J, Pinello L, Lai S, Jiang M, Tian X, Zhang F, Cen Y, Fujiwara Y, Zhu W, Zhou B, Zhou T, Ouyang H, Wang J, Yuan GC, Duan S, Orkin SH, Guo G (2017) A molecular roadmap for induced multi-lineage trans-differentiation of fibroblasts by chemical combinations. Cell Res 27(3):386–401. doi: 10.1038/cr.2017.17 CrossRefPubMedGoogle Scholar
  121. 121.
    Lim KT, Lee SC, Gao Y, Kim KP, Song G, An SY, Adachi K, Jang YJ, Kim J, Oh KJ, Kwak TH, Hwang SI, You JS, Ko K, Koo SH, Sharma AD, Kim JH, Hui L, Cantz T, Scholer HR, Han DW (2016) Small molecules facilitate single factor-mediated hepatic reprogramming. Cell Rep. doi: 10.1016/j.celrep.2016.03.071 Google Scholar
  122. 122.
    Katsuda T, Kawamata M, Hagiwara K, Takahashi RU, Yamamoto Y, Camargo FD, Ochiya T (2017) Conversion of terminally committed hepatocytes to culturable bipotent progenitor cells with regenerative capacity. Cell Stem Cell 20(1):41–55. doi: 10.1016/j.stem.2016.10.007 CrossRefPubMedGoogle Scholar
  123. 123.
    Zhu S, Russ HA, Wang X, Zhang M, Ma T, Xu T, Tang S, Hebrok M, Ding S (2016) Human pancreatic beta-like cells converted from fibroblasts. Nat Commun 7:10080. doi: 10.1038/ncomms10080 PubMedCentralCrossRefPubMedGoogle Scholar
  124. 124.
    Pennarossa G, Maffei S, Campagnol M, Rahman MM, Brevini TA, Gandolfi F (2014) Reprogramming of pig dermal fibroblast into insulin secreting cells by a brief exposure to 5-aza-cytidine. Stem Cell Rev 10(1):31–43. doi: 10.1007/s12015-013-9477-9 CrossRefPubMedGoogle Scholar
  125. 125.
    Li K, Zhu S, Russ HA, Xu S, Xu T, Zhang Y, Ma T, Hebrok M, Ding S (2014) Small molecules facilitate the reprogramming of mouse fibroblasts into pancreatic lineages. Cell Stem Cell 14(2):228–236. doi: 10.1016/j.stem.2014.01.006 PubMedCentralCrossRefPubMedGoogle Scholar
  126. 126.
    Lai PL, Lin H, Chen SF, Yang SC, Hung KH, Chang CF, Chang HY, Lu FL, Lee YH, Liu YC, Huang HC, Lu J (2017) Efficient generation of chemically induced mesenchymal stem cells from human dermal fibroblasts. Sci Rep 7:44534. doi: 10.1038/srep44534 PubMedCentralCrossRefPubMedGoogle Scholar
  127. 127.
    Tian E, Sun G, Sun G, Chao J, Ye P, Warden C, Riggs AD, Shi Y (2016) Small-molecule-based lineage reprogramming creates functional astrocytes. Cell Rep 16(3):781–792. doi: 10.1016/j.celrep.2016.06.042 CrossRefPubMedGoogle Scholar
  128. 128.
    Jopling C, Sleep E, Raya M, Marti M, Raya A, Izpisua Belmonte JC (2010) Zebrafish heart regeneration occurs by cardiomyocyte dedifferentiation and proliferation. Nature 464(7288):606–609. doi: 10.1038/nature08899 PubMedCentralCrossRefPubMedGoogle Scholar
  129. 129.
    Kragl M, Knapp D, Nacu E, Khattak S, Maden M, Epperlein HH, Tanaka EM (2009) Cells keep a memory of their tissue origin during axolotl limb regeneration. Nature 460(7251):60–65. doi: 10.1038/nature08152 CrossRefPubMedGoogle Scholar
  130. 130.
    Barbosa-Sabanero K, Hoffmann A, Judge C, Lightcap N, Tsonis PA, Del Rio-Tsonis K (2012) Lens and retina regeneration: new perspectives from model organisms. Biochem J 447(3):321–334. doi: 10.1042/BJ20120813 CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Tianjin Medical UniversityTianjinChina
  2. 2.Key Laboratory of Wound Repair and Regeneration of PLAThe First Hospital Affiliated to the PLA General HospitalBeijingChina

Personalised recommendations