Cellular and Molecular Life Sciences

, Volume 74, Issue 17, pp 3245–3261 | Cite as

Intrinsic protein disorder in oncogenic KRAS signaling

  • Ruth NussinovEmail author
  • Hyunbum Jang
  • Chung-Jung Tsai
  • Tsung-Jen Liao
  • Shuai Li
  • David Fushman
  • Jian Zhang
Multi-author Review


How Ras, and in particular its most abundant oncogenic isoform K-Ras4B, is activated and signals in proliferating cells, poses some of the most challenging questions in cancer cell biology. In this paper, we ask how intrinsically disordered regions in K-Ras4B and its effectors help promote proliferative signaling. Conformational disorder allows spanning long distances, supports hinge motions, promotes anchoring in membranes, permits segments to fulfil multiple roles, and broadly is crucial for activation mechanisms and intensified oncogenic signaling. Here, we provide an overview illustrating some of the key mechanisms through which conformational disorder can promote oncogenesis, with K-Ras4B signaling serving as an example. We discuss (1) GTP-bound KRas4B activation through membrane attachment; (2) how farnesylation and palmitoylation can promote isoform functional specificity; (3) calmodulin binding and PI3K activation; (4) how Ras activates its RASSF5 cofactor, thereby stimulating signaling of the Hippo pathway and repressing proliferation; and (5) how intrinsically disordered segments in Raf help its attachment to the membrane and activation. Collectively, we provide the first inclusive review of the roles of intrinsic protein disorder in oncogenic Ras-driven signaling. We believe that a broad picture helps to grasp and formulate key mechanisms in Ras cancer biology and assists in therapeutic intervention.


KRAS Calmodulin Plasma membrane Colorectal cancer Lung cancer Pancreatic cancer 



This work has been supported by NIH Grant GM06533 (to DF). This work was supported by National Basic Research Program of China (973 Program) (2015CB910403); National Natural Science Foundation of China (81322046, 81302698, 81473137); Shanghai Rising-Star Program (13QA1402300); Program for New Century Excellent Talents in University (NCET-12-0355); Shanghai Health and Family Planning Commission (20154Y0058) (To JZ). This project has been funded in whole or in part with Federal funds from the Frederick National Laboratory for Cancer Research, National Institutes of Health, under contract HHSN261200800001E. This research was supported [in part] by the Intramural Research Program of NIH, Frederick National Lab, Center for Cancer Research. The content of this publication does not necessarily reflect the views or policies of the Department of Health and Human Services, nor does mention of trade names, commercial products, or organizations imply endorsement by the US Government.


  1. 1.
    Eser S, Schnieke A, Schneider G, Saur D (2014) Oncogenic KRAS signalling in pancreatic cancer. Br J Cancer 111:817–822. doi: 10.1038/bjc.2014.215 PubMedPubMedCentralCrossRefGoogle Scholar
  2. 2.
    Bryant KL, Mancias JD, Kimmelman AC, Der CJ (2014) KRAS: feeding pancreatic cancer proliferation. Trends Biochem Sci 39:91–100. doi: 10.1016/j.tibs.2013.12.004 PubMedPubMedCentralCrossRefGoogle Scholar
  3. 3.
    Lu S, Jang H, Muratcioglu S, Gursoy A, Keskin O, Nussinov R, Zhang J (2016) Ras conformational ensembles, allostery, and signaling. Chem Rev 116:6607–6665. doi: 10.1021/acs.chemrev.5b00542 PubMedCrossRefGoogle Scholar
  4. 4.
    Bhowmick A, Brookes DH, Yost SR, Dyson HJ, Forman-Kay JD, Gunter D, Head-Gordon M, Hura GL, Pande VS, Wemmer DE et al (2016) Finding our way in the dark proteome. J Am Chem Soc 138:9730–9742. doi: 10.1021/jacs.6b06543 PubMedPubMedCentralCrossRefGoogle Scholar
  5. 5.
    Dyson HJ, Wright PE (2016) Role of intrinsic protein disorder in the function and interactions of the transcriptional coactivators CREB-binding protein (CBP) and p300. J Biol Chem 291:6714–6722. doi: 10.1074/jbc.R115.692020 PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    Arai M, Sugase K, Dyson HJ, Wright PE (2015) Conformational propensities of intrinsically disordered proteins influence the mechanism of binding and folding. Proc Natl Acad Sci USA 112:9614–9619. doi: 10.1073/pnas.1512799112 PubMedPubMedCentralCrossRefGoogle Scholar
  7. 7.
    Csizmok V, Follis AV, Kriwacki RW, Forman-Kay JD (2016) Dynamic protein interaction networks and new structural paradigms in signaling. Chem Rev 116:6424–6462. doi: 10.1021/acs.chemrev.5b00548 PubMedPubMedCentralCrossRefGoogle Scholar
  8. 8.
    Banerjee R (2016) Introduction to the thematic minireview series on intrinsically disordered proteins. J Biol Chem 291:6679–6680. doi: 10.1074/jbc.R116.719930 PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    Shammas SL, Crabtree MD, Dahal L, Wicky BI, Clarke J (2016) Insights into coupled folding and binding mechanisms from kinetic studies. J Biol Chem 291:6689–6695. doi: 10.1074/jbc.R115.692715 PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    Dunker AK, Bondos SE, Huang F, Oldfield CJ (2015) Intrinsically disordered proteins and multicellular organisms. Semin Cell Dev Biol 37:44–55. doi: 10.1016/j.semcdb.2014.09.025 PubMedCrossRefGoogle Scholar
  11. 11.
    Barbar E, Nyarko A (2015) Polybivalency and disordered proteins in ordering macromolecular assemblies. Semin Cell Dev Biol 37:20–25. doi: 10.1016/j.semcdb.2014.09.016 PubMedCrossRefGoogle Scholar
  12. 12.
    Wright PE, Dyson HJ (2015) Intrinsically disordered proteins in cellular signalling and regulation. Nat Rev Mol Cell Biol 16:18–29. doi: 10.1038/nrm3920 PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    Nussinov R, Tsai CJ, Mattos C (2013) ‘Pathway drug cocktail’: targeting Ras signaling based on structural pathways. Trends Mol Med 19:695–704. doi: 10.1016/j.molmed.2013.07.009 PubMedCrossRefGoogle Scholar
  14. 14.
    Parker JA, Mattos C (2015) The Ras-membrane interface: isoform-specific differences in the catalytic domain. Mol Cancer Res 13:595–603. doi: 10.1158/1541-7786.MCR-14-0535 PubMedCrossRefGoogle Scholar
  15. 15.
    Jang H, Muratcioglu S, Gursoy A, Keskin O, Nussinov R (2016) Membrane-associated Ras dimers are isoform-specific: K-Ras dimers differ from H-Ras dimers. Biochem J 473:1719–1732. doi: 10.1042/BCJ20160031 PubMedCrossRefGoogle Scholar
  16. 16.
    Banerjee A, Jang H, Nussinov R, Gaponenko V (2016) The disordered hypervariable region and the folded catalytic domain of oncogenic K-Ras4B partner in phospholipid binding. Curr Opin Struct Biol 36:10–17. doi: 10.1016/ PubMedCrossRefGoogle Scholar
  17. 17.
    Jang H, Banerjee A, Chavan TS, Lu S, Zhang J, Gaponenko V, Nussinov R (2016) The higher level of complexity of K-Ras4B activation at the membrane. FASEB J 30:1643–1655. doi: 10.1096/fj.15-279091 PubMedCrossRefGoogle Scholar
  18. 18.
    Nussinov R, Tsai CJ, Jang H, Korcsmaros T, Csermely P (2016) Oncogenic KRAS signaling and YAP1/beta-catenin: similar cell cycle control in tumor initiation. Semin Cell Dev Biol 58:79–85. doi: 10.1016/j.semcdb.2016.04.001 PubMedCrossRefGoogle Scholar
  19. 19.
    Nussinov R, Tsai CJ, Muratcioglu S, Jang H, Gursoy A, Keskin O (2015) Principles of K-Ras effector organization and the role of oncogenic K-Ras in cancer initiation through G1 cell cycle deregulation. Expert Rev Proteomics 12:669–682. doi: 10.1586/14789450.2015.1100079 PubMedCrossRefGoogle Scholar
  20. 20.
    Schlichting I, Almo SC, Rapp G, Wilson K, Petratos K, Lentfer A, Wittinghofer A, Kabsch W, Pai EF, Petsko GA et al (1990) Time-resolved X-ray crystallographic study of the conformational change in Ha-Ras p21 protein on GTP hydrolysis. Nature 345:309–315. doi: 10.1038/345309a0 PubMedCrossRefGoogle Scholar
  21. 21.
    Scheffzek K, Ahmadian MR, Kabsch W, Wiesmuller L, Lautwein A, Schmitz F, Wittinghofer A (1997) The Ras-RasGAP complex: structural basis for GTPase activation and its loss in oncogenic Ras mutants. Science 277:333–338PubMedCrossRefGoogle Scholar
  22. 22.
    Wittinghofer A, Vetter IR (2011) Structure-function relationships of the G domain, a canonical switch motif. Annu Rev Biochem 80:943–971. doi: 10.1146/annurev-biochem-062708-134043 PubMedCrossRefGoogle Scholar
  23. 23.
    Chavan TS, Muratcioglu S, Marszalek R, Jang H, Keskin O, Gursoy A, Nussinov R, Gaponenko V (2015) Plasma membrane regulates Ras signaling networks. Cell Logist 5:e1136374. doi: 10.1080/21592799.2015.1136374 PubMedCrossRefGoogle Scholar
  24. 24.
    Jang H, Abraham SJ, Chavan TS, Hitchinson B, Khavrutskii L, Tarasova NI, Nussinov R, Gaponenko V (2015) Mechanisms of membrane binding of small GTPase K-Ras4B farnesylated hypervariable region. J Biol Chem 290:9465–9477. doi: 10.1074/jbc.M114.620724 PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Abankwa D, Gorfe AA, Inder K, Hancock JF (2010) Ras membrane orientation and nanodomain localization generate isoform diversity. Proc Natl Acad Sci USA 107:1130–1135. doi: 10.1073/pnas.0903907107 PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Janosi L, Li Z, Hancock JF, Gorfe AA (2012) Organization, dynamics, and segregation of Ras nanoclusters in membrane domains. Proc Natl Acad Sci USA 109:8097–8102. doi: 10.1073/pnas.1200773109 PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Mazhab-Jafari MT, Marshall CB, Smith MJ, Gasmi-Seabrook GM, Stathopulos PB, Inagaki F, Kay LE, Neel BG, Ikura M (2015) Oncogenic and RASopathy-associated K-RAS mutations relieve membrane-dependent occlusion of the effector-binding site. Proc Natl Acad Sci USA 112:6625–6630. doi: 10.1073/pnas.1419895112 PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Chavan TS, Jang H, Khavrutskii L, Abraham SJ, Banerjee A, Freed BC, Johannessen L, Tarasov SG, Gaponenko V, Nussinov R et al (2015) High-affinity interaction of the K-Ras4B hypervariable region with the Ras active site. Biophys J 109:2602–2613. doi: 10.1016/j.bpj.2015.09.034 PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Muratcioglu S, Chavan TS, Freed BC, Jang H, Khavrutskii L, Freed RN, Dyba MA, Stefanisko K, Tarasov SG, Gursoy A et al (2015) GTP-dependent K-Ras dimerization. Structure 23:1325–1335. doi: 10.1016/j.str.2015.04.019 PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    Nan X, Tamguney TM, Collisson EA, Lin LJ, Pitt C, Galeas J, Lewis S, Gray JW, McCormick F, Chu S (2015) Ras-GTP dimers activate the mitogen-activated protein kinase (MAPK) pathway. Proc Natl Acad Sci USA 112:7996–8001. doi: 10.1073/pnas.1509123112 PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Harjes E, Harjes S, Wohlgemuth S, Muller KH, Krieger E, Herrmann C, Bayer P (2006) GTP-Ras disrupts the intramolecular complex of C1 and RA domains of Nore1. Structure 14:881–888. doi: 10.1016/j.str.2006.03.008 PubMedCrossRefGoogle Scholar
  32. 32.
    Pleasance ED, Cheetham RK, Stephens PJ, McBride DJ, Humphray SJ, Greenman CD, Varela I, Lin ML, Ordonez GR, Bignell GR et al (2010) A comprehensive catalogue of somatic mutations from a human cancer genome. Nature 463:191–196. doi: 10.1038/nature08658 PubMedCrossRefGoogle Scholar
  33. 33.
    Prior IA, Lewis PD, Mattos C (2012) A comprehensive survey of Ras mutations in cancer. Cancer Res 72:2457–2467. doi: 10.1158/0008-5472.CAN-11-2612 PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Stephen AG, Esposito D, Bagni RK, McCormick F (2014) Dragging ras back in the ring. Cancer Cell 25:272–281. doi: 10.1016/j.ccr.2014.02.017 PubMedCrossRefGoogle Scholar
  35. 35.
    Pathan AA, Panthi B, Khan Z, Koppula PR, Alanazi MS, Sachchidanand Parine NR, Chourasia M (2016) Lead identification for the K-Ras protein: virtual screening and combinatorial fragment-based approaches. Onco Targets Ther 9:2575–2584. doi: 10.2147/OTT.S99671 PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    Jubb H, Blundell TL, Ascher DB (2015) Flexibility and small pockets at protein–protein interfaces: new insights into druggability. Prog Biophys Mol Biol 119:2–9. doi: 10.1016/j.pbiomolbio.2015.01.009 PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    Higueruelo AP, Jubb H, Blundell TL (2013) Protein–protein interactions as druggable targets: recent technological advances. Curr Opin Pharmacol 13:791–796. doi: 10.1016/j.coph.2013.05.009 PubMedCrossRefGoogle Scholar
  38. 38.
    McCarthy M, Prakash P, Gorfe AA (2016) Computational allosteric ligand binding site identification on Ras proteins. Acta Biochim Biophys Sin (Shanghai) 48:3–10. doi: 10.1093/abbs/gmv100 Google Scholar
  39. 39.
    Grant BJ, Lukman S, Hocker HJ, Sayyah J, Brown JH, McCammon JA, Gorfe AA (2011) Novel allosteric sites on Ras for lead generation. PLoS One 6:e25711. doi: 10.1371/journal.pone.0025711 PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    Cox AD, Der CJ, Philips MR (2015) Targeting RAS membrane association: back to the future for anti-RAS drug discovery? Clin Cancer Res 21:1819–1827. doi: 10.1158/1078-0432.CCR-14-3214 PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Lu S, Jang H, Gu S, Zhang J, Nussinov R (2016) Drugging Ras GTPase: a comprehensive mechanistic and signaling structural view. Chem Soc Rev 45:4853–5136. doi: 10.1039/c5cs00911a CrossRefGoogle Scholar
  42. 42.
    Lu S, Jang H, Zhang J, Nussinov R (2016) Inhibitors of Ras–SOS interactions. ChemMedChem 11:814–821. doi: 10.1002/cmdc.201500481 PubMedCrossRefGoogle Scholar
  43. 43.
    Ostrem JM, Peters U, Sos ML, Wells JA, Shokat KM (2013) K-Ras(G12C) inhibitors allosterically control GTP affinity and effector interactions. Nature 503:548–551. doi: 10.1038/nature12796 PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    Saxena N, Lahiri SS, Hambarde S, Tripathi RP (2008) RAS: target for cancer therapy. Cancer Investig 26:948–955. doi: 10.1080/07357900802087275 CrossRefGoogle Scholar
  45. 45.
    Maurer T, Garrenton LS, Oh A, Pitts K, Anderson DJ, Skelton NJ, Fauber BP, Pan B, Malek S, Stokoe D et al (2012) Small-molecule ligands bind to a distinct pocket in Ras and inhibit SOS-mediated nucleotide exchange activity. Proc Natl Acad Sci USA 109:5299–5304. doi: 10.1073/pnas.1116510109 PubMedPubMedCentralCrossRefGoogle Scholar
  46. 46.
    Sun Q, Burke JP, Phan J, Burns MC, Olejniczak ET, Waterson AG, Lee T, Rossanese OW, Fesik SW (2012) Discovery of small molecules that bind to K-Ras and inhibit Sos-mediated activation. Angew Chem Int Ed Engl 51:6140–6143. doi: 10.1002/anie.201201358 PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    Wang W, Fang G, Rudolph J (2012) Ras inhibition via direct Ras binding—is there a path forward? Bioorg Med Chem Lett 22:5766–5776. doi: 10.1016/j.bmcl.2012.07.082 PubMedCrossRefGoogle Scholar
  48. 48.
    Gysin S, Salt M, Young A, McCormick F (2011) Therapeutic strategies for targeting ras proteins. Genes Cancer 2:359–372. doi: 10.1177/1947601911412376 PubMedPubMedCentralCrossRefGoogle Scholar
  49. 49.
    Holohan C, Van Schaeybroeck S, Longley DB, Johnston PG (2013) Cancer drug resistance: an evolving paradigm. Nat Rev Cancer 13:714–726. doi: 10.1038/nrc3599 PubMedCrossRefGoogle Scholar
  50. 50.
    Longley DB, Johnston PG (2005) Molecular mechanisms of drug resistance. J Pathol 205:275–292. doi: 10.1002/path.1706 PubMedCrossRefGoogle Scholar
  51. 51.
    Fojo T, Bates S (2003) Strategies for reversing drug resistance. Oncogene 22:7512–7523. doi: 10.1038/sj.onc.1206951 PubMedCrossRefGoogle Scholar
  52. 52.
    Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144:646–674. doi: 10.1016/j.cell.2011.02.013 PubMedCrossRefGoogle Scholar
  53. 53.
    Gottesman MM, Fojo T, Bates SE (2002) Multidrug resistance in cancer: role of ATP-dependent transporters. Nat Rev Cancer 2:48–58. doi: 10.1038/nrc706 PubMedCrossRefGoogle Scholar
  54. 54.
    Bouwman P, Jonkers J (2012) The effects of deregulated DNA damage signalling on cancer chemotherapy response and resistance. Nat Rev Cancer 12:587–598. doi: 10.1038/nrc3342 PubMedCrossRefGoogle Scholar
  55. 55.
    Wei G, Xi W, Nussinov R, Ma B (2016) Protein ensembles: how does nature harness thermodynamic fluctuations for life? The diverse functional roles of conformational ensembles in the cell. Chem Rev 116:6516–6551. doi: 10.1021/acs.chemrev.5b00562 PubMedCrossRefGoogle Scholar
  56. 56.
    Nussinov R (2016) Introduction to protein ensembles and allostery. Chem Rev 116:6263–6266. doi: 10.1021/acs.chemrev.6b00283 PubMedCrossRefGoogle Scholar
  57. 57.
    Nussinov R, Wolynes PG (2014) A second molecular biology revolution? The energy landscapes of biomolecular function. Phys Chem Chem Phys 16:6321–6322. doi: 10.1039/c4cp90027h PubMedCrossRefGoogle Scholar
  58. 58.
    Liu J, Nussinov R (2016) Allostery: an overview of its history, concepts, methods, and applications. PLoS Comput Biol 12:e1004966. doi: 10.1371/journal.pcbi.1004966 PubMedPubMedCentralCrossRefGoogle Scholar
  59. 59.
    Papaleo E, Saladino G, Lambrughi M, Lindorff-Larsen K, Gervasio FL, Nussinov R (2016) The role of protein loops and linkers in conformational dynamics and allostery. Chem Rev 116:6391–6423. doi: 10.1021/acs.chemrev.5b00623 PubMedCrossRefGoogle Scholar
  60. 60.
    Nussinov R, Tsai CJ (2015) Allostery without a conformational change? Revisiting the paradigm. Curr Opin Struct Biol 30:17–24. doi: 10.1016/ PubMedCrossRefGoogle Scholar
  61. 61.
    Tsai CJ, Nussinov R (2014) A unified view of “how allostery works”. PLoS Comput Biol 10:e1003394. doi: 10.1371/journal.pcbi.1003394 PubMedPubMedCentralCrossRefGoogle Scholar
  62. 62.
    Liao TJ, Tsai CJ, Jang H, Fushman D, Nussinov R (2016) RASSF5: an MST activator and tumor suppressor in vivo but opposite in vitro. Curr Opin Struct Biol 41:217–224. doi: 10.1016/ PubMedCrossRefGoogle Scholar
  63. 63.
    Laude AJ, Prior IA (2008) Palmitoylation and localisation of RAS isoforms are modulated by the hypervariable linker domain. J Cell Sci 121:421–427. doi: 10.1242/jcs.020107 PubMedCrossRefGoogle Scholar
  64. 64.
    Tsai FD, Lopes MS, Zhou M, Court H, Ponce O, Fiordalisi JJ, Gierut JJ, Cox AD, Haigis KM, Philips MR (2015) K-Ras4A splice variant is widely expressed in cancer and uses a hybrid membrane-targeting motif. Proc Natl Acad Sci USA 112:779–784. doi: 10.1073/pnas.1412811112 PubMedPubMedCentralCrossRefGoogle Scholar
  65. 65.
    Nussinov R, Tsai CJ, Chakrabarti M, Jang H (2016) A new view of ras isoforms in cancers. Cancer Res 76:18–23. doi: 10.1158/0008-5472.CAN-15-1536 PubMedCrossRefGoogle Scholar
  66. 66.
    Milburn MV, Tong L, deVos AM, Brunger A, Yamaizumi Z, Nishimura S, Kim SH (1990) Molecular switch for signal transduction: structural differences between active and inactive forms of protooncogenic ras proteins. Science 247:939–945PubMedCrossRefGoogle Scholar
  67. 67.
    Lu S, Banerjee A, Jang H, Zhang J, Gaponenko V, Nussinov R (2015) GTP binding and oncogenic mutations may attenuate hypervariable region (HVR)-catalytic domain interactions in small GTPase K-Ras4B, exposing the effector binding site. J Biol Chem 290:28887–28900. doi: 10.1074/jbc.M115.664755 PubMedPubMedCentralCrossRefGoogle Scholar
  68. 68.
    Chakrabarti M, Jang H, Nussinov R (2016) Comparison of the conformations of KRAS isoforms, K-Ras4A and K-Ras4B, points to similarities and significant differences. J Phys Chem B 120:667–679. doi: 10.1021/acs.jpcb.5b11110 PubMedCrossRefGoogle Scholar
  69. 69.
    Mor A, Philips MR (2006) Compartmentalized Ras/MAPK signaling. Annu Rev Immunol 24:771–800. doi: 10.1146/annurev.immunol.24.021605.090723 PubMedCrossRefGoogle Scholar
  70. 70.
    Clarke S (1992) Protein isoprenylation and methylation at carboxyl-terminal cysteine residues. Annu Rev Biochem 61:355–386. doi: 10.1146/ PubMedCrossRefGoogle Scholar
  71. 71.
    Clarke S, Vogel JP, Deschenes RJ, Stock J (1988) Posttranslational modification of the Ha-ras oncogene protein: evidence for a third class of protein carboxyl methyltransferases. Proc Natl Acad Sci USA 85:4643–4647PubMedPubMedCentralCrossRefGoogle Scholar
  72. 72.
    Perez-Sala D, Tan EW, Canada FJ, Rando RR (1991) Methylation and demethylation reactions of guanine nucleotide-binding proteins of retinal rod outer segments. Proc Natl Acad Sci USA 88:3043–3046PubMedPubMedCentralCrossRefGoogle Scholar
  73. 73.
    Yokoi N, Fukata Y, Sekiya A, Murakami T, Kobayashi K, Fukata M (2016) Identification of PSD-95 depalmitoylating enzymes. J Neurosci 36:6431–6444. doi: 10.1523/JNEUROSCI.0419-16.2016 PubMedPubMedCentralCrossRefGoogle Scholar
  74. 74.
    Goodwin JS, Drake KR, Rogers C, Wright L, Lippincott-Schwartz J, Philips MR, Kenworthy AK (2005) Depalmitoylated Ras traffics to and from the Golgi complex via a nonvesicular pathway. J Cell Biol 170:261–272. doi: 10.1083/jcb.200502063 PubMedPubMedCentralCrossRefGoogle Scholar
  75. 75.
    Rocks O, Peyker A, Kahms M, Verveer PJ, Koerner C, Lumbierres M, Kuhlmann J, Waldmann H, Wittinghofer A, Bastiaens PI (2005) An acylation cycle regulates localization and activity of palmitoylated Ras isoforms. Science 307:1746–1752. doi: 10.1126/science.1105654 PubMedCrossRefGoogle Scholar
  76. 76.
    Zhou M, Wiener H, Su W, Zhou Y, Liot C, Ahearn I, Hancock JF, Philips MR (2016) VPS35 binds farnesylated N-Ras in the cytosol to regulate N-Ras trafficking. J Cell Biol 214:445–458. doi: 10.1083/jcb.201604061 PubMedPubMedCentralCrossRefGoogle Scholar
  77. 77.
    Chandra A, Grecco HE, Pisupati V, Perera D, Cassidy L, Skoulidis F, Ismail SA, Hedberg C, Hanzal-Bayer M, Venkitaraman AR et al (2011) The GDI-like solubilizing factor PDEdelta sustains the spatial organization and signalling of Ras family proteins. Nat Cell Biol 14:148–158. doi: 10.1038/ncb2394 PubMedCrossRefGoogle Scholar
  78. 78.
    Fivaz M, Meyer T (2005) Reversible intracellular translocation of KRas but not HRas in hippocampal neurons regulated by Ca2+/calmodulin. J Cell Biol 170:429–441. doi: 10.1083/jcb.200409157 PubMedPubMedCentralCrossRefGoogle Scholar
  79. 79.
    Dharmaiah S, Bindu L, Tran TH, Gillette WK, Frank PH, Ghirlando R, Nissley DV, Esposito D, McCormick F, Stephen AG et al (2016) Structural basis of recognition of farnesylated and methylated KRAS4b by PDEdelta. Proc Natl Acad Sci USA 113:E6766–E6775. doi: 10.1073/pnas.1615316113 PubMedPubMedCentralCrossRefGoogle Scholar
  80. 80.
    Avruch J, Zhou D, Fitamant J, Bardeesy N, Mou F, Barrufet LR (2012) Protein kinases of the Hippo pathway: regulation and substrates. Semin Cell Dev Biol 23:770–784. doi: 10.1016/j.semcdb.2012.07.002 PubMedPubMedCentralCrossRefGoogle Scholar
  81. 81.
    Richter AM, Pfeifer GP, Dammann RH (2009) The RASSF proteins in cancer; from epigenetic silencing to functional characterization. Biochim Biophys Acta 1796:114–128. doi: 10.1016/j.bbcan.2009.03.004 PubMedGoogle Scholar
  82. 82.
    Avruch J, Xavier R, Bardeesy N, Zhang XF, Praskova M, Zhou D, Xia F (2009) Rassf family of tumor suppressor polypeptides. J Biol Chem 284:11001–11005. doi: 10.1074/jbc.R800073200 PubMedPubMedCentralCrossRefGoogle Scholar
  83. 83.
    Donninger H, Schmidt ML, Mezzanotte J, Barnoud T, Clark GJ (2016) Ras signaling through RASSF proteins. Semin Cell Dev Biol 58:86–95. doi: 10.1016/j.semcdb.2016.06.007 PubMedCrossRefGoogle Scholar
  84. 84.
    Barnoud T, Donninger H, Clark GJ (2016) Ras Regulates Rb via NORE1A. J Biol Chem 291:3114–3123. doi: 10.1074/jbc.M115.697557 PubMedCrossRefGoogle Scholar
  85. 85.
    Donninger H, Calvisi DF, Barnoud T, Clark J, Schmidt ML, Vos MD, Clark GJ (2015) NORE1A is a Ras senescence effector that controls the apoptotic/senescent balance of p53 via HIPK2. J Cell Biol 208:777–789. doi: 10.1083/jcb.201408087 PubMedPubMedCentralCrossRefGoogle Scholar
  86. 86.
    Serrano M, Lin AW, McCurrach ME, Beach D, Lowe SW (1997) Oncogenic ras provokes premature cell senescence associated with accumulation of p53 and p16INK4a. Cell 88:593–602PubMedCrossRefGoogle Scholar
  87. 87.
    Lowe SW, Cepero E, Evan G (2004) Intrinsic tumour suppression. Nature 432:307–315. doi: 10.1038/nature03098 PubMedCrossRefGoogle Scholar
  88. 88.
    Courtois-Cox S, Genther Williams SM, Reczek EE, Johnson BW, McGillicuddy LT, Johannessen CM, Hollstein PE, MacCollin M, Cichowski K (2006) A negative feedback signaling network underlies oncogene-induced senescence. Cancer Cell 10:459–472. doi: 10.1016/j.ccr.2006.10.003 PubMedPubMedCentralCrossRefGoogle Scholar
  89. 89.
    Sharpless NE, Sherr CJ (2015) Forging a signature of in vivo senescence. Nat Rev Cancer 15:397–408. doi: 10.1038/nrc3960 PubMedCrossRefGoogle Scholar
  90. 90.
    Perez-Mancera PA, Young AR, Narita M (2014) Inside and out: the activities of senescence in cancer. Nat Rev Cancer 14:547–558. doi: 10.1038/nrc3773 PubMedCrossRefGoogle Scholar
  91. 91.
    Makbul C, Constantinescu Aruxandei D, Hofmann E, Schwarz D, Wolf E, Herrmann C (2013) Structural and thermodynamic characterization of Nore1-SARAH: a small, helical module important in signal transduction networks. Biochemistry 52:1045–1054. doi: 10.1021/bi3014642 PubMedCrossRefGoogle Scholar
  92. 92.
    Das J, Rahman GM (2014) C1 domains: structure and ligand-binding properties. Chem Rev 114:12108–12131. doi: 10.1021/cr300481j PubMedCrossRefGoogle Scholar
  93. 93.
    Hwang E, Cheong HK, Ul Mushtaq A, Kim HY, Yeo KJ, Kim E, Lee WC, Hwang KY, Cheong C, Jeon YH (2014) Structural basis of the heterodimerization of the MST and RASSF SARAH domains in the Hippo signalling pathway. Acta Crystallogr D Biol Crystallogr 70:1944–1953. doi: 10.1107/S139900471400947X PubMedPubMedCentralCrossRefGoogle Scholar
  94. 94.
    Hwang E, Ryu KS, Paakkonen K, Guntert P, Cheong HK, Lim DS, Lee JO, Jeon YH, Cheong C (2007) Structural insight into dimeric interaction of the SARAH domains from Mst1 and RASSF family proteins in the apoptosis pathway. Proc Natl Acad Sci USA 104:9236–9241. doi: 10.1073/pnas.0610716104 PubMedPubMedCentralCrossRefGoogle Scholar
  95. 95.
    Ni L, Li S, Yu J, Min J, Brautigam CA, Tomchick DR, Pan D, Luo X (2013) Structural basis for autoactivation of human Mst2 kinase and its regulation by RASSF5. Structure 21:1757–1768. doi: 10.1016/j.str.2013.07.008 PubMedPubMedCentralCrossRefGoogle Scholar
  96. 96.
    Kumari G, Singhal PK, Suryaraja R, Mahalingam S (2010) Functional interaction of the Ras effector RASSF5 with the tyrosine kinase Lck: critical role in nucleocytoplasmic transport and cell cycle regulation. J Mol Biol 397:89–109. doi: 10.1016/j.jmb.2010.01.005 PubMedCrossRefGoogle Scholar
  97. 97.
    Schmidt ML, Donninger H, Clark GJ (2014) Ras regulates SCF(beta-TrCP) protein activity and specificity via its effector protein NORE1A. J Biol Chem 289:31102–31110. doi: 10.1074/jbc.M114.594283 PubMedPubMedCentralCrossRefGoogle Scholar
  98. 98.
    Aoyama Y, Avruch J, Zhang XF (2004) Nore1 inhibits tumor cell growth independent of Ras or the MST1/2 kinases. Oncogene 23:3426–3433. doi: 10.1038/sj.onc.1207486 PubMedCrossRefGoogle Scholar
  99. 99.
    Matallanas D, Birtwistle M, Romano D, Zebisch A, Rauch J, von Kriegsheim A, Kolch W (2011) Raf family kinases: old dogs have learned new tricks. Genes Cancer 2:232–260. doi: 10.1177/1947601911407323 PubMedPubMedCentralCrossRefGoogle Scholar
  100. 100.
    Tran NH, Frost JA (2003) Phosphorylation of Raf-1 by p21-activated kinase 1 and Src regulates Raf-1 autoinhibition. J Biol Chem 278:11221–11226. doi: 10.1074/jbc.M210318200 PubMedCrossRefGoogle Scholar
  101. 101.
    Bondeva T, Balla A, Varnai P, Balla T (2002) Structural determinants of Ras–Raf interaction analyzed in live cells. Mol Biol Cell 13:2323–2333. doi: 10.1091/mbc.E02-01-0019 PubMedPubMedCentralCrossRefGoogle Scholar
  102. 102.
    Roy S, Lane A, Yan J, McPherson R, Hancock JF (1997) Activity of plasma membrane-recruited Raf-1 is regulated by Ras via the Raf zinc finger. J Biol Chem 272:20139–20145PubMedCrossRefGoogle Scholar
  103. 103.
    Williams JG, Drugan JK, Yi GS, Clark GJ, Der CJ, Campbell SL (2000) Elucidation of binding determinants and functional consequences of Ras/Raf-cysteine-rich domain interactions. J Biol Chem 275:22172–22179. doi: 10.1074/jbc.M000397200 PubMedCrossRefGoogle Scholar
  104. 104.
    Ariotti N, Liang H, Xu Y, Zhang Y, Yonekubo Y, Inder K, Du G, Parton RG, Hancock JF, Plowman SJ (2010) Epidermal growth factor receptor activation remodels the plasma membrane lipid environment to induce nanocluster formation. Mol Cell Biol 30:3795–3804. doi: 10.1128/MCB.01615-09 PubMedPubMedCentralCrossRefGoogle Scholar
  105. 105.
    Inder K, Harding A, Plowman SJ, Philips MR, Parton RG, Hancock JF (2008) Activation of the MAPK module from different spatial locations generates distinct system outputs. Mol Biol Cell 19:4776–4784. doi: 10.1091/mbc.E08-04-0407 PubMedPubMedCentralCrossRefGoogle Scholar
  106. 106.
    Heidecker G, Huleihel M, Cleveland JL, Kolch W, Beck TW, Lloyd P, Pawson T, Rapp UR (1990) Mutational activation of c-raf-1 and definition of the minimal transforming sequence. Mol Cell Biol 10:2503–2512PubMedPubMedCentralCrossRefGoogle Scholar
  107. 107.
    Wan PT, Garnett MJ, Roe SM, Lee S, Niculescu-Duvaz D, Good VM, Jones CM, Marshall CJ, Springer CJ, Barford D et al (2004) Mechanism of activation of the RAF-ERK signaling pathway by oncogenic mutations of B-RAF. Cell 116:855–867PubMedCrossRefGoogle Scholar
  108. 108.
    Thapar R, Williams JG, Campbell SL (2004) NMR characterization of full-length farnesylated and non-farnesylated H-Ras and its implications for Raf activation. J Mol Biol 343:1391–1408. doi: 10.1016/j.jmb.2004.08.106 PubMedCrossRefGoogle Scholar
  109. 109.
    Naguib A (2016) Following the trail of lipids: signals initiated by PI3K function at multiple cellular membranes. Sci Signal 9:4. doi: 10.1126/scisignal.aad7885 CrossRefGoogle Scholar
  110. 110.
    Xia P, Xu XY (2015) PI3K/Akt/mTOR signaling pathway in cancer stem cells: from basic research to clinical application. Am J Cancer Res 5:1602–1609PubMedPubMedCentralGoogle Scholar
  111. 111.
    Yang SX, Polley E, Lipkowitz S (2016) New insights on PI3K/AKT pathway alterations and clinical outcomes in breast cancer. Cancer Treat Rev 45:87–96. doi: 10.1016/j.ctrv.2016.03.004 PubMedCrossRefGoogle Scholar
  112. 112.
    Mandelker D, Gabelli SB, Schmidt-Kittler O, Zhu J, Cheong I, Huang CH, Kinzler KW, Vogelstein B, Amzel LM (2009) A frequent kinase domain mutation that changes the interaction between PI3Kalpha and the membrane. Proc Natl Acad Sci USA 106:16996–17001. doi: 10.1073/pnas.0908444106 PubMedPubMedCentralCrossRefGoogle Scholar
  113. 113.
    Gabelli SB, Echeverria I, Alexander M, Duong-Ly KC, Chaves-Moreira D, Brower ET, Vogelstein B, Amzel LM (2014) Activation of PI3Kalpha by physiological effectors and by oncogenic mutations: structural and dynamic effects. Biophys Rev 6:89–95. doi: 10.1007/s12551-013-0131-1 PubMedPubMedCentralCrossRefGoogle Scholar
  114. 114.
    Burke JE, Perisic O, Masson GR, Vadas O, Williams RL (2012) Oncogenic mutations mimic and enhance dynamic events in the natural activation of phosphoinositide 3-kinase p110alpha (PIK3CA). Proc Natl Acad Sci USA 109:15259–15264. doi: 10.1073/pnas.1205508109 PubMedPubMedCentralCrossRefGoogle Scholar
  115. 115.
    Berchtold MW, Villalobo A (2014) The many faces of calmodulin in cell proliferation, programmed cell death, autophagy, and cancer. Biochim Biophys Acta 1843:398–435. doi: 10.1016/j.bbamcr.2013.10.021 PubMedCrossRefGoogle Scholar
  116. 116.
    Villalonga P, Lopez-Alcala C, Bosch M, Chiloeches A, Rocamora N, Gil J, Marais R, Marshall CJ, Bachs O, Agell N (2001) Calmodulin binds to K-Ras, but not to H- or N-Ras, and modulates its downstream signaling. Mol Cell Biol 21:7345–7354. doi: 10.1128/MCB.21.21.7345-7354.2001 PubMedPubMedCentralCrossRefGoogle Scholar
  117. 117.
    Alvarez-Moya B, Lopez-Alcala C, Drosten M, Bachs O, Agell N (2010) K-Ras4B phosphorylation at Ser181 is inhibited by calmodulin and modulates K-Ras activity and function. Oncogene 29:5911–5922. doi: 10.1038/onc.2010.298 PubMedCrossRefGoogle Scholar
  118. 118.
    Wu LJ, Xu LR, Liao JM, Chen J, Liang Y (2011) Both the C-terminal polylysine region and the farnesylation of K-RasB are important for its specific interaction with calmodulin. PLoS One 6:e21929. doi: 10.1371/journal.pone.0021929 PubMedPubMedCentralCrossRefGoogle Scholar
  119. 119.
    Abraham SJ, Nolet RP, Calvert RJ, Anderson LM, Gaponenko V (2009) The hypervariable region of K-Ras4B is responsible for its specific interactions with calmodulin. Biochemistry 48:7575–7583. doi: 10.1021/bi900769j PubMedPubMedCentralCrossRefGoogle Scholar
  120. 120.
    Chavan TS, Abraham S, Gaponenko V (2013) Application of reductive (1)(3)C-methylation of lysines to enhance the sensitivity of conventional NMR methods. Molecules 18:7103–7119. doi: 10.3390/molecules18067103 PubMedCrossRefGoogle Scholar
  121. 121.
    Nussinov R, Muratcioglu S, Tsai CJ, Jang H, Gursoy A, Keskin O (2015) The key role of calmodulin in KRAS-driven adenocarcinomas. Mol Cancer Res 13:1265–1273. doi: 10.1158/1541-7786.MCR-15-0165 PubMedPubMedCentralCrossRefGoogle Scholar
  122. 122.
    Nussinov R, Muratcioglu S, Tsai CJ, Jang H, Gursoy A, Keskin O (2016) K-Ras4B/calmodulin/PI3Kalpha: a promising new adenocarcinoma-specific drug target? Expert Opin Ther Targets 20:831–842. doi: 10.1517/14728222.2016.1135131 PubMedCrossRefGoogle Scholar
  123. 123.
    Joyal JL, Burks DJ, Pons S, Matter WF, Vlahos CJ, White MF, Sacks DB (1997) Calmodulin activates phosphatidylinositol 3-kinase. J Biol Chem 272:28183–28186PubMedCrossRefGoogle Scholar
  124. 124.
    Xu Y, Li N, Xiang R, Sun P (2014) Emerging roles of the p38 MAPK and PI3K/AKT/mTOR pathways in oncogene-induced senescence. Trends Biochem Sci 39:268–276. doi: 10.1016/j.tibs.2014.04.004 PubMedPubMedCentralCrossRefGoogle Scholar
  125. 125.
    Nussinov R, Jang H (2014) Dynamic multiprotein assemblies shape the spatial structure of cell signaling. Prog Biophys Mol Biol 116:158–164. doi: 10.1016/j.pbiomolbio.2014.07.002 PubMedPubMedCentralCrossRefGoogle Scholar
  126. 126.
    Henis YI, Hancock JF, Prior IA (2009) Ras acylation, compartmentalization and signaling nanoclusters (review). Mol Membr Biol 26:80–92. doi: 10.1080/09687680802649582 PubMedCrossRefGoogle Scholar
  127. 127.
    Kofer-Geles M, Gottfried I, Haklai R, Elad-Zefadia G, Kloog Y, Ashery U (2009) Rasosomes spread Ras signals from plasma membrane ‘hotspots’. Biochim Biophys Acta 1793:1691–1702. doi: 10.1016/j.bbamcr.2009.08.004 PubMedCrossRefGoogle Scholar
  128. 128.
    Nussinov R, Jang H, Tsai CJ (2015) Oligomerization and nanocluster organization render specificity. Biol Rev Camb Philos Soc 90:587–598. doi: 10.1111/brv.12124 PubMedCrossRefGoogle Scholar
  129. 129.
    Chen M, Peters A, Huang T, Nan X (2016) Ras dimer formation as a new signaling mechanism and potential cancer therapeutic target. Mini Rev Med Chem 16:391–403PubMedPubMedCentralCrossRefGoogle Scholar
  130. 130.
    Uversky VN (2013) The most important thing is the tail: multitudinous functionalities of intrinsically disordered protein termini. FEBS Lett 587:1891–1901. doi: 10.1016/j.febslet.2013.04.042 PubMedCrossRefGoogle Scholar
  131. 131.
    Zimmermann G, Papke B, Ismail S, Vartak N, Chandra A, Hoffmann M, Hahn SA, Triola G, Wittinghofer A, Bastiaens PI et al (2013) Small molecule inhibition of the KRAS-PDEdelta interaction impairs oncogenic KRAS signalling. Nature 497:638–642. doi: 10.1038/nature12205 PubMedCrossRefGoogle Scholar
  132. 132.
    Murarka S, Martin-Gago P, Schultz-Fademrecht C, Al Saabi A, Baumann M, Fansa EK, Ismail S, Nussbaumer P, Wittinghofer A, Waldmann H (2016) Development of pyridazinone chemotypes targeting the PDEdelta prenyl binding site. Chemistry. doi: 10.1002/chem.201603222 PubMedGoogle Scholar
  133. 133.
    Papke B, Murarka S, Vogel HA, Martin-Gago P, Kovacevic M, Truxius DC, Fansa EK, Ismail S, Zimmermann G, Heinelt K et al (2016) Identification of pyrazolopyridazinones as PDEdelta inhibitors. Nat Commun 7:11360. doi: 10.1038/ncomms11360 PubMedPubMedCentralCrossRefGoogle Scholar
  134. 134.
    Pang X, Liu M (2016) Defeat mutant KRAS with synthetic lethality. Small GTPases. doi: 10.1080/21541248.2016.1213783 PubMedGoogle Scholar
  135. 135.
    Ma B, Tsai CJ, Haliloglu T, Nussinov R (2011) Dynamic allostery: linkers are not merely flexible. Structure 19:907–917. doi: 10.1016/j.str.2011.06.002 PubMedCrossRefGoogle Scholar
  136. 136.
    Liu J, Nussinov R (2013) The role of allostery in the ubiquitin–proteasome system. Crit Rev Biochem Mol Biol 48:89–97. doi: 10.3109/10409238.2012.742856 PubMedCrossRefGoogle Scholar
  137. 137.
    Frauenfelder H, Sligar SG, Wolynes PG (1991) The energy landscapes and motions of proteins. Science 254:1598–1603PubMedCrossRefGoogle Scholar
  138. 138.
    Ma B, Kumar S, Tsai CJ, Nussinov R (1999) Folding funnels and binding mechanisms. Protein Eng 12:713–720PubMedCrossRefGoogle Scholar
  139. 139.
    Tsai CJ, Kumar S, Ma B, Nussinov R (1999) Folding funnels, binding funnels, and protein function. Protein Sci 8:1181–1190. doi: 10.1110/ps.8.6.1181 PubMedPubMedCentralCrossRefGoogle Scholar
  140. 140.
    Kumar S, Ma B, Tsai CJ, Sinha N, Nussinov R (2000) Folding and binding cascades: dynamic landscapes and population shifts. Protein Sci 9:10–19. doi: 10.1110/ps.9.1.10 PubMedPubMedCentralCrossRefGoogle Scholar
  141. 141.
    Salvi N, Abyzov A, Blackledge M (2016) Multi-timescale dynamics in intrinsically disordered proteins from NMR relaxation and molecular simulation. J Phys Chem Lett 7:2483–2489. doi: 10.1021/acs.jpclett.6b00885 PubMedCrossRefGoogle Scholar
  142. 142.
    Rauscher S, Gapsys V, Gajda MJ, Zweckstetter M, de Groot BL, Grubmuller H (2015) Structural ensembles of intrinsically disordered proteins depend strongly on force field: a comparison to experiment. J Chem Theory Comput 11:5513–5524. doi: 10.1021/acs.jctc.5b00736 PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Ruth Nussinov
    • 1
    • 2
    Email author
  • Hyunbum Jang
    • 1
  • Chung-Jung Tsai
    • 1
  • Tsung-Jen Liao
    • 1
    • 3
  • Shuai Li
    • 4
  • David Fushman
    • 3
  • Jian Zhang
    • 4
  1. 1.Cancer and Inflammation Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer ResearchNational Cancer Institute at FrederickFrederickUSA
  2. 2.Department of Human Molecular Genetics and Biochemistry, Sackler School of MedicineTel Aviv UniversityTel AvivIsrael
  3. 3.Department of Chemistry and Biochemistry, Center for Biomolecular Structure and OrganizationUniversity of MarylandCollege ParkUSA
  4. 4.Department of Pathophysiology, Shanghai Universities E-Institute for Chemical Biology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of EducationShanghai Jiao Tong University, School of MedicineShanghaiChina

Personalised recommendations