Cellular and Molecular Life Sciences

, Volume 74, Issue 20, pp 3841–3850 | Cite as

Collective cell migration has distinct directionality and speed dynamics

  • Yan Zhang
  • Guoqing Xu
  • Rachel M. Lee
  • Zijie Zhu
  • Jiandong Wu
  • Simon Liao
  • Gong Zhang
  • Yaohui Sun
  • Alex Mogilner
  • Wolfgang Losert
  • Tingrui Pan
  • Francis Lin
  • Zhengping Xu
  • Min Zhao
Original Article


When a constraint is removed, confluent cells migrate directionally into the available space. How the migration directionality and speed increase are initiated at the leading edge and propagate into neighboring cells are not well understood. Using a quantitative visualization technique—Particle Image Velocimetry (PIV)—we revealed that migration directionality and speed had strikingly different dynamics. Migration directionality increases as a wave propagating from the leading edge into the cell sheet, while the increase in cell migration speed is maintained only at the leading edge. The overall directionality steadily increases with time as cells migrate into the cell-free space, but migration speed remains largely the same. A particle-based compass (PBC) model suggests cellular interplay (which depends on cell–cell distance) and migration speed are sufficient to capture the dynamics of migration directionality revealed experimentally. Extracellular Ca2+ regulated both migration speed and directionality, but in a significantly different way, suggested by the correlation between directionality and speed only in some dynamic ranges. Our experimental and modeling results reveal distinct directionality and speed dynamics in collective migration, and these factors can be regulated by extracellular Ca2+ through cellular interplay. Quantitative visualization using PIV and our PBC model thus provide a powerful approach to dissect the mechanisms of collective cell migration.


Wound healing Cell contractility PDMS Corneal epithelial cell Cell communication Blebbistatin 



Particle-based compass




Particle image velocimetry



This work was supported by NIH EY019101(to. M.Z.) and AFOSR FA9550-16-1-0052 (to M.Z.). This study was supported in part by the Major Program Grant of Zhejiang Provincial Science and Technology (No. 2012C03007-6) (to Z.X.), NIH GM 68952 (to A.M.), an Unrestricted Grant from Research to Prevent Blindness, Inc. (to M.Z.), and an NEI core grant (to M.Z.). We thank Dr. James Jester (UC Irvine), Dr. Vijay Krishna Raghunathan and Dr. Christopher J. Murphy (UC Davis) for the generous gift of the hTCEpi cell, Brian Reid (UC Davis) for English editing and proofreading. Y.Z. is supported by a fellowship from the China Scholarship Council. F. Lin thanks the support from a Collaborative Research Travel Grant provided by the Burroughs Wellcome Fund.

Compliance with ethical standards

Conflict of interest

The authors declare no conflict of interest.

Supplementary material

18_2017_2553_MOESM1_ESM.docx (2.8 mb)
Supplementary material 1 (DOCX 2837 kb)
18_2017_2553_MOESM2_ESM.avi (1.1 mb)
Supplementary material 2 (AVI 1083 kb)
18_2017_2553_MOESM3_ESM.avi (3.1 mb)
Supplementary material 3 (AVI 3132 kb)
18_2017_2553_MOESM4_ESM.avi (4.7 mb)
Supplementary material 4 (AVI 4822 kb)
18_2017_2553_MOESM5_ESM.avi (6.3 mb)
Supplementary material 5 (AVI 6494 kb)
18_2017_2553_MOESM6_ESM.avi (1.2 mb)
Supplementary material 6 (AVI 1214 kb)
18_2017_2553_MOESM7_ESM.avi (1.4 mb)
Supplementary material 7 (AVI 1418 kb)
18_2017_2553_MOESM8_ESM.avi (2.5 mb)
Supplementary material 8 (AVI 2549 kb)


  1. 1.
    Devreotes P, Janetopoulos C (2003) Eukaryotic chemotaxis: distinctions between directional sensing and polarization. J Biol Chem 278(23):20445–20448. doi: 10.1074/jbc.R300010200 CrossRefPubMedGoogle Scholar
  2. 2.
    Servant G, Weiner OD, Herzmark P, Balla T, Sedat JW, Bourne HR (2000) Polarization of chemoattractant receptor signaling during neutrophil chemotaxis. Science 287(5455):1037–1040CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Parente CA, Blacklock BJ, Froehlich WM, Murphy DB, Devreotes PN (1998) G protein signaling events are activated at the leading edge of chemotactic cells. Cell 95(1):81–91. doi: 10.1016/S0092-8674(00)81784-5 CrossRefGoogle Scholar
  4. 4.
    Ridley AJ, Schwartz MA, Burridge K, Firtel RA, Ginsberg MH, Borisy G, Parsons JT, Horwitz AR (2003) Cell migration: integrating signals from front to back. Science 302(5651):1704–1709. doi: 10.1126/science.1092053 CrossRefPubMedGoogle Scholar
  5. 5.
    Bültmann BD, Gruler H (1983) Analysis of the directed and nondirected movement of human granulocytes: influence of temperature and ECHO 9 virus on N-formylmethionylleucylphenylalanine-induced chemokinesis and chemotaxis. J Cell Biol 96(6):1708–1716CrossRefPubMedGoogle Scholar
  6. 6.
    Gruler H, Franke K (1990) Automatic control and directed cell movement. Novel approach for understanding chemotaxis, galvanotaxis, galvanotropism. J Biosci 45(11–12):1241–1249Google Scholar
  7. 7.
    Gruler H, Nuccitelli R (2000) The galvanotaxis response mechanism of keratinocytes can be modeled as a proportional controller. Cell Biochem Biophys 33(1):33–51. doi: 10.1385/CBB:33:1:33 CrossRefPubMedGoogle Scholar
  8. 8.
    Friedl P, Gilmour D (2009) Collective cell migration in morphogenesis, regeneration and cancer. Nat Rev Mol Cell Biol 10(7):445–457CrossRefPubMedGoogle Scholar
  9. 9.
    Li L, Hartley R, Reiss B, Sun Y, Pu J, Wu D, Lin F, Hoang T, Yamada S, Jiang J, Zhao M (2012) E-cadherin plays an essential role in collective directional migration of large epithelial sheets. Cell Mol Life Sci 69(16):2779–2789. doi: 10.1007/s00018-012-0951-3 CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Zhao M, Agius-Fernandez A, Forrester JV, McCaig CD (1996) Directed migration of corneal epithelial sheets in physiological electric fields. Invest Ophthalmol Vis Sci 37(13):2548–2558PubMedGoogle Scholar
  11. 11.
    Theveneau E, Marchant L, Kuriyama S, Gull M, Moepps B, Parsons M, Mayor R (2010) Collective chemotaxis requires contact-dependent cell polarity. Dev Cell 19(1):39–53CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Mayor R, Carmona-Fontaine C (2010) Keeping in touch with contact inhibition of locomotion. Trends Cell Biol 20(6):319–328. doi: 10.1016/j.tcb.2010.03.005 CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Mayor R, Etienne-Manneville S (2016) The front and rear of collective cell migration. Nat Rev Mol Cell Biol 17(2):97–109. doi: 10.1038/nrm.2015.14 CrossRefPubMedGoogle Scholar
  14. 14.
    Serra-Picamal X, Conte V, Vincent R, Anon E, Tambe DT, Bazellieres E, Butler JP, Fredberg JJ, Trepat X (2012) Mechanical waves during tissue expansion. Nat Phys 8(8):628–634CrossRefGoogle Scholar
  15. 15.
    Das T, Safferling K, Rausch S, Grabe N, Boehm H, Spatz JP (2015) A molecular mechanotransduction pathway regulates collective migration of epithelial cells. Nat Cell Biol 17(3):276–287CrossRefPubMedGoogle Scholar
  16. 16.
    Peglion F, Llense F, Etienne-Manneville S (2014) Adherens junction treadmilling during collective migration. Nat Cell Biol 16(7):639–651CrossRefPubMedGoogle Scholar
  17. 17.
    Cheng G, Youssef BB, Markenscoff P, Zygourakis K (2006) Cell population dynamics modulate the rates of tissue growth processes. Biophys J 90(3):713–724CrossRefPubMedGoogle Scholar
  18. 18.
    Weijer CJ (2004) Dictyostelium morphogenesis. Curr Opin Genet Dev 14(4):392–398CrossRefPubMedGoogle Scholar
  19. 19.
    Das AM, Eggermont AM, ten Hagen TL (2015) A ring barrier-based migration assay to assess cell migration in vitro. Nat Protoc 10(6):904–915. doi: 10.1038/nprot.2015.056 CrossRefPubMedGoogle Scholar
  20. 20.
    Etienne-Manneville S, Hall A (2001) Integrin-mediated activation of Cdc42 controls cell polarity in migrating astrocytes through PKCzeta. Cell 106(4):489–498CrossRefPubMedGoogle Scholar
  21. 21.
    Etienne-Manneville S, Hall A (2003) Cdc42 regulates GSK-3beta and adenomatous polyposis coli to control cell polarity. Nature 421(6924):753–756. doi: 10.1038/nature01423 CrossRefPubMedGoogle Scholar
  22. 22.
    Raftopoulou M, Etienne-Manneville S, Self A, Nicholls S, Hall A (2004) Regulation of cell migration by the C2 domain of the tumor suppressor PTEN. Science 303(5661):1179–1181. doi: 10.1126/science.1092089 CrossRefPubMedGoogle Scholar
  23. 23.
    Klarlund JK (2012) Dual modes of motility at the leading edge of migrating epithelial cell sheets. Proc Natl Acad Sci USA 109(39):15799–15804. doi: 10.1073/pnas.1210992109 CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Zaritsky A, Kaplan D, Hecht I, Natan S, Wolf L, Gov NS, Ben-Jacob E, Tsarfaty I (2014) Propagating waves of directionality and coordination orchestrate collective cell migration. PLoS Comput Biol 10(7):e1003747CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Klarlund JK, Block ER (2011) Free edges in epithelia as cues for motility. Cell Adhes Migr 5(2):106–110CrossRefGoogle Scholar
  26. 26.
    Block ER, Tolino MA, Lozano JS, Lathrop KL, Sullenberger RS, Mazie AR, Klarlund JK (2010) Free edges in epithelial cell sheets stimulate epidermal growth factor receptor signaling. Mol Biol Cell 21(13):2172–2181CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Chepizhko O, Giampietro C, Mastrapasqua E, Nourazar M, Ascagni M, Sugni M, Fascio U, Leggio L, Malinverno C, Scita G, Santucci S, Alava MJ, Zapperi S, La Porta CA (2016) Bursts of activity in collective cell migration. Proc Natl Acad Sci USA 113(41):11408–11413. doi: 10.1073/pnas.1600503113 CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Milde F, Franco D, Ferrari A, Kurtcuoglu V, Poulikakos D, Koumoutsakos P (2012) Cell image velocimetry (CIV): boosting the automated quantification of cell migration in wound healing assays. Integr Biol 4(11):1437–1447. doi: 10.1039/c2ib20113e CrossRefGoogle Scholar
  29. 29.
    Poujade M, Grasland-Mongrain E, Hertzog A, Jouanneau J, Chavrier P, Ladoux B, Buguin A, Silberzan P (2007) Collective migration of an epithelial monolayer in response to a model wound. Proc Natl Acad Sci USA 104(41):15988–15993. doi: 10.1073/pnas.0705062104 CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Petitjean L, Reffay M, Graslandmongrain E, Poujade M, Ladoux B, Buguin A, Silberzan P (2010) Velocity fields in a collectively migrating epithelium. Biophys J 98(9):1790–1800CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Grzesiak JJ, Pierschbacher MD (1995) Shifts in the concentrations of magnesium and calcium in early porcine and rat wound fluids activate the cell migratory response. J Clin Investig 95(1):227CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Lagunowich LA, Grunwald GB (1989) Expression of calcium-dependent cell adhesion during ocular development: a biochemical, histochemical and functional analysis. Dev Biol 135(1):158–171CrossRefPubMedGoogle Scholar
  33. 33.
    Gipson IK (1992) Adhesive mechanisms of the corneal epithelium. Acta Ophthalmol 70(S202):13–17CrossRefGoogle Scholar
  34. 34.
    Lawson MA, Maxfield FR (1995) Ca2+-and calcineurin-dependent recycling of an integrin to the front of migrating neutrophils. Nature 377(6544):75–79CrossRefPubMedGoogle Scholar
  35. 35.
    Lee RM, Kelley DH, Nordstrom KN, Ouellette NT, Losert W (2013) Quantifying stretching and rearrangement in epithelial sheet migration. New J Phys 15(2):025036CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Liang CC, Park AY, Guan JL (2007) In vitro scratch assay: a convenient and inexpensive method for analysis of cell migration in vitro. Nat Protoc 2(2):329–333. doi: 10.1038/nprot.2007.30 CrossRefPubMedGoogle Scholar
  37. 37.
    Kolega J (2006) The role of myosin II motor activity in distributing myosin asymmetrically and coupling protrusive activity to cell translocation. Mol Biol Cell 17(10):4435–4445CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Mironmendoza M, Graham E, Kivanany PB, Quiring J, Petroll WM (2015) The role of thrombin and cell contractility in regulating clustering and collective migration of corneal fibroblasts in different ECM environments. Invest Ophthalmol Vis Sci 56(3):2079–2090CrossRefGoogle Scholar
  39. 39.
    Ng MR, Besser A, Danuser G, Brugge JS (2012) Substrate stiffness regulates cadherin-dependent collective migration through myosin-II contractility. J Cell Biol 199(3):545–563. doi: 10.1083/jcb.201207148 CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Raffel M, Willert CE, Kompenhans J (2013) Particle image velocimetry: a practical guide. Springer, New YorkGoogle Scholar
  41. 41.
    Vitorino P, Meyer T (2008) Modular control of endothelial sheet migration. Genes Dev 22(23):3268–3281CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Nnetu KD, Knorr M, Kas JA, Zink M (2012) The impact of jamming on boundaries of collectively moving weak-interacting cells. New J Phys 14(11):115012CrossRefGoogle Scholar
  43. 43.
    Sepulveda N, Petitjean L, Cochet O, Graslandmongrain E, Silberzan P, Hakim V (2013) Collective cell motion in an epithelial sheet can be quantitatively described by a stochastic interacting particle model. PLoS Comput Biol 9(3):e1002944CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Masuzzo P, Van Troys M, Ampe C, Martens L (2016) Taking aim at moving targets in computational cell migration. Trends Cell Biol 26(2):88–110CrossRefPubMedGoogle Scholar
  45. 45.
    Vitorino P, Hammer MM, Kim J, Meyer T (2011) A steering model of endothelial sheet migration recapitulates monolayer integrity and directed collective migration. Mol Cell Biol 31(2):342–350CrossRefPubMedGoogle Scholar
  46. 46.
    Szabo B, Szollosi GJ, Gonci B, Juranyi Z, Selmeczi D, Vicsek T (2006) Phase transition in the collective migration of tissue cells: experiment and model. Phys Rev E 74(6):061908CrossRefGoogle Scholar
  47. 47.
    Kusch J, Liakopoulos D, Barral Y (2003) Spindle asymmetry: a compass for the cell. Trends Cell Biol 13(11):562–569. doi: 10.1016/j.tcb.2003.09.008 CrossRefPubMedGoogle Scholar
  48. 48.
    Vladar EK, Antic D, Axelrod JD (2009) Planar cell polarity signaling: the developing cell’s compass. Cold Spring Harbor Perspect Biol. doi: 10.1101/cshperspect.a002964 Google Scholar
  49. 49.
    Rickert P, Weiner OD, Wang F, Bourne HR, Servant G (2000) Leukocytes navigate by compass: roles of PI3Kγ and its lipid products. Trends Cell Biol 10(11):466–473. doi: 10.1016/S0962-8924(00)01841-9 CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Arrieumerlou C, Meyer T (2005) A local coupling model and compass parameter for eukaryotic chemotaxis. Dev Cell 8(2):215–227. doi: 10.1016/j.devcel.2004.12.007 CrossRefPubMedGoogle Scholar
  51. 51.
    Tsai F-C, Seki A, Yang H, Hayer A, Carrasco S, Malmersjö S, Meyer T (2014) A polarized Ca2+, diacylglycerol and STIM1 signalling system regulates directed cell migration. Nat Cell Biol 16(2):133–144. doi: 10.1038/ncb2906 CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Brundage RA, Fogarty KE, Tuft RA, Fay FS (1991) Calcium gradients underlying polarization and chemotaxis of eosinophils. Science 254(5032):703–706CrossRefPubMedGoogle Scholar
  53. 53.
    Lee J, Ishihara A, Oxford G, Johnson B, Jacobson K (1999) Regulation of cell movement is mediated by stretch-activated calcium channels. Nature 400(6742):382–386CrossRefPubMedGoogle Scholar
  54. 54.
    Hahn K, DeBiasio R, Taylor DL (1992) Patterns of elevated free calcium and calmodulin activation in living cells. Nature 359(6397):736–738CrossRefPubMedGoogle Scholar
  55. 55.
    Janmey PA (1994) Phosphoinositides and calcium as regulators of cellular actin assembly and disassembly. Annu Rev Physiol 56(1):169–191CrossRefPubMedGoogle Scholar
  56. 56.
    Mandeville J, Ghosh RN, Maxfield FR (1995) Intracellular calcium levels correlate with speed and persistent forward motion in migrating neutrophils. Biophys J 68(4):1207CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Tran POT, Hinman LE, Unger GM, Sammak PJ (1999) A wound-induced [Ca2+]i increase and its transcriptional activation of immediate early genes is important in the regulation of motility. Exp Cell Res 246(2):319–326CrossRefPubMedGoogle Scholar
  58. 58.
    Kohn EC, Alessandro R, Spoonster J, Wersto RP, Liotta LA (1995) Angiogenesis: role of calcium-mediated signal transduction. Proc Natl Acad Sci 92(5):1307–1311CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Department of DermatologyUniversity of CaliforniaDavisUSA
  2. 2.Institute of Environmental MedicineZhejiang University School of MedicineHangzhouChina
  3. 3.Micro-Nano Innovations (MiNI) Laboratory, Department of Biomedical EngineeringUniversity of CaliforniaDavisUSA
  4. 4.Department of Physics and AstronomyUniversity of ManitobaWinnipegCanada
  5. 5.Department of Applied Computer ScienceUniversity of WinnipegWinnipegCanada
  6. 6.Department of PhysicsUniversity of MarylandCollege ParkUSA
  7. 7.Seven Oaks Hospital Wellness InstituteWinnipegCanada
  8. 8.The First Affiliated Hospital of Henan University of Science and TechnologyLuoyangChina
  9. 9.Courant Institute and Department of BiologyNew York UniversityNew YorkUSA
  10. 10.Department of Ophthalmology and Vision ScienceUniversity of CaliforniaDavisUSA

Personalised recommendations