Advertisement

Cellular and Molecular Life Sciences

, Volume 74, Issue 20, pp 3789–3808 | Cite as

Critical effects of epigenetic regulation in pulmonary arterial hypertension

  • Dewei Chen
  • Wenxiang Gao
  • Shouxian Wang
  • Bing NiEmail author
  • Yuqi GaoEmail author
Review

Abstract

Pulmonary arterial hypertension (PAH) is characterized by persistent pulmonary vasoconstriction and pulmonary vascular remodeling. The pathogenic mechanisms of PAH remain to be fully clarified and measures of effective prevention are lacking. Recent studies; however, have indicated that epigenetic processes may exert pivotal influences on PAH pathogenesis. In this review, we summarize the latest research findings regarding epigenetic regulation in PAH, focusing on the roles of non-coding RNAs, histone modifications, ATP-dependent chromatin remodeling and DNA methylation, and discuss the potential of epigenetic-based therapies for PAH.

Keywords

Epigenetic Pulmonary arterial hypertension miRNAs lncRNAs HDACs PASMCs PAECs 

Notes

Acknowledgements

This work was supported by Natural Science Foundation of China (Nos. 81501626, 81471814, J1310001).

Compliance with ethical standards

Conflict of interest

The authors have declared that no conflict of interest exists.

References

  1. 1.
    Simonneau G, Gatzoulis MA, Adatia I, Celermajer D, Denton C, Ghofrani A, Gomez Sanchez MA, Krishna Kumar R, Landzberg M, Machado RF, Olschewski H, Robbins IM, Souza R (2013) Updated clinical classification of pulmonary hypertension. J Am Coll Cardiol 62(25 Suppl):D34–D41. doi: 10.1016/j.jacc.2013.10.029 PubMedCrossRefGoogle Scholar
  2. 2.
    Rabinovitch M (2012) Molecular pathogenesis of pulmonary arterial hypertension. J Clin Investig 122(12):4306–4313. doi: 10.1172/JCI60658 PubMedPubMedCentralCrossRefGoogle Scholar
  3. 3.
    Schermuly RT, Ghofrani HA, Wilkins MR, Grimminger F (2011) Mechanisms of disease: pulmonary arterial hypertension. Nat Rev Cardiol 8(8):443–455. doi: 10.1038/nrcardio.2011.87 PubMedCrossRefGoogle Scholar
  4. 4.
    Aaronson PI, Robertson TP, Ward JP (2002) Endothelium-derived mediators and hypoxic pulmonary vasoconstriction. Respir Physiol Neurobiol 132(1):107–120PubMedCrossRefGoogle Scholar
  5. 5.
    Vaillancourt M, Ruffenach G, Meloche J, Bonnet S (2015) Adaptation and remodelling of the pulmonary circulation in pulmonary hypertension. Can J Cardiol 31(4):407–415. doi: 10.1016/j.cjca.2014.10.023 PubMedCrossRefGoogle Scholar
  6. 6.
    Hassoun PM, Mouthon L, Barbera JA, Eddahibi S, Flores SC, Grimminger F, Jones PL, Maitland ML, Michelakis ED, Morrell NW, Newman JH, Rabinovitch M, Schermuly R, Stenmark KR, Voelkel NF, Yuan JX, Humbert M (2009) Inflammation, growth factors, and pulmonary vascular remodeling. J Am Coll Cardiol 54(1 Suppl):S10–S19. doi: 10.1016/j.jacc.2009.04.006 PubMedCrossRefGoogle Scholar
  7. 7.
    Stenmark KR, Fagan KA, Frid MG (2006) Hypoxia-induced pulmonary vascular remodeling: cellular and molecular mechanisms. Circ Res 99(7):675–691. doi: 10.1161/01.RES.0000243584.45145.3f PubMedCrossRefGoogle Scholar
  8. 8.
    Mishra A, Mohammad G, Norboo T, Newman JH, Pasha MA (2015) Lungs at high-altitude: genomic insights into hypoxic responses. J Appl Physiol 119(1):1–15. doi: 10.1152/japplphysiol.00513.2014 PubMedCrossRefGoogle Scholar
  9. 9.
    Bird A (2007) Perceptions of epigenetics. Nature 447(7143):396–398. doi: 10.1038/nature05913 PubMedCrossRefGoogle Scholar
  10. 10.
    Gamen E, Seeger W, Pullamsetti SS (2016) The emerging role of epigenetics in pulmonary hypertension. Eur Respir J 48(3):903–917. doi: 10.1183/13993003.01714-2015 PubMedCrossRefGoogle Scholar
  11. 11.
    Chelladurai P, Seeger W, Pullamsetti SS (2016) Epigenetic mechanisms in pulmonary arterial hypertension: the need for global perspectives. Eur Respir Rev 25(140):135–140. doi: 10.1183/16000617.0036-2016 PubMedCrossRefGoogle Scholar
  12. 12.
    Djebali S, Davis CA, Merkel A, Dobin A, Lassmann T, Mortazavi A, Tanzer A, Lagarde J, Lin W, Schlesinger F, Xue C, Marinov GK, Khatun J, Williams BA, Zaleski C, Rozowsky J, Roder M, Kokocinski F, Abdelhamid RF, Alioto T, Antoshechkin I, Baer MT, Bar NS, Batut P, Bell K, Bell I, Chakrabortty S, Chen X, Chrast J, Curado J, Derrien T, Drenkow J, Dumais E, Dumais J, Duttagupta R, Falconnet E, Fastuca M, Fejes-Toth K, Ferreira P, Foissac S, Fullwood MJ, Gao H, Gonzalez D, Gordon A, Gunawardena H, Howald C, Jha S, Johnson R, Kapranov P, King B, Kingswood C, Luo OJ, Park E, Persaud K, Preall JB, Ribeca P, Risk B, Robyr D, Sammeth M, Schaffer L, See LH, Shahab A, Skancke J, Suzuki AM, Takahashi H, Tilgner H, Trout D, Walters N, Wang H, Wrobel J, Yu Y, Ruan X, Hayashizaki Y, Harrow J, Gerstein M, Hubbard T, Reymond A, Antonarakis SE, Hannon G, Giddings MC, Ruan Y, Wold B, Carninci P, Guigo R, Gingeras TR (2012) Landscape of transcription in human cells. Nature 489(7414):101–108. doi: 10.1038/nature11233 PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    Cech TR, Steitz JA (2014) The noncoding RNA revolution-trashing old rules to forge new ones. Cell 157(1):77–94. doi: 10.1016/j.cell.2014.03.008 PubMedCrossRefGoogle Scholar
  14. 14.
    St Laurent G, Wahlestedt C, Kapranov P (2015) The Landscape of long noncoding RNA classification. Trends Genet 31(5):239–251. doi: 10.1016/j.tig.2015.03.007 PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Wang Z, Yao H, Lin S, Zhu X, Shen Z, Lu G, Poon WS, Xie D, Lin MC, Kung HF (2013) Transcriptional and epigenetic regulation of human microRNAs. Cancer Lett 331(1):1–10. doi: 10.1016/j.canlet.2012.12.006 PubMedCrossRefGoogle Scholar
  16. 16.
    Ambros V (2001) microRNAs: tiny regulators with great potential. Cell 107(7):823–826PubMedCrossRefGoogle Scholar
  17. 17.
    Lim LP, Lau NC, Garrett-Engele P, Grimson A, Schelter JM, Castle J, Bartel DP, Linsley PS, Johnson JM (2005) Microarray analysis shows that some microRNAs downregulate large numbers of target mRNAs. Nature 433(7027):769–773. doi: 10.1038/nature03315 PubMedCrossRefGoogle Scholar
  18. 18.
    Meloche J, Pflieger A, Vaillancourt M, Graydon C, Provencher S, Bonnet S (2014) miRNAs in PAH: biomarker, therapeutic target or both? Drug Discov Today 19(8):1264–1269. doi: 10.1016/j.drudis.2014.05.015 PubMedCrossRefGoogle Scholar
  19. 19.
    Rothman AM, Chico TJ, Lawrie A (2014) MicroRNA in pulmonary vascular disease. Progr Mol Biol Transl Sci 124:43–63. doi: 10.1016/B978-0-12-386930-2.00003-3 CrossRefGoogle Scholar
  20. 20.
    Grant JS, White K, MacLean MR, Baker AH (2013) MicroRNAs in pulmonary arterial remodeling. Cell Mol Life Sci 70(23):4479–4494. doi: 10.1007/s00018-013-1382-5 PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Caruso P, MacLean MR, Khanin R, McClure J, Soon E, Southgate M, MacDonald RA, Greig JA, Robertson KE, Masson R, Denby L, Dempsie Y, Long L, Morrell NW, Baker AH (2010) Dynamic changes in lung microRNA profiles during the development of pulmonary hypertension due to chronic hypoxia and monocrotaline. Arterioscler Thromb Vasc Biol 30(4):716–723. doi: 10.1161/ATVBAHA.109.202028 PubMedCrossRefGoogle Scholar
  22. 22.
    Potus F, Graydon C, Provencher S, Bonnet S (2014) Vascular remodeling process in pulmonary arterial hypertension, with focus on miR-204 and miR-126 (2013 Grover Conference series). Pulm Circ 4(2):175–184. doi: 10.1086/675980 PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Rhodes CJ, Wharton J, Boon RA, Roexe T, Tsang H, Wojciak-Stothard B, Chakrabarti A, Howard LS, Gibbs JS, Lawrie A, Condliffe R, Elliot CA, Kiely DG, Huson L, Ghofrani HA, Tiede H, Schermuly R, Zeiher AM, Dimmeler S, Wilkins MR (2013) Reduced microRNA-150 is associated with poor survival in pulmonary arterial hypertension. Am J Respir Crit Care Med 187(3):294–302. doi: 10.1164/rccm.201205-0839OC PubMedCrossRefGoogle Scholar
  24. 24.
    Morrell NW (2006) Pulmonary hypertension due to BMPR2 mutation: a new paradigm for tissue remodeling? Proc Am Thorac Soc 3(8):680–686. doi: 10.1513/pats.200605-118SF PubMedCrossRefGoogle Scholar
  25. 25.
    Diebold I, Hennigs JK, Miyagawa K, Li CG, Nickel NP, Kaschwich M, Cao A, Wang L, Reddy S, Chen PI, Nakahira K, Alcazar MA, Hopper RK, Ji L, Feldman BJ, Rabinovitch M (2015) BMPR2 preserves mitochondrial function and DNA during reoxygenation to promote endothelial cell survival and reverse pulmonary hypertension. Cell Metab 21(4):596–608. doi: 10.1016/j.cmet.2015.03.010 PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Li M, Vattulainen S, Aho J, Orcholski M, Rojas V, Yuan K, Helenius M, Taimen P, Myllykangas S, De Jesus Perez V, Koskenvuo JW, Alastalo TP (2014) Loss of bone morphogenetic protein receptor 2 is associated with abnormal DNA repair in pulmonary arterial hypertension. Am J Respir Cell Mol Biol 50(6):1118–1128. doi: 10.1165/rcmb.2013-0349OC PubMedCrossRefGoogle Scholar
  27. 27.
    Hopper RK, Moonen JR, Diebold I, Cao A, Rhodes CJ, Tojais NF, Hennigs JK, Gu M, Wang L, Rabinovitch M (2016) In pulmonary arterial hypertension, reduced BMPR2 promotes endothelial-to-mesenchymal transition via HMGA1 and its target slug. Circulation 133(18):1783–1794. doi: 10.1161/CIRCULATIONAHA.115.020617 PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Orriols M, Gomez-Puerto MC, Ten Dijke P (2017) BMP type II receptor as a therapeutic target in pulmonary arterial hypertension. CMLS, Cell Mol Life Sci. doi: 10.1007/s00018-017-2510-4 Google Scholar
  29. 29.
    Brock M, Trenkmann M, Gay RE, Michel BA, Gay S, Fischler M, Ulrich S, Speich R, Huber LC (2009) Interleukin-6 modulates the expression of the bone morphogenic protein receptor type II through a novel STAT3-microRNA cluster 17/92 pathway. Circ Res 104(10):1184–1191. doi: 10.1161/CIRCRESAHA.109.197491 PubMedCrossRefGoogle Scholar
  30. 30.
    Parikh VN, Jin RC, Rabello S, Gulbahce N, White K, Hale A, Cottrill KA, Shaik RS, Waxman AB, Zhang YY, Maron BA, Hartner JC, Fujiwara Y, Orkin SH, Haley KJ, Barabasi AL, Loscalzo J, Chan SY (2012) MicroRNA-21 integrates pathogenic signaling to control pulmonary hypertension: results of a network bioinformatics approach. Circulation 125(12):1520–1532. doi: 10.1161/CIRCULATIONAHA.111.060269 PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Liu Y, Liu G, Zhang H, Wang J (2016) MiRNA-199a-5p influences pulmonary artery hypertension via downregulating Smad3. Biochem Biophys Res Commun 473(4):859–866. doi: 10.1016/j.bbrc.2016.03.140 PubMedCrossRefGoogle Scholar
  32. 32.
    Wilkins SE, Abboud MI, Hancock RL, Schofield CJ (2016) Targeting protein–protein interactions in the HIF system. Chem Med Chem 11(8):773–786. doi: 10.1002/cmdc.201600012 PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Lei W, He Y, Shui X, Li G, Yan G, Zhang Y, Huang S, Chen C, Ding Y (2016) Expression and analyses of the HIF-1 pathway in the lungs of humans with pulmonary arterial hypertension. Mol Med Rep 14(5):4383–4390. doi: 10.3892/mmr.2016.5752 PubMedCrossRefGoogle Scholar
  34. 34.
    Dunham-Snary KJ, Wu D, Sykes EA, Thakrar A, Parlow LR, Mewburn JD, Parlow JL, Archer SL (2017) Hypoxic pulmonary vasoconstriction: from molecular mechanisms to medicine. Chest 151(1):181–192. doi: 10.1016/j.chest.2016.09.001 PubMedCrossRefGoogle Scholar
  35. 35.
    Fijalkowska I, Xu W, Comhair SA, Janocha AJ, Mavrakis LA, Krishnamachary B, Zhen L, Mao T, Richter A, Erzurum SC, Tuder RM (2010) Hypoxia inducible-factor1alpha regulates the metabolic shift of pulmonary hypertensive endothelial cells. Am J Pathol 176(3):1130–1138. doi: 10.2353/ajpath.2010.090832 PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    Sen A, Ren S, Lerchenmuller C, Sun J, Weiss N, Most P, Peppel K (2013) MicroRNA-138 regulates hypoxia-induced endothelial cell dysfunction by targeting S100A1. PLoS One 8(11):e78684. doi: 10.1371/journal.pone.0078684 PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    Sen A, Most P, Peppel K (2014) Induction of microRNA-138 by pro-inflammatory cytokines causes endothelial cell dysfunction. FEBS Lett 588(6):906–914. doi: 10.1016/j.febslet.2014.01.033 PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Zhou W, Zhou W, Zeng Q, Xiong J (2017) MicroRNA-138 inhibits hypoxia-induced proliferation of endothelial progenitor cells via inhibition of HIF-1alpha-mediated MAPK and AKT signaling. Exp Ther Med 13(3):1017–1024. doi: 10.3892/etm.2017.4091 PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    Rabinovitch M (2010) PPARgamma and the pathobiology of pulmonary arterial hypertension. Adv Exp Med Biol 661:447–458. doi: 10.1007/978-1-60761-500-2_29 PubMedCrossRefGoogle Scholar
  40. 40.
    Kang BY, Park KK, Green DE, Bijli KM, Searles CD, Sutliff RL, Hart CM (2013) Hypoxia mediates mutual repression between microRNA-27a and PPARgamma in the pulmonary vasculature. PLoS One 8(11):e79503. doi: 10.1371/journal.pone.0079503 PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Bi R, Bao C, Jiang L, Liu H, Yang Y, Mei J, Ding F (2015) MicroRNA-27b plays a role in pulmonary arterial hypertension by modulating peroxisome proliferator-activated receptor gamma dependent Hsp90-eNOS signaling and nitric oxide production. Biochem Biophys Res Commun 460(2):469–475. doi: 10.1016/j.bbrc.2015.03.057 PubMedCrossRefGoogle Scholar
  42. 42.
    Bertero T, Lu Y, Annis S, Hale A, Bhat B, Saggar R, Saggar R, Wallace WD, Ross DJ, Vargas SO, Graham BB, Kumar R, Black SM, Fratz S, Fineman JR, West JD, Haley KJ, Waxman AB, Chau BN, Cottrill KA, Chan SY (2014) Systems-level regulation of microRNA networks by miR-130/301 promotes pulmonary hypertension. J Clin Investig 124(8):3514–3528. doi: 10.1172/JCI74773 PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Wang S, Aurora AB, Johnson BA, Qi X, McAnally J, Hill JA, Richardson JA, Bassel-Duby R, Olson EN (2008) The endothelial-specific microRNA miR-126 governs vascular integrity and angiogenesis. Dev Cell 15(2):261–271. doi: 10.1016/j.devcel.2008.07.002 PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    Bockmeyer CL, Maegel L, Janciauskiene S, Rische J, Lehmann U, Maus UA, Nickel N, Haverich A, Hoeper MM, Golpon HA, Kreipe H, Laenger F, Jonigk D (2012) Plexiform vasculopathy of severe pulmonary arterial hypertension and microRNA expression. J Heart Lung Transpl 31(7):764–772. doi: 10.1016/j.healun.2012.03.010 CrossRefGoogle Scholar
  45. 45.
    Kim J, Kang Y, Kojima Y, Lighthouse JK, Hu X, Aldred MA, McLean DL, Park H, Comhair SA, Greif DM, Erzurum SC, Chun HJ (2013) An endothelial apelin-FGF link mediated by miR-424 and miR-503 is disrupted in pulmonary arterial hypertension. Nat Med 19(1):74–82. doi: 10.1038/nm.3040 PubMedCrossRefGoogle Scholar
  46. 46.
    Bertero T, Cottrill K, Krauszman A, Lu Y, Annis S, Hale A, Bhat B, Waxman AB, Chau BN, Kuebler WM, Chan SY (2015) The microRNA-130/301 family controls vasoconstriction in pulmonary hypertension. J Biol Chem 290(4):2069–2085. doi: 10.1074/jbc.M114.617845 PubMedCrossRefGoogle Scholar
  47. 47.
    Owens GK (1995) Regulation of differentiation of vascular smooth muscle cells. Physiol Rev 75(3):487–517PubMedGoogle Scholar
  48. 48.
    Owens GK (2007) Molecular control of vascular smooth muscle cell differentiation and phenotypic plasticity. Novartis Found Symp 283:174–191 (discussion 191–173, 238–141) PubMedCrossRefGoogle Scholar
  49. 49.
    Brock M, Samillan VJ, Trenkmann M, Schwarzwald C, Ulrich S, Gay RE, Gassmann M, Ostergaard L, Gay S, Speich R, Huber LC (2014) AntagomiR directed against miR-20a restores functional BMPR2 signalling and prevents vascular remodelling in hypoxia-induced pulmonary hypertension. Eur Heart J 35(45):3203–3211. doi: 10.1093/eurheartj/ehs060 PubMedCrossRefGoogle Scholar
  50. 50.
    Zeng Y, Pan Y, Liu H, Kang K, Wu Y, Hui G, Peng W, Ramchandran R, Raj JU, Gou D (2014) MiR-20a regulates the PRKG1 gene by targeting its coding region in pulmonary arterial smooth muscle cells. FEBS Lett 588(24):4677–4685. doi: 10.1016/j.febslet.2014.10.040 PubMedCrossRefGoogle Scholar
  51. 51.
    Zhou W, Negash S, Liu J, Raj JU (2009) Modulation of pulmonary vascular smooth muscle cell phenotype in hypoxia: role of cGMP-dependent protein kinase and myocardin. Am J Physiol Lung Cell Mol Physiol 296(5):L780–L789. doi: 10.1152/ajplung.90295.2008 PubMedPubMedCentralCrossRefGoogle Scholar
  52. 52.
    Sarkar J, Gou D, Turaka P, Viktorova E, Ramchandran R, Raj JU (2010) MicroRNA-21 plays a role in hypoxia-mediated pulmonary artery smooth muscle cell proliferation and migration. Am J Physiol Lung Cell Mol Physiol 299(6):L861–L871. doi: 10.1152/ajplung.00201.2010 PubMedPubMedCentralCrossRefGoogle Scholar
  53. 53.
    Yang S, Banerjee S, Freitas A, Cui H, Xie N, Abraham E, Liu G (2012) miR-21 regulates chronic hypoxia-induced pulmonary vascular remodeling. Am J Physiol Lung Cell Mol Physiol 302(6):L521–L529. doi: 10.1152/ajplung.00316.2011 PubMedPubMedCentralCrossRefGoogle Scholar
  54. 54.
    Chen X, Talati M, Fessel JP, Hemnes AR, Gladson S, French J, Shay S, Trammell A, Phillips JA, Hamid R, Cogan JD, Dawson EP, Womble KE, Hedges LK, Martinez EG, Wheeler LA, Loyd JE, Majka SJ, West J, Austin ED (2016) Estrogen metabolite 16alpha-hydroxyestrone exacerbates bone morphogenetic protein receptor type II-associated pulmonary arterial hypertension through microRNA-29-mediated modulation of cellular metabolism. Circulation 133(1):82–97. doi: 10.1161/CIRCULATIONAHA.115.016133 PubMedCrossRefGoogle Scholar
  55. 55.
    Lee HW, Park SH (2017) Elevated microRNA-135a is associated with pulmonary arterial hypertension in experimental mouse model. Oncotarget. doi: 10.18632/oncotarget.16011 Google Scholar
  56. 56.
    Rothman AM, Arnold ND, Pickworth JA, Iremonger J, Ciuclan L, Allen RM, Guth-Gundel S, Southwood M, Morrell NW, Thomas M, Francis SE, Rowlands DJ, Lawrie A (2016) MicroRNA-140-5p and SMURF1 regulate pulmonary arterial hypertension. J Clin Investig 126(7):2495–2508. doi: 10.1172/JCI83361 PubMedPubMedCentralCrossRefGoogle Scholar
  57. 57.
    Caruso P, Dempsie Y, Stevens HC, McDonald RA, Long L, Lu R, White K, Mair KM, McClure JD, Southwood M, Upton P, Xin M, van Rooij E, Olson EN, Morrell NW, MacLean MR, Baker AH (2012) A role for miR-145 in pulmonary arterial hypertension: evidence from mouse models and patient samples. Circ Res 111(3):290–300. doi: 10.1161/CIRCRESAHA.112.267591 PubMedCrossRefGoogle Scholar
  58. 58.
    Deng L, Blanco FJ, Stevens H, Lu R, Caudrillier A, McBride M, McClure JD, Grant J, Thomas M, Frid M, Stenmark K, White K, Seto AG, Morrell NW, Bradshaw AC, MacLean MR, Baker AH (2015) MicroRNA-143 activation regulates smooth muscle and endothelial cell crosstalk in pulmonary arterial hypertension. Circ Res 117(10):870–883. doi: 10.1161/CIRCRESAHA.115.306806 PubMedPubMedCentralCrossRefGoogle Scholar
  59. 59.
    Cordes KR, Sheehy NT, White MP, Berry EC, Morton SU, Muth AN, Lee TH, Miano JM, Ivey KN, Srivastava D (2009) miR-145 and miR-143 regulate smooth muscle cell fate and plasticity. Nature 460(7256):705–710. doi: 10.1038/nature08195 PubMedPubMedCentralGoogle Scholar
  60. 60.
    Cheng Y, Liu X, Yang J, Lin Y, Xu DZ, Lu Q, Deitch EA, Huo Y, Delphin ES, Zhang C (2009) MicroRNA-145, a novel smooth muscle cell phenotypic marker and modulator, controls vascular neointimal lesion formation. Circ Res 105(2):158–166. doi: 10.1161/CIRCRESAHA.109.197517 PubMedPubMedCentralCrossRefGoogle Scholar
  61. 61.
    Shan F, Li J, Huang QY (2014) HIF-1 alpha-induced up-regulation of miR-9 contributes to phenotypic modulation in pulmonary artery smooth muscle cells during hypoxia. J Cell Physiol 229(10):1511–1520. doi: 10.1002/jcp.24593 PubMedCrossRefGoogle Scholar
  62. 62.
    Yan L, Gao H, Li C, Han X, Qi X (2017) Effect of miR-23a on anoxia-induced phenotypic transformation of smooth muscle cells of rat pulmonary arteries and regulatory mechanism. Oncol Lett 13(1):89–98. doi: 10.3892/ol.2016.5440 PubMedGoogle Scholar
  63. 63.
    Li S, Ran Y, Zhang D, Chen J, Li S, Zhu D (2013) MicroRNA-138 plays a role in hypoxic pulmonary vascular remodelling by targeting Mst1. Biochem J 452(2):281–291. doi: 10.1042/BJ20120680 PubMedCrossRefGoogle Scholar
  64. 64.
    Gou D, Ramchandran R, Peng X, Yao L, Kang K, Sarkar J, Wang Z, Zhou G, Raj JU (2012) miR-210 has an antiapoptotic effect in pulmonary artery smooth muscle cells during hypoxia. Am J Physiol Lung Cell Mol Physiol 303(8):L682–L691. doi: 10.1152/ajplung.00344.2011 PubMedPubMedCentralCrossRefGoogle Scholar
  65. 65.
    White K, Lu Y, Annis S, Hale AE, Chau BN, Dahlman JE, Hemann C, Opotowsky AR, Vargas SO, Rosas I, Perrella MA, Osorio JC, Haley KJ, Graham BB, Kumar R, Saggar R, Saggar R, Wallace WD, Ross DJ, Khan OF, Bader A, Gochuico BR, Matar M, Polach K, Johannessen NM, Prosser HM, Anderson DG, Langer R, Zweier JL, Bindoff LA, Systrom D, Waxman AB, Jin RC, Chan SY (2015) Genetic and hypoxic alterations of the microRNA-210-ISCU1/2 axis promote iron-sulfur deficiency and pulmonary hypertension. EMBO Mol Med 7(6):695–713. doi: 10.15252/emmm.201404511 PubMedPubMedCentralCrossRefGoogle Scholar
  66. 66.
    Zeng Y, Liu H, Kang K, Wang Z, Hui G, Zhang X, Zhong J, Peng W, Ramchandran R, Raj JU, Gou D (2015) Hypoxia inducible factor-1 mediates expression of miR-322: potential role in proliferation and migration of pulmonary arterial smooth muscle cells. Sci Rep 5:12098. doi: 10.1038/srep12098 PubMedPubMedCentralCrossRefGoogle Scholar
  67. 67.
    Chen TJ, Zhou QY, Tang HY, Bozkanat M, Yuan JXJ, Raj JU, Zhou GF (2016) miR-17/20 controls prolyl hydroxylase 2 (PHD2)/hypoxia-inducible factor 1 (HIF1) to regulate pulmonary artery smooth muscle cell proliferation. J Am Heart Assoc. doi: 10.1161/JAHA.116.004510 Google Scholar
  68. 68.
    Jalali S, Ramanathan GK, Parthasarathy PT, Aljubran S, Galam L, Yunus A, Garcia S, Cox RR Jr, Lockey RF, Kolliputi N (2012) Mir-206 regulates pulmonary artery smooth muscle cell proliferation and differentiation. PLoS One 7(10):e46808. doi: 10.1371/journal.pone.0046808 PubMedPubMedCentralCrossRefGoogle Scholar
  69. 69.
    Yue J, Guan J, Wang X, Zhang L, Yang Z, Ao Q, Deng Y, Zhu P, Wang G (2013) MicroRNA-206 is involved in hypoxia-induced pulmonary hypertension through targeting of the HIF-1alpha/Fhl-1 pathway. Lab Investig J Tech Methods Pathol 93(7):748–759. doi: 10.1038/labinvest.2013.63 CrossRefGoogle Scholar
  70. 70.
    Deng B, Du J, Hu R, Wang AP, Wu WH, Hu CP, Li YJ, Li XH (2016) MicroRNA-103/107 is involved in hypoxia-induced proliferation of pulmonary arterial smooth muscle cells by targeting HIF-1 beta. Life Sci 147:117–124. doi: 10.1016/j.lfs.2016.01.043 PubMedCrossRefGoogle Scholar
  71. 71.
    Brock M, Haider TJ, Vogel J, Gassmann M, Speich R, Trenkmann M, Ulrich S, Kohler M, Huber LC (2015) The hypoxia-induced microRNA-130a controls pulmonary smooth muscle cell proliferation by directly targeting CDKN1A. Int J Biochem Cell Biol 61:129–137. doi: 10.1016/j.biocel.2015.02.002 PubMedCrossRefGoogle Scholar
  72. 72.
    Green DE, Murphy TC, Kang BY, Searles CD, Hart CM (2015) PPARgamma ligands attenuate hypoxia-induced proliferation in human pulmonary artery smooth muscle cells through modulation of microRNA-21. PLoS One 10(7):e0133391. doi: 10.1371/journal.pone.0133391 PubMedPubMedCentralCrossRefGoogle Scholar
  73. 73.
    Wang P, Xu J, Hou Z, Wang F, Song Y, Wang J, Zhu H, Jin H (2016) miRNA-34a promotes proliferation of human pulmonary artery smooth muscle cells by targeting PDGFRA. Cell Prolif 49(4):484–493. doi: 10.1111/cpr.12265 PubMedCrossRefGoogle Scholar
  74. 74.
    Sharma S, Umar S, Potus F, Iorga A, Wong G, Meriwether D, Breuils-Bonnet S, Mai D, Navab K, Ross D, Navab M, Provencher S, Fogelman AM, Bonnet S, Reddy ST, Eghbali M (2014) Apolipoprotein A–I mimetic peptide 4F rescues pulmonary hypertension by inducing microRNA-193-3p. Circulation 130(9):776–785. doi: 10.1161/CIRCULATIONAHA.114.007405 PubMedPubMedCentralCrossRefGoogle Scholar
  75. 75.
    Shi L, Kojonazarov B, Elgheznawy A, Popp R, Dahal BK, Bohm M, Pullamsetti SS, Ghofrani HA, Godecke A, Jungmann A, Katus HA, Muller OJ, Schermuly RT, Fisslthaler B, Seeger W, Fleming I (2016) miR-223-IGF-IR signalling in hypoxia- and load-induced right-ventricular failure: a novel therapeutic approach. Cardiovasc Res 111(3):184–193. doi: 10.1093/cvr/cvw065 PubMedCrossRefGoogle Scholar
  76. 76.
    Meloche J, Le Guen M, Potus F, Vinck J, Ranchoux B, Johnson I, Antigny F, Tremblay E, Breuils-Bonnet S, Perros F, Provencher S, Bonnet S (2015) miR-223 reverses experimental pulmonary arterial hypertension. Am J Physiol Cell Physiol 309(6):C363–C372. doi: 10.1152/ajpcell.00149.2015 PubMedCrossRefGoogle Scholar
  77. 77.
    Zeng Y, Zhang X, Kang K, Chen J, Wu Z, Huang J, Lu W, Chen Y, Zhang J, Wang Z, Zhai Y, Qu J, Ramchandran R, Raj JU, Wang J, Gou D (2016) MicroRNA-223 attenuates hypoxia-induced vascular remodeling by targeting RhoB/MLC2 in pulmonary arterial smooth muscle cells. Sci Rep 6:24900. doi: 10.1038/srep24900 PubMedPubMedCentralCrossRefGoogle Scholar
  78. 78.
    Guo L, Qiu Z, Wei L, Yu X, Gao X, Jiang S, Tian H, Jiang C, Zhu D (2012) The microRNA-328 regulates hypoxic pulmonary hypertension by targeting at insulin growth factor 1 receptor and L-type calcium channel-alpha1C. Hypertension 59(5):1006–1013. doi: 10.1161/HYPERTENSIONAHA.111.185413 PubMedCrossRefGoogle Scholar
  79. 79.
    Hogan PG, Chen L, Nardone J, Rao A (2003) Transcriptional regulation by calcium, calcineurin, and NFAT. Genes Dev 17(18):2205–2232. doi: 10.1101/gad.1102703 PubMedCrossRefGoogle Scholar
  80. 80.
    Bonnet S, Rochefort G, Sutendra G, Archer SL, Haromy A, Webster L, Hashimoto K, Bonnet SN, Michelakis ED (2007) The nuclear factor of activated T cells in pulmonary arterial hypertension can be therapeutically targeted. Proc Natl Acad Sci USA 104(27):11418–11423. doi: 10.1073/pnas.0610467104 PubMedPubMedCentralCrossRefGoogle Scholar
  81. 81.
    Chen R, Yan J, Liu P, Wang Z, Wang C, Zhong W, Xu L (2017) The role of nuclear factor of activated T cells in pulmonary arterial hypertension. Cell Cycle 16(6):508–514. doi: 10.1080/15384101.2017.1281485 PubMedCrossRefGoogle Scholar
  82. 82.
    Kang K, Peng X, Zhang X, Wang Y, Zhang L, Gao L, Weng T, Zhang H, Ramchandran R, Raj JU, Gou D, Liu L (2013) MicroRNA-124 suppresses the transactivation of nuclear factor of activated T cells by targeting multiple genes and inhibits the proliferation of pulmonary artery smooth muscle cells. J Biol Chem 288(35):25414–25427. doi: 10.1074/jbc.M113.460287 PubMedPubMedCentralCrossRefGoogle Scholar
  83. 83.
    Courboulin A, Paulin R, Giguere NJ, Saksouk N, Perreault T, Meloche J, Paquet ER, Biardel S, Provencher S, Cote J, Simard MJ, Bonnet S (2011) Role for miR-204 in human pulmonary arterial hypertension. J Exp Med 208(3):535–548. doi: 10.1084/jem.20101812 PubMedPubMedCentralCrossRefGoogle Scholar
  84. 84.
    Meloche J, Pflieger A, Vaillancourt M, Paulin R, Potus F, Zervopoulos S, Graydon C, Courboulin A, Breuils-Bonnet S, Tremblay E, Couture C, Michelakis ED, Provencher S, Bonnet S (2014) Role for DNA damage signaling in pulmonary arterial hypertension. Circulation 129(7):786–797. doi: 10.1161/CIRCULATIONAHA.113.006167 PubMedCrossRefGoogle Scholar
  85. 85.
    Ruffenach G, Chabot S, Tanguay VF, Courboulin A, Boucherat O, Potus F, Meloche J, Pflieger A, Breuils-Bonnet S, Nadeau V, Paradis R, Tremblay E, Girerd B, Hautefort A, Montani D, Fadel E, Dorfmuller P, Humbert M, Perros F, Paulin R, Provencher S, Bonnet S (2016) Role for runt-related transcription factor 2 in proliferative and calcified vascular lesions in pulmonary arterial hypertension. Am J Respir Crit Care Med 194(10):1273–1285. doi: 10.1164/rccm.201512-2380OC PubMedCrossRefGoogle Scholar
  86. 86.
    Li SS, Ran YJ, Zhang DD, Li SZ, Zhu D (2014) MicroRNA-190 regulates hypoxic pulmonary vasoconstriction by targeting a voltage-gated K(+) channel in arterial smooth muscle cells. J Cell Biochem 115(6):1196–1205. doi: 10.1002/jcb.24771 PubMedCrossRefGoogle Scholar
  87. 87.
    Zhang WF, Xiong YW, Zhu TT, Xiong AZ, Bao HH, Cheng XS (2017) MicroRNA let-7g inhibited hypoxia-induced proliferation of PASMCs via G0/G1 cell cycle arrest by targeting c-myc. Life Sci 170:9–15. doi: 10.1016/j.lfs.2016.11.020 PubMedCrossRefGoogle Scholar
  88. 88.
    Wang R, Ding X, Zhou S, Li M, Sun L, Xu X, Fei G (2016) Microrna-26b attenuates monocrotaline-induced pulmonary vascular remodeling via targeting connective tissue growth factor (CTGF) and cyclin D1 (CCND1). Oncotarget 7(45):72746–72757. doi: 10.18632/oncotarget.10125 PubMedPubMedCentralGoogle Scholar
  89. 89.
    Pullamsetti SS, Doebele C, Fischer A, Savai R, Kojonazarov B, Dahal BK, Ghofrani HA, Weissmann N, Grimminger F, Bonauer A, Seeger W, Zeiher AM, Dimmeler S, Schermuly RT (2012) Inhibition of microRNA-17 improves lung and heart function in experimental pulmonary hypertension. Am J Respir Crit Care Med 185(4):409–419. doi: 10.1164/rccm.201106-1093OC PubMedCrossRefGoogle Scholar
  90. 90.
    Lu Z, Li S, Zhao S, Fa X (2016) Upregulated miR-17 regulates hypoxia-mediated human pulmonary artery smooth muscle cell proliferation and apoptosis by targeting mitofusin 2. Med Sci Monit Int Med J Exp Clin Res 22:3301–3308Google Scholar
  91. 91.
    Stenmark KR, Yeager ME, El Kasmi KC, Nozik-Grayck E, Gerasimovskaya EV, Li M, Riddle SR, Frid MG (2013) The adventitia: essential regulator of vascular wall structure and function. Annu Rev Physiol 75:23–47. doi: 10.1146/annurev-physiol-030212-183802 PubMedCrossRefGoogle Scholar
  92. 92.
    Short M, Nemenoff RA, Zawada WM, Stenmark KR, Das M (2004) Hypoxia induces differentiation of pulmonary artery adventitial fibroblasts into myofibroblasts. Am J Physiol Cell Physiol 286(2):C416–C425. doi: 10.1152/ajpcell.00169.2003 PubMedCrossRefGoogle Scholar
  93. 93.
    Wang D, Zhang H, Li M, Frid MG, Flockton AR, McKeon BA, Yeager ME, Fini MA, Morrell NW, Pullamsetti SS, Velegala S, Seeger W, McKinsey TA, Sucharov CC, Stenmark KR (2014) MicroRNA-124 controls the proliferative, migratory, and inflammatory phenotype of pulmonary vascular fibroblasts. Circ Res 114(1):67–78. doi: 10.1161/CIRCRESAHA.114.301633 PubMedCrossRefGoogle Scholar
  94. 94.
    Marques AC, Ponting CP (2014) Intergenic lncRNAs and the evolution of gene expression. Curr Opin Genet Dev 27:48–53. doi: 10.1016/j.gde.2014.03.009 PubMedCrossRefGoogle Scholar
  95. 95.
    Gaiti F, Fernandez-Valverde SL, Nakanishi N, Calcino AD, Yanai I, Tanurdzic M, Degnan BM (2015) Dynamic and widespread lncRNA expression in a sponge and the origin of animal complexity. Mol Biol Evol 32(9):2367–2382. doi: 10.1093/molbev/msv117 PubMedPubMedCentralCrossRefGoogle Scholar
  96. 96.
    Mercer TR, Dinger ME, Mattick JS (2009) Long non-coding RNAs: insights into functions. Nat Rev Genet 10(3):155–159. doi: 10.1038/nrg2521 PubMedCrossRefGoogle Scholar
  97. 97.
    Li L, Song X (2014) In vivo functions of long non-coding RNAs. Hereditas 36(3):228–236PubMedGoogle Scholar
  98. 98.
    Fang Y, Fullwood MJ (2016) Roles, functions, and mechanisms of long non-coding RNAs in cancer. Genom Proteom Bioinf 14(1):42–54. doi: 10.1016/j.gpb.2015.09.006 CrossRefGoogle Scholar
  99. 99.
    Wang X, Yan C, Xu X, Dong L, Su H, Hu Y, Zhang R, Ying K (2016) Long noncoding RNA expression profiles of hypoxic pulmonary hypertension rat model. Gene 579(1):23–28. doi: 10.1016/j.gene.2015.12.044 PubMedCrossRefGoogle Scholar
  100. 100.
    Michalik KM, You X, Manavski Y, Doddaballapur A, Zornig M, Braun T, John D, Ponomareva Y, Chen W, Uchida S, Boon RA, Dimmeler S (2014) Long noncoding RNA MALAT1 regulates endothelial cell function and vessel growth. Circ Res 114(9):1389–1397. doi: 10.1161/CIRCRESAHA.114.303265 PubMedCrossRefGoogle Scholar
  101. 101.
    Zhuo Y, Zeng Q, Zhang P, Li G, Xie Q, Cheng Y (2017) Functional polymorphism of lncRNA MALAT1 contributes to pulmonary arterial hypertension susceptibility in Chinese people. Clin Chem Lab Med 55(1):38–46. doi: 10.1515/cclm-2016-0056 PubMedCrossRefGoogle Scholar
  102. 102.
    Leisegang MS, Fork C, Josipovic I, Richter F, Preussner J, Hu J, Miller MJ, Epah JN, Hofmann P, Gunther S, Moll F, Valasarajan C, Heidler J, Ponomareva Y, Freiman TM, Maegdefessel L, Plate KH, Mittelbronn M, Uchida S, Kunne C, Stellos K, Schermuly RT, Weissmann N, Devraj K, Wittig I, Boon RA, Dimmeler S, Pullamsetti SS, Looso M, Miller FJ, Brandes RP (2017) Long noncoding RNA MANTIS facilitates endothelial angiogenic function. Circulation. doi: 10.1161/CIRCULATIONAHA.116.026991 PubMedPubMedCentralGoogle Scholar
  103. 103.
    Wu G, Cai J, Han Y, Chen J, Huang ZP, Chen C, Cai Y, Huang H, Yang Y, Liu Y, Xu Z, He D, Zhang X, Hu X, Pinello L, Zhong D, He F, Yuan GC, Wang DZ, Zeng C (2014) LincRNA-p21 regulates neointima formation, vascular smooth muscle cell proliferation, apoptosis, and atherosclerosis by enhancing p53 activity. Circulation 130(17):1452–1465. doi: 10.1161/CIRCULATIONAHA.114.011675 PubMedPubMedCentralCrossRefGoogle Scholar
  104. 104.
    Zhou WQ, Wang P, Shao QP, Wang J (2016) Lipopolysaccharide promotes pulmonary fibrosis in acute respiratory distress syndrome (ARDS) via lincRNA-p21 induced inhibition of Thy-1 expression. Mol Cell Biochem 419(1–2):19–28. doi: 10.1007/s11010-016-2745-7 PubMedCrossRefGoogle Scholar
  105. 105.
    Taguchi A, Yanagisawa K, Tanaka M, Cao K, Matsuyama Y, Goto H, Takahashi T (2008) Identification of hypoxia-inducible factor-1 alpha as a novel target for miR-17-92 microRNA cluster. Can Res 68(14):5540–5545. doi: 10.1158/0008-5472.CAN-07-6460 CrossRefGoogle Scholar
  106. 106.
    Stevens HC, Deng L, Grant JS, Pinel K, Thomas M, Morrell NW, MacLean MR, Baker AH, Denby L (2016) Regulation and function of miR-214 in pulmonary arterial hypertension. Pulm Circ 6(1):109–117. doi: 10.1086/685079 PubMedPubMedCentralCrossRefGoogle Scholar
  107. 107.
    Kim J, Hwangbo C, Hu X, Kang Y, Papangeli I, Mehrotra D, Park H, Ju H, McLean DL, Comhair SA, Erzurum SC, Chun HJ (2015) Restoration of impaired endothelial myocyte enhancer factor 2 function rescues pulmonary arterial hypertension. Circulation 131(2):190–199. doi: 10.1161/CIRCULATIONAHA.114.013339 PubMedCrossRefGoogle Scholar
  108. 108.
    Teif VB, Rippe K (2009) Predicting nucleosome positions on the DNA: combining intrinsic sequence preferences and remodeler activities. Nucleic Acids Res 37(17):5641–5655. doi: 10.1093/nar/gkp610 PubMedPubMedCentralCrossRefGoogle Scholar
  109. 109.
    Marino-Ramirez L, Kann MG, Shoemaker BA, Landsman D (2005) Histone structure and nucleosome stability. Expert Rev Proteom 2(5):719–729. doi: 10.1586/14789450.2.5.719 CrossRefGoogle Scholar
  110. 110.
    Strahl BD, Allis CD (2000) The language of covalent histone modifications. Nature 403(6765):41–45. doi: 10.1038/47412 PubMedCrossRefGoogle Scholar
  111. 111.
    Gregoretti IV, Lee YM, Goodson HV (2004) Molecular evolution of the histone deacetylase family: functional implications of phylogenetic analysis. J Mol Biol 338(1):17–31. doi: 10.1016/j.jmb.2004.02.006 PubMedCrossRefGoogle Scholar
  112. 112.
    Krogan NJ, Dover J, Khorrami S, Greenblatt JF, Schneider J, Johnston M, Shilatifard A (2002) COMPASS, a histone H3 (Lysine 4) methyltransferase required for telomeric silencing of gene expression. J Biol Chem 277(13):10753–10755. doi: 10.1074/jbc.C200023200 PubMedCrossRefGoogle Scholar
  113. 113.
    Strahl BD, Grant PA, Briggs SD, Sun ZW, Bone JR, Caldwell JA, Mollah S, Cook RG, Shabanowitz J, Hunt DF, Allis CD (2002) Set2 is a nucleosomal histone H3-selective methyltransferase that mediates transcriptional repression. Mol Cell Biol 22(5):1298–1306PubMedPubMedCentralCrossRefGoogle Scholar
  114. 114.
    Kuzmichev A, Nishioka K, Erdjument-Bromage H, Tempst P, Reinberg D (2002) Histone methyltransferase activity associated with a human multiprotein complex containing the Enhancer of Zeste protein. Genes Dev 16(22):2893–2905. doi: 10.1101/gad.1035902 PubMedPubMedCentralCrossRefGoogle Scholar
  115. 115.
    Rea S, Eisenhaber F, O’Carroll D, Strahl BD, Sun ZW, Schmid M, Opravil S, Mechtler K, Ponting CP, Allis CD, Jenuwein T (2000) Regulation of chromatin structure by site-specific histone H3 methyltransferases. Nature 406(6796):593–599. doi: 10.1038/35020506 PubMedCrossRefGoogle Scholar
  116. 116.
    Schotta G, Lachner M, Sarma K, Ebert A, Sengupta R, Reuter G, Reinberg D, Jenuwein T (2004) A silencing pathway to induce H3-K9 and H4-K20 trimethylation at constitutive heterochromatin. Genes Dev 18(11):1251–1262. doi: 10.1101/gad.300704 PubMedPubMedCentralCrossRefGoogle Scholar
  117. 117.
    Song N, Liu J, An S, Nishino T, Hishikawa Y, Koji T (2011) Immunohistochemical analysis of histone H3 modifications in germ cells during mouse spermatogenesis. Acta Histochem Cytochem 44(4):183–190. doi: 10.1267/ahc.11027 PubMedPubMedCentralCrossRefGoogle Scholar
  118. 118.
    Xu XF, Lv Y, Gu WZ, Tang LL, Wei JK, Zhang LY, Du LZ (2013) Epigenetics of hypoxic pulmonary arterial hypertension following intrauterine growth retardation rat: epigenetics in PAH following IUGR. Respir Res 14:20. doi: 10.1186/1465-9921-14-20 PubMedPubMedCentralCrossRefGoogle Scholar
  119. 119.
    Merkwirth C, Jovaisaite V, Durieux J, Matilainen O, Jordan SD, Quiros PM, Steffen KK, Williams EG, Mouchiroud L, Tronnes SU, Murillo V, Wolff SC, Shaw RJ, Auwerx J, Dillin A (2016) Two conserved histone demethylases regulate mitochondrial stress-induced longevity. Cell 165(5):1209–1223. doi: 10.1016/j.cell.2016.04.012 PubMedPubMedCentralCrossRefGoogle Scholar
  120. 120.
    Tian Y, Garcia G, Bian Q, Steffen KK, Joe L, Wolff S, Meyer BJ, Dillin A (2016) Mitochondrial stress induces chromatin reorganization to promote longevity and UPR(mt). Cell 165(5):1197–1208. doi: 10.1016/j.cell.2016.04.011 PubMedPubMedCentralCrossRefGoogle Scholar
  121. 121.
    Cavasin MA, Demos-Davies K, Horn TR, Walker LA, Lemon DD, Birdsey N, Weiser-Evans MC, Harral J, Irwin DC, Anwar A, Yeager ME, Li M, Watson PA, Nemenoff RA, Buttrick PM, Stenmark KR, McKinsey TA (2012) Selective class I histone deacetylase inhibition suppresses hypoxia-induced cardiopulmonary remodeling through an antiproliferative mechanism. Circ Res 110(5):739–748. doi: 10.1161/CIRCRESAHA.111.258426 PubMedPubMedCentralCrossRefGoogle Scholar
  122. 122.
    Galletti M, Cantoni S, Zambelli F, Valente S, Palazzini M, Manes A, Pasquinelli G, Mai A, Galie N, Ventura C (2014) Dissecting histone deacetylase role in pulmonary arterial smooth muscle cell proliferation and migration. Biochem Pharmacol 91(2):181–190. doi: 10.1016/j.bcp.2014.07.011 PubMedCrossRefGoogle Scholar
  123. 123.
    Zhao L, Chen CN, Hajji N, Oliver E, Cotroneo E, Wharton J, Wang D, Li M, McKinsey TA, Stenmark KR, Wilkins MR (2012) Histone deacetylation inhibition in pulmonary hypertension: therapeutic potential of valproic acid and suberoylanilide hydroxamic acid. Circulation 126(4):455–467. doi: 10.1161/CIRCULATIONAHA.112.103176 PubMedPubMedCentralCrossRefGoogle Scholar
  124. 124.
    Li M, Riddle SR, Frid MG, El Kasmi KC, McKinsey TA, Sokol RJ, Strassheim D, Meyrick B, Yeager ME, Flockton AR, McKeon BA, Lemon DD, Horn TR, Anwar A, Barajas C, Stenmark KR (2011) Emergence of fibroblasts with a proinflammatory epigenetically altered phenotype in severe hypoxic pulmonary hypertension. Journal of immunology 187(5):2711–2722. doi: 10.4049/jimmunol.1100479 CrossRefGoogle Scholar
  125. 125.
    Yang Q, Sun M, Ramchandran R, Raj JU (2015) IGF-1 signaling in neonatal hypoxia-induced pulmonary hypertension: role of epigenetic regulation. Vascul Pharmacol 73:20–31. doi: 10.1016/j.vph.2015.04.005 PubMedPubMedCentralCrossRefGoogle Scholar
  126. 126.
    Chen F, Li X, Aquadro E, Haigh S, Zhou J, Stepp DW, Weintraub NL, Barman SA, Fulton DJ (2016) Inhibition of histone deacetylase reduces transcription of NADPH oxidases and ROS production and ameliorates pulmonary arterial hypertension. Free Radical Biol Med 99:167–178. doi: 10.1016/j.freeradbiomed.2016.08.003 CrossRefGoogle Scholar
  127. 127.
    Nozik-Grayck E, Woods C, Stearman RS, Venkataraman S, Ferguson BS, Swain K, Bowler RP, Geraci MW, Ihida-Stansbury K, Stenmark KR, McKinsey TA, Domann FE (2016) Histone deacetylation contributes to low extracellular superoxide dismutase expression in human idiopathic pulmonary arterial hypertension. Am J Physiol Lung Cell Mol Physiol 311(1):L124–L134. doi: 10.1152/ajplung.00263.2015 PubMedPubMedCentralCrossRefGoogle Scholar
  128. 128.
    Yang Q, Lu Z, Singh D, Raj JU (2012) BIX-01294 treatment blocks cell proliferation, migration and contractility in ovine foetal pulmonary arterial smooth muscle cells. Cell Prolif 45(4):335–344. doi: 10.1111/j.1365-2184.2012.00828.x PubMedPubMedCentralCrossRefGoogle Scholar
  129. 129.
    Chen D, Yang Y, Cheng X, Fang F, Xu G, Yuan Z, Xia J, Kong H, Xie W, Wang H, Fang M, Gao Y, Xu Y (2015) Megakaryocytic leukemia 1 directs a histone H3 lysine 4 methyltransferase complex to regulate hypoxic pulmonary hypertension. Hypertension 65(4):821–833. doi: 10.1161/HYPERTENSIONAHA.114.04585 PubMedCrossRefGoogle Scholar
  130. 130.
    Yang Y, Cheng X, Tian W, Zhou B, Wu X, Xu H, Fang F, Fang M, Xu Y (2014) MRTF-A steers an epigenetic complex to activate endothelin-induced pro-inflammatory transcription in vascular smooth muscle cells. Nucleic Acids Res 42(16):10460–10472. doi: 10.1093/nar/gku776 PubMedPubMedCentralCrossRefGoogle Scholar
  131. 131.
    Weng X, Yu L, Liang P, Li L, Dai X, Zhou B, Wu X, Xu H, Fang M, Chen Q, Xu Y (2015) A crosstalk between chromatin remodeling and histone H3K4 methyltransferase complexes in endothelial cells regulates angiotensin II-induced cardiac hypertrophy. J Mol Cell Cardiol 82:48–58. doi: 10.1016/j.yjmcc.2015.02.010 PubMedCrossRefGoogle Scholar
  132. 132.
    Lan B, Hayama E, Kawaguchi N, Furutani Y, Nakanishi T (2015) Therapeutic efficacy of valproic acid in a combined monocrotaline and chronic hypoxia rat model of severe pulmonary hypertension. PLoS One 10(1):e0117211. doi: 10.1371/journal.pone.0117211 PubMedPubMedCentralCrossRefGoogle Scholar
  133. 133.
    Saha A, Wittmeyer J, Cairns BR (2006) Chromatin remodelling: the industrial revolution of DNA around histones. Nat Rev Mol Cell Biol 7(6):437–447. doi: 10.1038/nrm1945 PubMedCrossRefGoogle Scholar
  134. 134.
    Chen D, Fang F, Yang Y, Chen J, Xu G, Xu Y, Gao Y (2013) Brahma-related gene 1 (Brg1) epigenetically regulates CAM activation during hypoxic pulmonary hypertension. Cardiovasc Res 100(3):363–373. doi: 10.1093/cvr/cvt214 PubMedCrossRefGoogle Scholar
  135. 135.
    Yang Y, Chen D, Yuan Z, Fang F, Cheng X, Xia J, Fang M, Xu Y, Gao Y (2013) Megakaryocytic leukemia 1 (MKL1) ties the epigenetic machinery to hypoxia-induced transactivation of endothelin-1. Nucleic Acids Res 41(12):6005–6017. doi: 10.1093/nar/gkt311 PubMedPubMedCentralCrossRefGoogle Scholar
  136. 136.
    Strobl JS (1990) A role for DNA methylation in vertebrate gene expression? Mol Endocrinol 4(2):181–183. doi: 10.1210/mend-4-2-181 PubMedCrossRefGoogle Scholar
  137. 137.
    Ehrlich M, Gama-Sosa MA, Huang LH, Midgett RM, Kuo KC, McCune RA, Gehrke C (1982) Amount and distribution of 5-methylcytosine in human DNA from different types of tissues of cells. Nucleic Acids Res 10(8):2709–2721PubMedPubMedCentralCrossRefGoogle Scholar
  138. 138.
    Archer SL, Marsboom G, Kim GH, Zhang HJ, Toth PT, Svensson EC, Dyck JR, Gomberg-Maitland M, Thebaud B, Husain AN, Cipriani N, Rehman J (2010) Epigenetic attenuation of mitochondrial superoxide dismutase 2 in pulmonary arterial hypertension: a basis for excessive cell proliferation and a new therapeutic target. Circulation 121(24):2661–2671. doi: 10.1161/CIRCULATIONAHA.109.916098 PubMedPubMedCentralCrossRefGoogle Scholar
  139. 139.
    Ryan J, Dasgupta A, Huston J, Chen KH, Archer SL (2015) Mitochondrial dynamics in pulmonary arterial hypertension. J Mol Med 93(3):229–242. doi: 10.1007/s00109-015-1263-5 PubMedPubMedCentralCrossRefGoogle Scholar
  140. 140.
    Archer SL (2016) Acquired mitochondrial abnormalities, including epigenetic inhibition of superoxide dismutase 2, in pulmonary hypertension and cancer: therapeutic implications. Adv Exp Med Biol 903:29–53. doi: 10.1007/978-1-4899-7678-9_3 PubMedCrossRefGoogle Scholar
  141. 141.
    Jiang JX, Aitken KJ, Sotiropoulos C, Kirwan T, Panchal T, Zhang N, Pu S, Wodak S, Tolg C, Bagli DJ (2013) Phenotypic switching induced by damaged matrix is associated with DNA methyltransferase 3A (DNMT3A) activity and nuclear localization in smooth muscle cells (SMC). PLoS One 8(8):e69089. doi: 10.1371/journal.pone.0069089 PubMedPubMedCentralCrossRefGoogle Scholar
  142. 142.
    Zhang L, Tang L, Wei J, Lao L, Gu W, Hu Q, Lv Y, Fu L, Du L (2014) Extrauterine growth restriction on pulmonary vascular endothelial dysfunction in adult male rats: the role of epigenetic mechanisms. J Hypertens 32(11):2188–2198. doi: 10.1097/HJH.0000000000000309 (discussion 2198) PubMedPubMedCentralCrossRefGoogle Scholar
  143. 143.
    Pousada G, Baloira A, Valverde D (2016) Methylation analysis of the BMPR2 gene promoter region in patients with pulmonary arterial hypertension. Arch Bronconeumol 52(6):293–298. doi: 10.1016/j.arbres.2015.10.006 PubMedCrossRefGoogle Scholar
  144. 144.
    Thompson AA, Lawrie A (2017) Targeting vascular remodeling to treat pulmonary arterial hypertension. Trends Mol Med 23(1):31–45. doi: 10.1016/j.molmed.2016.11.005 PubMedCrossRefGoogle Scholar
  145. 145.
    Barrier M, Meloche J, Jacob MH, Courboulin A, Provencher S, Bonnet S (2012) Today’s and tomorrow’s imaging and circulating biomarkers for pulmonary arterial hypertension. Cell Mol Life Sci 69(17):2805–2831. doi: 10.1007/s00018-012-0950-4 PubMedCrossRefGoogle Scholar
  146. 146.
    Perri F, Longo F, Giuliano M, Sabbatino F, Favia G, Ionna F, Addeo R, Scarpati GDV, Di Lorenzo G, Pisconti S (2017) Epigenetic control of gene expression: potential implications for cancer treatment. Crit Rev Oncol Hemat 111:166–172. doi: 10.1016/j.critrevonc.2017.01.020 CrossRefGoogle Scholar
  147. 147.
    Zhou WQ, Feng XY, Han H, Guo SC, Wang GD (2016) Synergistic effects of combined treatment with histone deacetylase inhibitor suberoylanilide hydroxamic acid and TRAIL on human breast cancer cells. Sci Rep. doi: 10.1038/Srep28004 Google Scholar
  148. 148.
    Kim SM, Park KC, Jeon JY, Kim BW, Kim HK, Chang HJ, Choi SH, Park CS, Chang HS (2015) Potential anti-cancer effect of N-hydroxy-7-(2-naphthylthio) heptanomide (HNHA), a novel histone deacetylase inhibitor, for the treatment of thyroid cancer. BMC Cancer. doi: 10.1186/S12885-015-1982-6 Google Scholar
  149. 149.
    Wang J, Saren G, Jiang H (2015) HDAC inhibition: a novel therapeutic target for attenuating pulmonary hypertension by regulating Tregs. Int J Cardiol 198:176–177. doi: 10.1016/j.ijcard.2015.06.172 PubMedCrossRefGoogle Scholar
  150. 150.
    Gaowa S, Zhou W, Yu L, Zhou X, Liao K, Yang K, Lu Z, Jiang H, Chen X (2014) Effect of Th17 and Treg axis disorder on outcomes of pulmonary arterial hypertension in connective tissue diseases. Mediators Inflamm 2014:247372. doi: 10.1155/2014/247372 PubMedPubMedCentralCrossRefGoogle Scholar
  151. 151.
    Tamosiuniene R, Tian W, Dhillon G, Wang L, Sung YK, Gera L, Patterson AJ, Agrawal R, Rabinovitch M, Ambler K, Long CS, Voelkel NF, Nicolls MR (2011) Regulatory T cells limit vascular endothelial injury and prevent pulmonary hypertension. Circ Res 109(8):867–879. doi: 10.1161/CIRCRESAHA.110.236927 PubMedPubMedCentralCrossRefGoogle Scholar
  152. 152.
    Chu Y, Xiangli X, Xiao W (2015) Regulatory T cells protect against hypoxia-induced pulmonary arterial hypertension in mice. Mol Med Rep 11(4):3181–3187. doi: 10.3892/mmr.2014.3106 PubMedCrossRefGoogle Scholar
  153. 153.
    Bogaard HJ, Mizuno S, Hussaini AA, Toldo S, Abbate A, Kraskauskas D, Kasper M, Natarajan R, Voelkel NF (2011) Suppression of histone deacetylases worsens right ventricular dysfunction after pulmonary artery banding in rats. Am J Respir Crit Care Med 183(10):1402–1410. doi: 10.1164/rccm.201007-1106OC PubMedCrossRefGoogle Scholar
  154. 154.
    Bouchie A (2013) First microRNA mimic enters clinic. Nat Biotechnol 31(7):577. doi: 10.1038/nbt0713-577 PubMedCrossRefGoogle Scholar
  155. 155.
    Kamo Y, Ichikawa T, Miyaaki H, Uchida S, Yamaguchi T, Shibata H, Honda T, Taura N, Isomoto H, Takeshima F, Nakao K (2015) Significance of miRNA-122 in chronic hepatitis C patients with serotype 1 on interferon therapy. Hepatol Res 45(1):88–96. doi: 10.1111/hepr.12317 PubMedCrossRefGoogle Scholar
  156. 156.
    Bienertova-Vasku J, Novak J, Vasku A (2015) MicroRNAs in pulmonary arterial hypertension: pathogenesis, diagnosis and treatment. J Am Soc Hypertens 9(3):221–234. doi: 10.1016/j.jash.2014.12.011 PubMedCrossRefGoogle Scholar
  157. 157.
    Meloche J, Paulin R, Provencher S, Bonnet S (2015) Therapeutic potential of microRNA modulation in pulmonary arterial hypertension. Curr Vasc Pharmacol 13(3):331–340PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing 2017

Authors and Affiliations

  1. 1.Department of Pathophysiology and High Altitude Pathology, College of High Altitude Military MedicineThird Military Medical UniversityChongqingPeople’s Republic of China
  2. 2.Institute of Medicine and Hygienic Equipment for High Altitude Region, College of High Altitude Military MedicineThird Military Medical UniversityChongqingPeople’s Republic of China
  3. 3.Key Laboratory of High Altitude Medicine of PLA, College of High Altitude Military MedicineThird Military Medical UniversityChongqingPeople’s Republic of China

Personalised recommendations