Cellular and Molecular Life Sciences

, Volume 74, Issue 20, pp 3687–3696 | Cite as

The role of the ATP2C1 gene in Hailey–Hailey disease

  • Hao DengEmail author
  • Heng Xiao


Hailey–Hailey disease (HHD) is a rare autosomal dominant acantholytic dermatosis, characterized by a chronic course of repeated and exacerbated skin lesions in friction regions. The pathogenic gene of HHD was reported to be the ATPase calcium-transporting type 2C member 1 gene (ATP2C1) located on chromosome 3q21–q24. Its function is to maintain normal intracellular concentrations of Ca2+/Mn2+ by transporting Ca2+/Mn2+ into the Golgi apparatus. ATP2C1 gene mutations are reportedly responsible for abnormal cytosolic Ca2+/Mn2+ levels and the clinical manifestations of HHD. Environmental factors and genetic modifiers may also affect the clinical variability of HHD. This article aims to critically discuss the clinical and pathological features of HHD, differential diagnoses, and genetic and functional studies of the ATP2C1 gene in HHD. Further understanding the role of the ATP2C1 gene in the pathogenesis of HHD by genetic, molecular, and animal studies may contribute to a better clinical diagnosis and provide new strategies for the treatment and prevention of HHD.


Clinical manifestation Gene function Genetics Mutation analysis Pathogenesis Animal model 



Actuator domain


Asteroid homolog 1


Adenosine triphosphate


ATPase calcium–transporting type 2C member 1

C. elegans

Caenorhabditis elegans


Darier disease


Hailey–Hailey disease




Nucleotide–binding domain


Phosphorylation domain


Premature termination codons


Pemphigus vulgaris


Sarcoplasmic/endoplasmic reticulum Ca2+–ATPase


Secretory pathway Ca2+/Mn2+–ATPase



This work was supported by grants from the National Key Research and Development Program of China (2016YFC1306604), the National Natural Science Foundation of China (81670216), the Natural Science Foundation of Hunan Province (2015JJ4088 and 2016JJ2166), the grant for the Foster Key Subject of the Third Xiangya Hospital of Central South University (Clinical Laboratory Diagnostics), and the New Xiangya Talent Project of the Third Xiangya Hospital of Central South University (20150301), China.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    Engin B, Kutlubay Z, Çelik U, Serdaroğlu S, Tüzün Y (2015) Hailey–Hailey disease: a fold (intertriginous) dermatosis. Clin Dermatol 33:452–455. doi: 10.1016/j.clindermatol.2015.04.006 CrossRefPubMedGoogle Scholar
  2. 2.
    Burge SM (1992) Hailey–Hailey disease: the clinical features, response to treatment and prognosis. Br J Dermatol 126:275–282. doi: 10.1111/j.1365-2133.1992.tb00658.x CrossRefPubMedGoogle Scholar
  3. 3.
    Wilgram GF, Caulfield JB, Lever WF (1962) An electron–microscopic study of acantholysis and dyskeratosis in Hailey and Hailey’s disease. J Invest Dermatol 39:373–381. doi: 10.1038/jid.1962.127 CrossRefPubMedGoogle Scholar
  4. 4.
    Hailey H, Hailey H (1939) Familial benign chronic pemphigus. Report of 13 cases in 4 generations of a family and report of 9 additional cases in 4 generations of a family. Arch Dermatol Syphilol 39:679–685CrossRefGoogle Scholar
  5. 5.
    Raiko L, Siljamäki E, Mahoney MG, Putaala H, Suominen E, Peltonen J, Peltonen S (2012) Hailey–Hailey disease and tight junctions: claudins 1 and 4 are regulated by ATP2C1 gene encoding Ca2+/Mn2+ ATPase SPCA1 in cultured keratinocytes. Exp Dermatol 21:586–591. doi: 10.1111/j.1600-0625.2012.01520.x CrossRefPubMedGoogle Scholar
  6. 6.
    Kellermayer R (2005) Hailey–Hailey disease as an orthodisease of PMR1 deficiency in Saccharomyces cerevisiae. FEBS Lett 579:2021–2025. doi: 10.1016/j.febslet.2005.03.003 CrossRefPubMedGoogle Scholar
  7. 7.
    Chao SC, Tsai YM, Yang MH (2002) Mutation analysis of ATP2C1 gene in Taiwanese patients with Hailey–Hailey disease. Br J Dermatol 146:595–600. doi: 10.1046/j.1365-2133.2002.04697.x CrossRefPubMedGoogle Scholar
  8. 8.
    Sudbrak R, Brown J, Dobson-Stone C, Carter S, Ramser J, White J, Healy E, Dissanayake M, Larrègue M, Perrussel M, Lehrach H, Munro CS, Strachan T, Burge S, Hovnanian A, Monaco AP (2000) Hailey–Hailey disease is caused by mutations in ATP2C1 encoding a novel Ca2+ pump. Hum Mol Genet 9:1131–1140. doi: 10.1093/hmg/9.7.1131 CrossRefPubMedGoogle Scholar
  9. 9.
    Hu Z, Bonifas JM, Beech J, Bench G, Shigihara T, Ogawa H, Ikeda S, Mauro T, Epstein EH Jr (2000) Mutations in ATP2C1, encoding a calcium pump, cause Hailey–Hailey disease. Nat Genet 24:61–65. doi: 10.1038/71701 CrossRefPubMedGoogle Scholar
  10. 10.
    Stenson PD, Mort M, Ball EV, Evans K, Hayden M, Heywood S, Hussain M, Phillips AD, Cooper DN (2017) The human gene mutation database: towards a comprehensive repository of inherited mutation data for medical research, genetic diagnosis and next-generation sequencing studies. Hum Genet 136:665–677. doi: 10.1007/s00439-017-1779-6 CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Fairclough RJ, Dode L, Vanoevelen J, Andersen JP, Missiaen L, Raeymaekers L, Wuytack F, Hovnanian A (2003) Effect of Hailey–Hailey disease mutations on the function of a new variant of human secretory pathway Ca2+/Mn2+-ATPase (hSPCA1). J Biol Chem 278:24721–24730. doi: 10.1074/jbc.M300509200 CrossRefPubMedGoogle Scholar
  12. 12.
    Wei Y, Marchi V, Wang R, Rao R (1999) An N-terminal EF hand-like motif modulates ion transport by Pmr1, the yeast Golgi Ca2+/Mn2+-ATPase. Biochemistry 38:14534–14541. doi: 10.1021/bi9911233 CrossRefPubMedGoogle Scholar
  13. 13.
    Sepúlveda MR, Vanoevelen J, Raeymaekers L, Mata AM, Wuytack F (2009) Silencing the SPCA1 (secretory pathway Ca2+-ATPase isoform 1) impairs Ca2+ homeostasis in the Golgi and disturbs neural polarity. J Neurosci 29:12174–12182. doi: 10.1523/JNEUROSCI.2014-09.2009 CrossRefPubMedGoogle Scholar
  14. 14.
    Behne MJ, Tu CL, Aronchik I, Epstein E, Bench G, Bikle DD, Pozzan T, Mauro TM (2003) Human keratinocyte ATP2C1 localizes to the Golgi and controls Golgi Ca2+ stores. J Invest Dermatol 121:688–694. doi: 10.1046/j.1523-1747.2003.12528.x CrossRefPubMedGoogle Scholar
  15. 15.
    Okunade GW, Miller ML, Azhar M, Andringa A, Sanford LP, Doetschman T, Prasad V, Shull GE (2007) Loss of the Atp2c1 secretory pathway Ca2+-ATPase (SPCA1) in mice causes Golgi stress, apoptosis, and midgestational death in homozygous embryos and squamous cell tumors in adult heterozygotes. J Biol Chem 282:26517–26527. doi: 10.1074/jbc.M703029200 CrossRefPubMedGoogle Scholar
  16. 16.
    Praitis V, Simske J, Kniss S, Mandt R, Imlay L, Feddersen C, Miller MB, Mushi J, Liszewski W, Weinstein R, Chakravorty A, Ha DG, Schacht Farrell A, Sullivan-Wilson A, Stock T (2013) The secretory pathway calcium ATPase PMR-1/SPCA1 has essential roles in cell migration during Caenorhabditis elegans embryonic development. PLoS Genet 9:e1003506. doi: 10.1371/journal.pgen.1003506 CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Amagai M, Kobayashi M, Wakabayashi K, Hakuno M, Hashiguchi A, Nishikawa T, Hata J (2001) A case of generalized Hailey–Hailey disease with fatal liver injury. Keio J Med 50:109–116. doi: 10.1016/j.jaad.2015.02.493 CrossRefPubMedGoogle Scholar
  18. 18.
    Poblete-Gutiérrez P, Wiederholt T, König A, Jugert FK, Marquardt Y, Rübben A, Merk HF, Happle R, Frank J (2004) Allelic loss underlies type 2 segmental Hailey–Hailey disease, providing molecular confirmation of a novel genetic concept. J Clin Invest 114:1467–1474. doi: 10.1172/JCI21791 CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Hwang LY, Lee JB, Richard G, Uitto JJ, Hsu S (2003) Type 1 segmental manifestation of Hailey–Hailey disease. J Am Acad Dermatol 49:712–714. doi: 10.1067/S0190-9622(03)00847-8 CrossRefPubMedGoogle Scholar
  20. 20.
    Happle R (1997) A rule concerning the segmental manifestation of autosomal dominant skin disorders. Review of clinical examples providing evidence for dichotomous types of severity. Arch Dermatol 133:1505–1509. doi: 10.1001/archderm.1997.03890480025004 CrossRefPubMedGoogle Scholar
  21. 21.
    Nanda A, Khawaja F, Al-Sabah H, Happle R (2014) Type 2 segmental Hailey–Hailey disease with systematized bilateral arrangement. Int J Dermatol 53:476–478. doi: 10.1111/j.1365-4632.2012.05586.x CrossRefPubMedGoogle Scholar
  22. 22.
    Happle R (2009) Superimposed segmental manifestation of both rare and common cutaneous disorders: a new paradigm. Actas Dermosifiliogr 100(Suppl 1):77–85. doi: 10.1016/s0001-7310(09)73171-0 CrossRefPubMedGoogle Scholar
  23. 23.
    König A, Hörster S, Vakilzadeh F, Happle R (2000) Type 2 segmental manifestation of Hailey–Hailey disease: poor therapeutic response to dermabrasion is due to severe involvement of adnexal structures. Eur J Dermatol 10:265–268PubMedGoogle Scholar
  24. 24.
    Happle R (2016) The categories of cutaneous mosaicism: a proposed classification. Am J Med Genet A 170A:452–459. doi: 10.1002/ajmg.a.37439 CrossRefPubMedGoogle Scholar
  25. 25.
    Happle R (2007) Superimposed segmental manifestation of polygenic skin disorders. J Am Acad Dermatol 57:690–699. doi: 10.1016/j.jaad.2007.06.039 CrossRefPubMedGoogle Scholar
  26. 26.
    von Felbert V, Hampl M, Talhari C, Engers R, Megahed M (2010) Squamous cell carcinoma arising from a localized vulval lesion of Hailey–Hailey disease after tacrolimus therapy. Am J Obstet Gynecol 203:e5–e7. doi: 10.1016/j.ajog.2010.06.041 CrossRefGoogle Scholar
  27. 27.
    Cockayne SE, Rassl DM, Thomas SE (2000) Squamous cell carcinoma arising in Hailey–Hailey disease of the vulva. Br J Dermatol 142:540–542. doi: 10.1046/j.1365-2133.2000.03374.x CrossRefPubMedGoogle Scholar
  28. 28.
    Holst VA, Fair KP, Wilson BB, Patterson JW (2000) Squamous cell carcinoma arising in Hailey–Hailey disease. J Am Acad Dermatol 43:368–371. doi: 10.1067/mjd.2000.100542 CrossRefPubMedGoogle Scholar
  29. 29.
    Chun SI, Whang KC, Su WP (1988) Squamous cell carcinoma arising in Hailey–Hailey disease. J Cutan Pathol 15:234–237. doi: 10.1111/j.1600-0560.1988.tb00551.x CrossRefPubMedGoogle Scholar
  30. 30.
    Wick MR (2017) Bullous, pseudobullous, & pustular dermatoses. Semin Diagn Pathol 34:250–260. doi: 10.1053/j.semdp.2016.12.001 CrossRefPubMedGoogle Scholar
  31. 31.
    Metze D, Hamm H, Schorat A, Luger T (1996) Involvement of the adherens junction-actin filament system in acantholytic dyskeratosis of Hailey–Hailey disease. A histological, ultrastructural, and histochemical study of lesional and non-lesional skin. J Cutan Pathol 23:211–222. doi: 10.1111/j.1600-0560.1996.tb01469.x CrossRefPubMedGoogle Scholar
  32. 32.
    Harada M, Hashimoto K, Fujiwara K (1994) Immunohistochemical distribution of CD44 and desmoplakin I & II in Hailey–Hailey’s disease and Darier’s disease. J Dermatol 21:389–393. doi: 10.1111/j.1346-8138.1994.tb01760.x CrossRefPubMedGoogle Scholar
  33. 33.
    Sakuntabhai A, Ruiz-Perez V, Carter S, Jacobsen N, Burge S, Monk S, Smith M, Munro CS, O’Donovan M, Craddock N, Kucherlapati R, Rees JL, Owen M, Lathrop GM, Monaco AP, Strachan T, Hovnanian A (1999) Mutations in ATP2A2, encoding a Ca2+ pump, cause Darier disease. Nat Genet 21:271–277. doi: 10.1038/6784 CrossRefPubMedGoogle Scholar
  34. 34.
    Buteică E, Burada F, Stoicescu I, Stănoiu B, Georgescu CV (2007) Darier disease and Hailey–Hailey disease. Rom J Morphol Embryol 48:423–426PubMedGoogle Scholar
  35. 35.
    Burge SM, Wilkinson JD (1992) Darier–White disease: a review of the clinical features in 163 patients. J Am Acad Dermatol 27:40–50. doi: 10.1016/0190-9622(92)70154-8 CrossRefPubMedGoogle Scholar
  36. 36.
    Sakuntabhai A, Dhitavat J, Burge S, Hovnanian A (2000) Mosaicism for ATP2A2 mutations causes segmental Darier’s disease. J Invest Dermatol 115:1144–1147. doi: 10.1046/j.1523-1747.2000.00182.x CrossRefPubMedGoogle Scholar
  37. 37.
    Fölster-Holst R, Nellen RG, Jensen JM, Poblete-Gutiérrez P, Steijlen PM, Schwarz T, Happle R, Van Geel M, Frank J (2012) Molecular genetic support for the rule of dichotomy in type 2 segmental Darier disease. Br J Dermatol 166:464–466. doi: 10.1111/j.1365-2133.2011.10593.x CrossRefPubMedGoogle Scholar
  38. 38.
    Engin B, Kutlubay Z, Erkan E, Tüzün Y (2015) Darier disease: a fold (intertriginous) dermatosis. Clin Dermatol 33:448–451. doi: 10.1016/j.clindermatol.2015.04.009 CrossRefPubMedGoogle Scholar
  39. 39.
    Takagi A, Kamijo M, Ikeda S (2016) Darier disease. J Dermatol 43:275–279. doi: 10.1111/1346-8138.13230 CrossRefPubMedGoogle Scholar
  40. 40.
    Nellen RG, Steijlen PM, van Steensel MA, Vreeburg M, European Professional Contributors, Frank J, van Geel M (2017) Mendelian disorders of cornification caused by defects in intracellular calcium pumps: mutation update and database for variants in ATP2A2 and ATP2C1 associated with Darier disease and Hailey–Hailey disease. Hum Mutat 38:343–356. doi: 10.1002/humu.23164 CrossRefPubMedGoogle Scholar
  41. 41.
    Cholera M, Chainani-Wu N (2016) Management of pemphigus vulgaris. Adv Ther 33:910–958. doi: 10.1007/s12325-016-0343-4 CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Arora S, Arora G, Ranjan P (2005) Relapsing linear acantholytic dermatosis in a four-year-old boy. Indian J Dermatol Venereol Leprol 71:351–353. doi: 10.4103/0378-6323.16789 CrossRefPubMedGoogle Scholar
  43. 43.
    Duschet P, Happle R, Schwarz T, Gschnait F (1995) Relapsing linear acantholytic dermatosis. J Am Acad Dermatol 33:920–922. doi: 10.1016/0190-9622(95)90438-7 CrossRefPubMedGoogle Scholar
  44. 44.
    Ikeda S, Welsh EA, Peluso AM, Leyden W, Duvic M, Woodley DT, Epstein EH Jr (1994) Localization of the gene whose mutations underlie Hailey–Hailey disease to chromosome 3q. Hum Mol Genet 3:1147–1150. doi: 10.1093/hmg/3.7.1147 CrossRefPubMedGoogle Scholar
  45. 45.
    Richard G, Korge BP, Wright AR, Mazzanti C, Harth W, Annicchiarico-Petruzzelli M, Compton JG, Bale SJ (1995) Hailey–Hailey disease maps to a 5 cM interval on chromosome 3q21–q24. J Invest Dermatol 105:357–360. doi: 10.1111/1523-1747.ep12320741 CrossRefPubMedGoogle Scholar
  46. 46.
    Van Baelen K, Dode L, Vanoevelen J, Callewaert G, De Smedt H, Missiaen L, Parys JB, Raeymaekers L, Wuytack F (2004) The Ca2+/Mn2+ pumps in the Golgi apparatus. Biochim Biophys Acta 1742:103–112. doi: 10.1016/j.bbamcr.2004.08.018 CrossRefPubMedGoogle Scholar
  47. 47.
    Brini M, Carafoli E (2009) Calcium pumps in health and disease. Physiol Rev 89:1341–1378. doi: 10.1152/physrev.00032.2008 CrossRefPubMedGoogle Scholar
  48. 48.
    Xiang M, Mohamalawari D, Rao R (2005) A novel isoform of the secretory pathway Ca2+, Mn2+-ATPase, hSPCA2, has unusual properties and is expressed in the brain. J Biol Chem 280:11608–11614. doi: 10.1074/jbc.M413116200 CrossRefPubMedGoogle Scholar
  49. 49.
    Gunteski-Hamblin AM, Clarke DM, Shull GE (1992) Molecular cloning and tissue distribution of alternatively spliced mRNAs encoding possible mammalian homologues of the yeast secretory pathway calcium pump. Biochemistry 31:7600–7608. doi: 10.1021/bi00148a023 CrossRefPubMedGoogle Scholar
  50. 50.
    Micaroni M, Perinetti G, Berrie CP, Mironov AA (2010) The SPCA1 Ca2+ pump and intracellular membrane trafficking. Traffic 11:1315–1333. doi: 10.1111/j.1600-0854.2010.01096.x CrossRefPubMedGoogle Scholar
  51. 51.
    Callewaert G, Parys JB, De Smedt H, Raeymaekers L, Wuytack F, Vanoevelen J, Van Baelen K, Simoni A, Rizzuto R, Missiaen L (2003) Similar Ca2+-signaling properties in keratinocytes and in COS-1 cells overexpressing the secretory-pathway Ca2+-ATPase SPCA1. Cell Calcium 34:157–162. doi: 10.1016/S0143-4160(03)00070-8 CrossRefPubMedGoogle Scholar
  52. 52.
    Ton VK, Rao R (2004) Expression of Hailey–Hailey disease mutations in yeast. J Invest Dermatol 123:1192–1194. doi: 10.1111/j.0022-202X.2004.23437.x CrossRefPubMedGoogle Scholar
  53. 53.
    Micaroni M, Giacchetti G, Plebani R, Xiao GG, Federici L (2016) ATP2C1 gene mutations in Hailey–Hailey disease and possible roles of SPCA1 isoforms in membrane trafficking. Cell Death Dis 7:e2259. doi: 10.1038/cddis.2016.147 CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Li H, Sun XK, Zhu XJ (2003) Four novel mutations in ATP2C1 found in Chinese patients with Hailey–Hailey disease. Br J Dermatol 149:471–474. doi: 10.1046/j.1365-2133.2003.05495.x CrossRefPubMedGoogle Scholar
  55. 55.
    Dhitavat J, Fairclough RJ, Hovnanian A, Burge SM (2004) Calcium pumps and keratinocytes: lessons from Darier’s disease and Hailey–Hailey disease. Br J Dermatol 150:821–828. doi: 10.1111/j.1365-2133.2004.05904.x CrossRefPubMedGoogle Scholar
  56. 56.
    Fairclough RJ, Lonie L, Van Baelen K, Haftek M, Munro CS, Burge SM, Hovnanian A (2004) Hailey–Hailey disease: identification of novel mutations in ATP2C1 and effect of missense mutation A528P on protein expression levels. J Invest Dermatol 123:67–71. doi: 10.1111/j.0022-202X.2004.22713.x CrossRefPubMedGoogle Scholar
  57. 57.
    Rácz E, Csikós M, Kárpáti S (2005) Novel mutations in the ATP2C1 gene in two patients with Hailey–Hailey disease. Clin Exp Dermatol 30:575–577. doi: 10.1111/j.1365-2230.2005.01879.x CrossRefPubMedGoogle Scholar
  58. 58.
    Matsuda M, Hamada T, Numata S, Teye K, Okazawa H, Imafuku S, Ohata C, Furumura M, Hashimoto T (2014) Mutation-dependent effects on mRNA and protein expressions in cultured keratinocytes of Hailey–Hailey disease. Exp Dermatol 23:514–516. doi: 10.1111/exd.12410 CrossRefPubMedGoogle Scholar
  59. 59.
    Hamada T, Fukuda S, Sakaguchi S, Yasumoto S, Kim SC, Hashimoto T (2008) Molecular and clinical characterization in Japanese and Korean patients with Hailey–Hailey disease: six new mutations in the ATP2C1 gene. J Dermatol Sci 51:31–36. doi: 10.1016/j.jdermsci.2008.02.003 CrossRefPubMedGoogle Scholar
  60. 60.
    Ikeda S, Shigihara T, Mayuzumi N, Yu X, Ogawa H (2001) Mutations of ATP2C1 in Japanese patients with Hailey–Hailey disease: intrafamilial and interfamilial phenotype variations and lack of correlation with mutation patterns. J Invest Dermatol 117:1654–1656. doi: 10.1046/j.0022-202x.2001.01596.x CrossRefPubMedGoogle Scholar
  61. 61.
    Dobson-Stone C, Fairclough R, Dunne E, Brown J, Dissanayake M, Munro CS, Strachan T, Burge S, Sudbrak R, Monaco AP, Hovnanian A (2002) Hailey–Hailey disease: molecular and clinical characterization of novel mutations in the ATP2C1 gene. J Invest Dermatol 118:338–343. doi: 10.1046/j.0022-202x.2001.01675.x CrossRefPubMedGoogle Scholar
  62. 62.
    Zhang HZ, Tian HQ, Du DH, Wang GJ, Yan XX, Liu H, Zhou GZ, Fu XA, Yu YX, Yu GQ, Liu HX, Zhang FR (2012) Analysis of ATP2C1 gene mutations in Chinese patients with Hailey–Hailey disease. Clin Exp Dermatol 37:190–193. doi: 10.1111/j.1365-2230.2011.04155.x CrossRefPubMedGoogle Scholar
  63. 63.
    Zhang F, Yan X, Jiang D, Tian H, Wang C, Yu L (2007) Eight novel mutations of ATP2C1 identified in 17 Chinese families with Hailey–Hailey disease. Dermatology 215:277–283. doi: 10.1159/000107620 CrossRefPubMedGoogle Scholar
  64. 64.
    Yokota K, Yasukawa K, Shimizu H (2002) Analysis of ATP2C1 gene mutation in 10 unrelated Japanese families with Hailey–Hailey disease. J Invest Dermatol 118:550–551. doi: 10.1046/j.0022-202x.2001.01686.x CrossRefPubMedGoogle Scholar
  65. 65.
    Brini M, Calì T, Ottolini D, Carafoli E (2012) Calcium pumps: why so many? Compr Physiol 2:1045–1060. doi: 10.1002/cphy.c110034 PubMedGoogle Scholar
  66. 66.
    Dang D, Rao R (2016) Calcium-ATPases: gene disorders and dysregulation in cancer. Biochim Biophys Acta 1863:1344–1350. doi: 10.1016/j.bbamcr.2015.11.016 CrossRefPubMedGoogle Scholar
  67. 67.
    Wei Y, Chen J, Rosas G, Tompkins DA, Holt PA, Rao R (2000) Phenotypic screening of mutations in Pmr1, the yeast secretory pathway Ca2+/Mn2+-ATPase, reveals residues critical for ion selectivity and transport. J Biol Chem 275:23927–23932. doi: 10.1074/jbc.M002618200 CrossRefPubMedGoogle Scholar
  68. 68.
    MacLennan DH, Rice WJ, Green NM (1997) The mechanism of Ca2+ transport by sarco(endo)plasmic reticulum Ca2+-ATPases. J Biol Chem 272:28815–28818. doi: 10.1074/jbc.272.46.28815 CrossRefPubMedGoogle Scholar
  69. 69.
    Lissandron V, Podini P, Pizzo P, Pozzan T (2010) Unique characteristics of Ca2+ homeostasis of the trans-Golgi compartment. Proc Natl Acad Sci USA 107:9198–9203. doi: 10.1073/pnas.1004702107 CrossRefPubMedPubMedCentralGoogle Scholar
  70. 70.
    Ramos-Castañeda J, Park YN, Liu M, Hauser K, Rudolph H, Shull GE, Jonkman MF, Mori K, Ikeda S, Ogawa H, Arvan P (2005) Deficiency of ATP2C1, a Golgi ion pump, induces secretory pathway defects in endoplasmic reticulum (ER)-associated degradation and sensitivity to ER stress. J Biol Chem 280:9467–9473. doi: 10.1074/jbc.M413243200 CrossRefPubMedGoogle Scholar
  71. 71.
    Zhang D, Li X, Xiao S, Huo J, Wang S, Zhou P (2012) Detection and comparison of two types of ATP2C1 gene mutations in Chinese patients with Hailey–Hailey disease. Arch Dermatol Res 304:163–170. doi: 10.1007/s00403-011-1185-1 CrossRefPubMedGoogle Scholar
  72. 72.
    Micaroni M, Malquori L (2013) Overlapping ATP2C1 and ASTE1 genes in human genome: implications for SPCA1 expression? Int J Mol Sci 14:674–683. doi: 10.3390/ijms14010674 CrossRefPubMedPubMedCentralGoogle Scholar
  73. 73.
    Cheng TS, Ho KM, Lam CW (2010) Heterogeneous mutations of the ATP2C1 gene causing Hailey–Hailey disease in Hong Kong Chinese. J Eur Acad Dermatol Venereol 24:1202–1206. doi: 10.1111/j.1468-3083.2010.03623.x CrossRefPubMedGoogle Scholar
  74. 74.
    Nemoto-Hasebe I, Akiyama M, Osawa R, Nakamura H, Shimizu H (2008) Diagnosis of Hailey–Hailey disease facilitated by DNA testing: a novel mutation in ATP2C1. Acta Derm Venereol 88:399–400. doi: 10.2340/00015555-0459 PubMedGoogle Scholar
  75. 75.
    Wang CC, Chao SC, Tsai TH (2008) Hailey–Hailey disease: a novel mutation of the ATP2C1 gene in a Taiwanese family with divergent clinical presentation. J Eur Acad Dermatol Venereol 22:1145–1146. doi: 10.1111/j.1468-3083.2007.02562.x CrossRefPubMedGoogle Scholar
  76. 76.
    van Beek N, Patsatsi A, Gupta Y, Möller S, Freitag M, Lemcke S, Recke A, Zillikens D, Schmidt E, Ibrahim S (2015) A family with atypical Hailey Hailey disease–is there more to the underlying genetics than ATP2C1? PLoS One 10:e0121253. doi: 10.1371/journal.pone.0121253 CrossRefPubMedPubMedCentralGoogle Scholar
  77. 77.
    Hennings H, Holbrook KA (1983) Calcium regulation of cell–cell contact and differentiation of epidermal cells in culture. An ultrastructural study. Exp Cell Res 143:127–142. doi: 10.1016/0014-4827(83)90115-5 CrossRefPubMedGoogle Scholar
  78. 78.
    Leinonen PT, Myllylä RM, Hägg PM, Tuukkanen J, Koivunen J, Peltonen S, Oikarinen A, Korkiamäki T, Peltonen J (2005) Keratinocytes cultured from patients with Hailey–Hailey disease and Darier disease display distinct patterns of calcium regulation. Br J Dermatol 153:113–117. doi: 10.1111/j.1365-2133.2005.06623.x CrossRefPubMedGoogle Scholar
  79. 79.
    Aronchik I, Behne MJ, Leypoldt L, Crumrine D, Epstein E, Ikeda S, Mizoguchi M, Bench G, Pozzan T, Mauro T (2003) Actin reorganization is abnormal and cellular ATP is decreased in Hailey–Hailey keratinocytes. J Invest Dermatol 121:681–687. doi: 10.1046/j.1523-1747.2003.12472.x CrossRefPubMedGoogle Scholar
  80. 80.
    Jahangir A, Ozcan C, Holmuhamedov EL, Terzic A (2001) Increased calcium vulnerability of senescent cardiac mitochondria: protective role for a mitochondrial potassium channel opener. Mech Ageing Dev 122:1073–1086. doi: 10.1016/s0047-6374(01)00242-1 CrossRefPubMedGoogle Scholar
  81. 81.
    Missiaen L, Raeymaekers L, Dode L, Vanoevelen J, Van Baelen K, Parys JB, Callewaert G, De Smedt H, Segaert S, Wuytack F (2004) SPCA1 pumps and Hailey–Hailey disease. Biochem Biophys Res Commun 322:1204–1213. doi: 10.1016/j.bbrc.2004.07.128 CrossRefPubMedGoogle Scholar
  82. 82.
    Shull GE, Miller ML, Prasad V (2011) Secretory pathway stress responses as possible mechanisms of disease involving Golgi Ca2+ pump dysfunction. Biofactors 37:150–158. doi: 10.1002/biof.141 CrossRefPubMedPubMedCentralGoogle Scholar
  83. 83.
    Btadini W, Abou Hassan OK, Saadeh D, Abbas O, Ballout F, Kibbi AG, Dbaibo G, Darwiche N, Nemer G, Kurban M (2015) Identification of several mutations in ATP2C1 in Lebanese families: insight into the pathogenesis of Hailey–Hailey disease. PLoS One 10:e0115530. doi: 10.1371/journal.pone.0115530 CrossRefPubMedPubMedCentralGoogle Scholar
  84. 84.
    Morrissy AS, Griffith M, Marra MA (2011) Extensive relationship between antisense transcription and alternative splicing in the human genome. Genome Res 21:1203–1212. doi: 10.1101/gr.113431.110 CrossRefPubMedPubMedCentralGoogle Scholar
  85. 85.
    Li K, Ramchandran R (2010) Natural antisense transcript: a concomitant engagement with protein-coding transcript. Oncotarget 1:447–452. doi: 10.18632/oncotarget.178 CrossRefPubMedPubMedCentralGoogle Scholar
  86. 86.
    García-Rodríguez N, Díaz de la Loza Mdel C, Andreson B, Monje-Casas F, Rothstein R, Wellinger RE (2012) Impaired manganese metabolism causes mitotic misregulation. J Biol Chem 287:18717–18729. doi: 10.1074/jbc.M112.358309 CrossRefPubMedPubMedCentralGoogle Scholar
  87. 87.
    Zhang D, Li X, Wang Z, Zhang Y, Guo K, Wang S, Tu C, Huo J, Xiao S (2015) Hailey–Hailey disease: investigation of a possible compensatory SERCA2 up-regulation and analysis of SPCA1, p63, and IRF6 expression. Arch Dermatol Res 307:143–149. doi: 10.1007/s00403-014-1506-2 CrossRefPubMedGoogle Scholar
  88. 88.
    Iino Y, Kano T, Adachi F, Suzuki M, Nishikawa R, Ishii N, Ohata C, Furumura M, Hamada T, Hashimoto T (2015) A case of bullous pemphigoid associated with psoriasis vulgaris showing Hailey–Hailey disease-like histopathological changes in regenerated epidermis without genomic mutation in ATP2C1 or ATP2A2 gene. J Eur Acad Dermatol Venereol 29:1646–1648. doi: 10.1111/jdv.12521 CrossRefPubMedGoogle Scholar
  89. 89.
    Shi BJ, Xiao S, Zhang Z, Lü J, Xue M, Jiang Y, Liu Y, Hao J, Diao QC (2015) The ATP2C1 gene in Hailey–Hailey disease patients: one novel deletion and one novel splicing mutation. J Eur Acad Dermatol Venereol 29:2495–2497. doi: 10.1111/jdv.12603 CrossRefPubMedGoogle Scholar
  90. 90.
    Yokota K, Sawamura D (2006) Hailey–Hailey disease with affective disorder: report of a case with novel ATP2C1 gene mutation. J Dermatol Sci 43:150–151. doi: 10.1016/j.jdermsci.2006.03.009 CrossRefPubMedGoogle Scholar
  91. 91.
    Gil JM, Weber R, Rosales CB, Rodrigues H, Sennes LU, Kalil J, Chagury A, Miziara ID (2017) Study of the association between human leukocyte antigens (HLA) and pemphigus vulgaris in Brazilian patients. Int J Dermatol 56:557–562. doi: 10.1111/ijd.13577 CrossRefPubMedGoogle Scholar
  92. 92.
    Sarig O, Bercovici S, Zoller L, Goldberg I, Indelman M, Nahum S, Israeli S, Sagiv N, Martinez de Morentin H, Katz O, Baum S, Barzilai A, Trau H, Murrell DF, Bergman R, Hertl M, Rosenberg S, Nöthen MM, Skorecki K, Schmidt E, Zillikens D, Darvasi A, Geiger D, Rosset S, Ibrahim SM, Sprecher E (2012) Population-specific association between a polymorphic variant in ST18, encoding a pro-apoptotic molecule, and pemphigus vulgaris. J Invest Dermatol 132:1798–1805. doi: 10.1038/jid.2012.46 CrossRefPubMedGoogle Scholar
  93. 93.
    Kumar V, Mattoo SK, Handa S (2013) Psychiatric morbidity in pemphigus and psoriasis: a comparative study from India. Asian J Psychiatr 6:151–156. doi: 10.1016/j.ajp.2012.10.005 CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing 2017

Authors and Affiliations

  1. 1.Center for Experimental Medicine, The Third Xiangya HospitalCentral South UniversityChangshaPeople’s Republic of China
  2. 2.Department of Neurology, The Third Xiangya HospitalCentral South UniversityChangshaPeople’s Republic of China
  3. 3.Department of Pathology, The Third Xiangya HospitalCentral South UniversityChangshaPeople’s Republic of China

Personalised recommendations