Advertisement

Cellular and Molecular Life Sciences

, Volume 74, Issue 19, pp 3509–3531 | Cite as

Stress and the nonsense-mediated RNA decay pathway

  • Alexandra E. Goetz
  • Miles Wilkinson
Review

Abstract

Cells respond to internal and external cellular stressors by activating stress-response pathways that re-establish homeostasis. If homeostasis is not achieved in a timely manner, stress pathways trigger programmed cell death (apoptosis) to preserve organism integrity. A highly conserved stress pathway is the unfolded protein response (UPR), which senses excessive amounts of unfolded proteins in the ER. While a physiologically beneficial pathway, the UPR requires tight regulation to provide a beneficial outcome and avoid deleterious consequences. Recent work has demonstrated that a conserved and highly selective RNA degradation pathway—nonsense-mediated RNA decay (NMD)—serves as a major regulator of the UPR pathway. NMD degrades mRNAs encoding UPR components to prevent UPR activation in response to innocuous ER stress. In response to strong ER stress, NMD is inhibited by the UPR to allow for a full-magnitude UPR response. Recent studies have indicated that NMD also has other stress-related functions, including promoting the timely termination of the UPR to avoid apoptosis; NMD also regulates responses to non-ER stressors, including hypoxia, amino-acid deprivation, and pathogen infection. NMD regulates stress responses in species across the phylogenetic scale, suggesting that it has conserved roles in shaping stress responses. Stress pathways are frequently constitutively activated or dysregulated in human disease, raising the possibility that “NMD therapy” may provide clinical benefit by downmodulating stress responses.

Keywords

Stress granules Autophagy Apoptosis eIF2α phosphorylation 

Notes

Acknowledgements

We thank the NIH (RO1 GM111838) for financial support. The first author was also supported by the NIH P42 Superfund Training grant (ES010337).

References

  1. 1.
    Hoozemans JJM, Scheper W (2012) Endoplasmic reticulum: the unfolded protein response is tangled in neurodegeneration. Int J Biochem Cell Biol 44:1295–1298. doi: 10.1016/j.biocel.2012.04.023 PubMedCrossRefGoogle Scholar
  2. 2.
    Giampietri C, Petrungaro S, Conti S et al (2015) Cancer microenvironment and endoplasmic reticulum stress response. Mediat Inflamm 2015:417281. doi: 10.1155/2015/417281 CrossRefGoogle Scholar
  3. 3.
    Rodvold JJ, Mahadevan NR, Zanetti M (2015) Immune modulation by ER stress and inflammation in the tumor microenvironment. Cancer Lett. doi: 10.1016/j.canlet.2015.09.009 PubMedGoogle Scholar
  4. 4.
    Hasmim M, Messai Y, Ziani L et al (2015) Critical role of tumor microenvironment in shaping NK cell functions: implication of hypoxic stress. Front Immunol 6:482. doi: 10.3389/fimmu.2015.00482 PubMedPubMedCentralCrossRefGoogle Scholar
  5. 5.
    Chan S-W (2014) The unfolded protein response in virus infections. Front Microbiol 5:518. doi: 10.3389/fmicb.2014.00518 PubMedPubMedCentralGoogle Scholar
  6. 6.
    Duwi Fanata WI, Lee SY, Lee KO (2013) The unfolded protein response in plants: a fundamental adaptive cellular response to internal and external stresses. J Proteom 93:356–368. doi: 10.1016/j.jprot.2013.04.023 CrossRefGoogle Scholar
  7. 7.
    Peccarelli M, Kebaara BW (2014) Regulation of natural mRNAs by the nonsense-mediated mRNA decay pathway. Eukaryot Cell 13:1126–1135. doi: 10.1128/EC.00090-14 PubMedPubMedCentralCrossRefGoogle Scholar
  8. 8.
    Chang Y-F, Imam JS, Wilkinson MF (2007) The nonsense-mediated decay RNA surveillance pathway. Annu Rev Biochem 76:51–74. doi: 10.1146/annurev.biochem.76.050106.093909 PubMedCrossRefGoogle Scholar
  9. 9.
    Fatscher T, Boehm V, Gehring NH (2015) Mechanism, factors, and physiological role of nonsense-mediated mRNA decay. Cell Mol Life Sci. doi: 10.1007/s00018-015-2017-9 PubMedGoogle Scholar
  10. 10.
    Mendell JT, Sharifi NA, Meyers JL et al (2004) Nonsense surveillance regulates expression of diverse classes of mammalian transcripts and mutes genomic noise. Nat Genet 36:1073–1078. doi: 10.1038/ng1429 PubMedCrossRefGoogle Scholar
  11. 11.
    Weischenfeldt J, Damgaard I, Bryder D et al (2008) NMD is essential for hematopoietic stem and progenitor cells and for eliminating by-products of programmed DNA rearrangements. Genes Dev 22:1381–1396. doi: 10.1101/gad.468808 PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    Lareau LF, Inada M, Green RE et al (2007) Unproductive splicing of SR genes associated with highly conserved and ultraconserved DNA elements. Nature 446:926–929. doi: 10.1038/nature05676 PubMedCrossRefGoogle Scholar
  13. 13.
    Ni JZ, Grate L, Donohue JP et al (2007) Ultraconserved elements are associated with homeostatic control of splicing regulators by alternative splicing and nonsense-mediated decay. Genes Dev 21:708–718. doi: 10.1101/gad.1525507.NMD-mediated PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    Hurt JA, Robertson AD, Burge CB (2013) Global analyses of UPF1 binding and function reveal expanded scope of nonsense-mediated mRNA decay. Genome Res 23:1636–1650. doi: 10.1101/gr.157354.113 PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Yepiskoposyan H, Aeschimann F, Nilsson D et al (2011) Autoregulation of the nonsense-mediated mRNA decay pathway in human cells. RNA 17:2108–2118. doi: 10.1261/rna.030247.111 PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Somers J, Pöyry T, Willis AE (2013) A perspective on mammalian upstream open reading frame function. Int J Biochem Cell Biol 45:1690–1700. doi: 10.1016/j.biocel.2013.04.020 PubMedCrossRefGoogle Scholar
  17. 17.
    Ramani AK, Nelson AC, Kapranov P et al (2009) High resolution transcriptome maps for wild-type and nonsense-mediated decay-defective Caenorhabditis elegans. Genome Biol 10:R101. doi: 10.1186/gb-2009-10-9-r101 PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    Huang L, Lou C-H, Chan W et al (2011) RNA homeostasis governed by cell type-specific and branched feedback loops acting on NMD. Mol Cell 43:950–961. doi: 10.1016/j.molcel.2011.06.031 PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    Hogg JR, Goff SP (2010) Upf1 senses 3′UTR length to potentiate mRNA decay. Cell 143:379–389. doi: 10.1016/j.cell.2010.10.005 PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Eberle AB, Stalder L, Mathys H et al (2008) Posttranscriptional gene regulation by spatial rearrangement of the 3′ untranslated region. PLoS Biol 6:e92. doi: 10.1371/journal.pbio.0060092 PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Singh G, Rebbapragada I, Lykke-Andersen J (2008) A competition between stimulators and antagonists of Upf complex recruitment governs human nonsense-mediated mRNA decay. PLoS Biol 6:e111. doi: 10.1371/journal.pbio.0060111 PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Buhler M, Steiner S, Mohn F et al (2006) EJC-independent degradation of nonsense immunoglobulin-μ mRNA depends on 3′UTR length. Nat Struct Mol Biol 13:462–464. doi: 10.1038/nsmb1081 PubMedCrossRefGoogle Scholar
  23. 23.
    Li T, Shi Y, Wang P et al (2015) Smg6/Est1 licenses embryonic stem cell differentiation via nonsense-mediated mRNA decay. EMBO J 34:1630–1647. doi: 10.15252/embj.201489947 PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    McIlwain DR, Pan Q, Reilly PT et al (2010) Smg1 is required for embryogenesis and regulates diverse genes via alternative splicing coupled to nonsense-mediated mRNA decay. Proc Natl Acad Sci USA 107:12186–12191. doi: 10.1073/pnas.1007336107 PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Medghalchi SM, Frischmeyer PA, Mendell JT et al (2001) Rent1, a trans-effector of nonsense-mediated mRNA decay, is essential for mammalian embryonic viability. Hum Mol Genet 10:99–105PubMedCrossRefGoogle Scholar
  26. 26.
    Shum EY, Jones SH, Shao A et al (2016) The antagonistic gene paralogs Upf3a and Upf3b govern nonsense-mediated RNA decay. Cell 165:382–395. doi: 10.1016/j.cell.2016.02.046 PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Hwang J, Maquat LE (2011) Nonsense-mediated mRNA decay (NMD) in animal embryogenesis: to die or not to die, that is the question. Curr Opin Genet Dev 21:422–430. doi: 10.1016/j.gde.2011.03.008 PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Lou C, Dumdie J, Goetz A et al (2016) Nonsense-mediated RNA decay influences human embryonic stem cell fate. Stem Cell Reports 6:844–857. doi: 10.1016/j.stemcr.2016.05.008 PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Lou CH, Shao A, Shum EY et al (2014) Posttranscriptional control of the stem cell and neurogenic programs by the nonsense-mediated rna decay pathway. Cell Rep 6:748–764. doi: 10.1016/j.celrep.2014.01.028 PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    Jolly LA, Homan CC, Jacob R et al (2013) The UPF3B gene, implicated in intellectual disability, autism, ADHD and childhood onset schizophrenia regulates neural progenitor cell behaviour and neuronal outgrowth. Hum Mol Genet 22:4673–4687. doi: 10.1093/hmg/ddt315 PubMedCrossRefGoogle Scholar
  31. 31.
    Metzstein MM, Krasnow MA (2006) Functions of the nonsense-mediated mRNA decay pathway in Drosophila development. PLoS Genet 2:e180. doi: 10.1371/journal.pgen.0020180 PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Wittkopp N, Huntzinger E, Weiler C et al (2009) Nonsense-mediated mRNA decay effectors are essential for zebrafish embryonic development and survival. Mol Cell Biol 29:3517–3528. doi: 10.1128/MCB.00177-09 PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Nguyen LS, Wilkinson MF, Gecz J (2014) Nonsense-mediated mRNA decay: inter-individual variability and human disease. Neurosci Biobehav Rev 46(Pt 2):175–186. doi: 10.1016/j.neubiorev.2013.10.016 PubMedCrossRefGoogle Scholar
  34. 34.
    Tarpey PS, Raymond FL, Nguyen LS et al (2007) Mutations in UPF3B, a member of the nonsense-mediated mRNA decay complex, cause syndromic and nonsyndromic mental retardation. Nat Genet 39:1127–1133. doi: 10.1038/ng2100 PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Nguyen LS, Kim H-G, Rosenfeld JA et al (2013) Contribution of copy number variants involving nonsense-mediated mRNA decay pathway genes to neuro-developmental disorders. Hum Mol Genet 22:1816–1825. doi: 10.1093/hmg/ddt035 PubMedCrossRefGoogle Scholar
  36. 36.
    Thoren LA, Nørgaard GA, Weischenfeldt J et al (2010) UPF2 is a critical regulator of liver development, function and regeneration. PLoS One 5:e11650. doi: 10.1371/journal.pone.0011650 PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    Gong C, Kim YK, Woeller CF et al (2009) SMD and NMD are competitive pathways that contribute to myogenesis: effects on PAX3 and myogenin mRNAs. Genes Dev 23:54–66. doi: 10.1101/gad.1717309 PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Huang L, Wilkinson MF (2012) Regulation of nonsense-mediated mRNA decay. Wiley Interdiscip Rev RNA 3:807–828. doi: 10.1002/wrna.1137 PubMedCrossRefGoogle Scholar
  39. 39.
    Karam R, Wengrod J, Gardner LB, Wilkinson MF (2013) Regulation of nonsense-mediated mRNA decay: implications for physiology and disease. Biochim Biophys Acta Gene Regul Mech 1829:624–633. doi: 10.1016/j.bbagrm.2013.03.002 CrossRefGoogle Scholar
  40. 40.
    Zetoune AB, Fontanière S, Magnin D et al (2008) Comparison of nonsense-mediated mRNA decay efficiency in various murine tissues. BMC Genet 9:83. doi: 10.1186/1471-2156-9-83 PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Lu J, Plank T-D, Su F et al (2016) The nonsense-mediated RNA decay pathway is disrupted in inflammatory myofibroblastic tumors. J Clin Invest 126:3058–3062. doi: 10.1172/JCI86508 PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    Hug N, Longman D, Caceres JF (2016) Mechanism and regulation of the nonsense-mediated decay pathway. Nucleic Acids Res 44:1483–1495. doi: 10.1093/nar/gkw010 PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Alonso CR, Akam M (2003) A Hox gene mutation that triggers nonsense-mediated RNA decay and affects alternative splicing during Drosophila development. Nucleic Acids Res 31:3873–3880PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    Bruno IG, Karam R, Huang L et al (2011) Identification of a microRNA that activates gene expression by repressing nonsense-mediated RNA decay. Mol Cell 42:500–510. doi: 10.1016/j.molcel.2011.04.018 PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Barberan-soler S, Lambert NJ, Zahler AM (2009) Global analysis of alternative splicing uncovers developmental regulation of nonsense-mediated decay in C. elegans. RNA 15:1652–1660. doi: 10.1261/rna.1711109.decay PubMedPubMedCentralCrossRefGoogle Scholar
  46. 46.
    Bao J, Vitting-seerup K, Waage J, Tang C (2016) UPF2-dependent nonsense-mediated mRNA decay pathway is essential for spermatogenesis by selectively eliminating longer 3′UTR transcripts. PLoS Genet 12:e1005863. doi: 10.1371/journal.pgen.1005863 PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    Fanourgakis G, Lesche M, Akpinar M, Dahl A (2016) Chromatoid body protein TDRD6 supports long 3′UTR triggered nonsense mediated mRNA decay. PLoS Genet 12:e1005857. doi: 10.1371/journal.pgen.1005857 PubMedPubMedCentralCrossRefGoogle Scholar
  48. 48.
    Cho H, Kim KM, Han S et al (2012) Staufen1-mediated mRNA decay functions in adipogenesis. Mol Cell 46:495–506. doi: 10.1016/j.molcel.2012.03.009 PubMedCrossRefGoogle Scholar
  49. 49.
    Hetz C, Martinon F, Rodriguez D, Glimcher LH (2011) The unfolded protein response: integrating stress signals through the stress sensor IRE1α. Physiol Rev 91:1219–1243. doi: 10.1152/physrev.00001.2011 PubMedCrossRefGoogle Scholar
  50. 50.
    Moore KA, Hollien J (2011) The unfolded protein response in secretory cell function. Annu Rev Genet 46:120830114430006. doi: 10.1146/annurev-genet-110711-155644 Google Scholar
  51. 51.
    Walter P, Ron D (2011) The unfolded protein response: from stress pathway to homeostatic regulation. Science 334:1081–1086. doi: 10.1126/science.1209038 PubMedCrossRefGoogle Scholar
  52. 52.
    Ron D, Walter P (2007) Signal integration in the endoplasmic reticulum unfolded protein response. Nat Rev Mol Cell Biol 8:519–529. doi: 10.1038/nrm2199 PubMedCrossRefGoogle Scholar
  53. 53.
    Ma Y, Hendershot LM (2004) The role of the unfolded protein response in tumour development: friend or foe? Nat Rev Cancer 4:966–977. doi: 10.1038/nrc1505 PubMedCrossRefGoogle Scholar
  54. 54.
    Yoshida H, Matsui T, Yamamoto A et al (2001) XBP1 mRNA is induced by ATF6 and spliced by IRE1 in response to ER stress to produce a highly active transcription factor. Cell 107:881–891PubMedCrossRefGoogle Scholar
  55. 55.
    Calfon M, Zeng H, Urano F et al (2002) IRE1 couples endoplasmic reticulum load to secretory capacity by processing the XBP-1 mRNA. Nature 415:92–96. doi: 10.1038/415092a PubMedCrossRefGoogle Scholar
  56. 56.
    Oslowski CM, Urano F (2011) Measuring ER stress and the unfolded protein response using mammalian tissue culture system. Methods Enzymol 490:71–92. doi: 10.1016/B978-0-12-385114-7.00004-0 PubMedPubMedCentralCrossRefGoogle Scholar
  57. 57.
    Yoshida K, Miki Y (2010) The cell death machinery governed by the p53 tumor suppressor in response to DNA damage. Cancer Sci 101:831–835. doi: 10.1111/j.1349-7006.2010.01488.x PubMedCrossRefGoogle Scholar
  58. 58.
    Sun T, Cui J (2015) Dynamics of P53 in response to DNA damage: mathematical modeling and perspective. Prog Biophys Mol Biol 119:175–182. doi: 10.1016/j.pbiomolbio.2015.08.017 PubMedCrossRefGoogle Scholar
  59. 59.
    Brewer JW (2014) Regulatory crosstalk within the mammalian unfolded protein response. Cell Mol Life Sci 71:1067–1079. doi: 10.1007/s00018-013-1490-2 PubMedCrossRefGoogle Scholar
  60. 60.
    Gardner LB (2008) Hypoxic inhibition of nonsense-mediated RNA decay regulates gene expression and the integrated stress response. Mol Cell Biol 28:3729–3741. doi: 10.1128/MCB.02284-07 PubMedPubMedCentralCrossRefGoogle Scholar
  61. 61.
    Karam R, Lou C-H, Kroeger H et al (2015) The unfolded protein response is shaped by the NMD pathway. EMBO Rep 16:599–609. doi: 10.15252/embr.201439696 PubMedPubMedCentralCrossRefGoogle Scholar
  62. 62.
    Chan W-K, Huang L, Gudikote JP et al (2007) An alternative branch of the nonsense-mediated decay pathway. EMBO J 26:1820–1830. doi: 10.1038/sj.emboj.7601628 PubMedPubMedCentralCrossRefGoogle Scholar
  63. 63.
    Nguyen LS, Wilkinson MF, Gecz J (2013) Nonsense-mediated mRNA decay: inter-individual variability and human disease. Neurosci Biobehav Rev 46:175–186. doi: 10.1016/j.neubiorev.2013.10.016 PubMedCrossRefGoogle Scholar
  64. 64.
    Weng WC, Lee WT, Hsu WM et al (2011) Role of glucose-regulated protein 78 in embryonic development and neurological disorders. J Formos Med Assoc 110:428–437. doi: 10.1016/S0929-6646(11)60064-8 PubMedCrossRefGoogle Scholar
  65. 65.
    Zhao L, Longo-Guess C, Harris BS et al (2005) Protein accumulation and neurodegeneration in the woozy mutant mouse is caused by disruption of SIL1, a cochaperone of BiP. Nat Genet 37:974–979. doi: 10.1038/ng1620 PubMedCrossRefGoogle Scholar
  66. 66.
    Luo S, Mao C, Lee B, Lee AS (2006) GRP78/BiP is required for cell proliferation and protecting the inner cell mass from apoptosis during early mouse embryonic development. Mol Cell Biol 26:5688–5697. doi: 10.1128/MCB.00779-06 PubMedPubMedCentralCrossRefGoogle Scholar
  67. 67.
    Dostie J, Dreyfuss G (2002) Translation is required to remove Y14 from mRNAs in the cytoplasm. Curr Biol 12:1060–1067PubMedCrossRefGoogle Scholar
  68. 68.
    Le Hir H, Izaurralde E, Maquat LE, Moore MJ (2000) The spliceosome deposits multiple proteins 20–24 nucleotides upstream of mRNA exon-exon junctions. EMBO J 19:6860–6869. doi: 10.1093/emboj/19.24.6860 PubMedPubMedCentralCrossRefGoogle Scholar
  69. 69.
    Kataoka N, Yong J, Kim VN et al (2000) Pre-mRNA splicing imprints mRNA in the nucleus with a novel RNA-binding protein that persists in the cytoplasm. Mol Cell 6:673–682PubMedCrossRefGoogle Scholar
  70. 70.
    He F, Li X, Spatrick P et al (2003) Genome-wide analysis of mRNAs regulated by the nonsense-mediated and 5′ to 3′ mRNA decay pathways in yeast. Mol Cell 12:1439–1452PubMedCrossRefGoogle Scholar
  71. 71.
    Chapin A, Hu H, Rynearson SG et al (2014) In vivo determination of direct targets of the nonsense-mediated decay pathway in Drosophila. G3 (Bethesda) 4:485–496. doi: 10.1534/g3.113.009357 PubMedCentralCrossRefGoogle Scholar
  72. 72.
    Popp MW-L, Maquat LE (2013) Organizing principles of mammalian nonsense-mediated mRNA decay. Annu Rev Genet 47:139–165. doi: 10.1146/annurev-genet-111212-133424 PubMedPubMedCentralCrossRefGoogle Scholar
  73. 73.
    Sieber J, Hauer C, Bhuvanagiri M et al (2016) Proteomic analysis reveals branch-specific regulation of the unfolded protein response by nonsense-mediated mRNA decay. Mol Cell Proteom. doi: 10.1074/mcp.M115.054056 Google Scholar
  74. 74.
    Nelson JO, Moore KA, Chapin A et al (2016) Degradation of Gadd45 mRNA by nonsense-mediated decay is essential for viability. Elife. doi: 10.7554/eLife.12876 Google Scholar
  75. 75.
    Wang D, Zavadil J, Martin L et al (2011) Inhibition of nonsense-mediated RNA decay by the tumor microenvironment promotes tumorigenesis. Mol Cell Biol 31:3670–3680. doi: 10.1128/MCB.05704-11 PubMedPubMedCentralCrossRefGoogle Scholar
  76. 76.
    Usuki F, Fujimura M, Yamashita A (2013) Endoplasmic reticulum stress preconditioning attenuates methylmercury-induced cellular damage by inducing favorable stress responses. Sci Rep 3:2346. doi: 10.1038/srep02346 PubMedPubMedCentralCrossRefGoogle Scholar
  77. 77.
    Li Z, Vuong JK, Zhang M et al (2016) Inhibition of nonsense-mediated RNA decay by ER stress. RNA. doi: 10.1261/rna.058040.116 Google Scholar
  78. 78.
    Carter MS, Doskow J, Morris P et al (1995) A regulatory mechanism that detects premature nonsense codons in T-cell receptor transcripts in vivo is reversed by protein synthesis inhibitors in vitro. J Biol Chem 270:28995–29003. doi: 10.1074/jbc.270.48.28995 PubMedCrossRefGoogle Scholar
  79. 79.
    Li S, Leonard D, Wilkinson MF (1997) T cell receptor (TCR) mini-gene mRNA expression regulated by nonsense codons: a nuclear-associated translation-like mechanism. J Exp Med 185:985–992PubMedPubMedCentralCrossRefGoogle Scholar
  80. 80.
    Wek RC, Jiang H-Y, Anthony TG et al (2006) Coping with stress: eIF2 kinases and translational control. Biochem Soc Trans 34:7–11. doi: 10.1042/BST20060007 PubMedCrossRefGoogle Scholar
  81. 81.
    Qian L, Vu MN, Carter MS et al (1993) T cell receptor-beta mRNA splicing during thymic maturation in vivo and in an inducible T cell clone in vitro. J Immunol 151:6801–6814PubMedGoogle Scholar
  82. 82.
    Vattem KM, Wek RC (2004) Reinitiation involving upstream ORFs regulates ATF4 mRNA translation in mammalian cells. Proc Natl Acad Sci USA 101:11269–11274. doi: 10.1073/pnas.0400541101 PubMedPubMedCentralCrossRefGoogle Scholar
  83. 83.
    Holcik M, Sonenberg N (2005) Translational control in stress and apoptosis. Nat Rev Mol Cell Biol 6:318–327. doi: 10.1038/nrm1618 PubMedCrossRefGoogle Scholar
  84. 84.
    Sakaki K, Yoshina S, Shen X et al (2012) RNA surveillance is required for endoplasmic reticulum homeostasis. Proc Natl Acad Sci 109:8079–8084. doi: 10.1073/pnas.1110589109 PubMedPubMedCentralCrossRefGoogle Scholar
  85. 85.
    Mascarenhas R, Dougherty JA, Schoenberg DR (2013) SMG6 cleavage generates metastable decay intermediates from nonsense-containing β-globin mRNA. PLoS One 8:e74791. doi: 10.1371/journal.pone.0074791 PubMedPubMedCentralCrossRefGoogle Scholar
  86. 86.
    Frizzell KA, Rynearson SG, Metzstein MM (2012) Drosophila mutants show NMD pathway activity is reduced, but not eliminated, in the absence of Smg6. RNA 18:1475–1486. doi: 10.1261/rna.032821.112 PubMedPubMedCentralCrossRefGoogle Scholar
  87. 87.
    Reichenbach P, Höss M, Azzalin CM et al (2003) A human homolog of yeast Est1 associates with telomerase and uncaps chromosome ends when overexpressed. Curr Biol 13:568–574PubMedCrossRefGoogle Scholar
  88. 88.
    Protter DSW, Parker R (2016) Principles and properties of stress granules. Trends Cell Biol 26:668–679. doi: 10.1016/j.tcb.2016.05.004 PubMedPubMedCentralCrossRefGoogle Scholar
  89. 89.
    Kedersha N, Anderson P (2007) Mammalian stress granules and processing bodies. Methods Enzymol 431:61–81. doi: 10.1016/S0076-6879(07)31005-7 PubMedCrossRefGoogle Scholar
  90. 90.
    Gardner LB (2010) Nonsense-mediated RNA decay regulation by cellular stress: implications for tumorigenesis. Mol Cancer Res 8:295–308. doi: 10.1158/1541-7786.MCR-09-0502 PubMedPubMedCentralCrossRefGoogle Scholar
  91. 91.
    Wang D, Wengrod J, Gardner LB (2011) Overexpression of the c-myc oncogene inhibits nonsense-mediated RNA decay in B lymphocytes. J Biol Chem 286:40038–40043. doi: 10.1074/jbc.M111.266361 PubMedPubMedCentralCrossRefGoogle Scholar
  92. 92.
    Martin KC, Ephrussi A (2009) mRNA localization: gene expression in the spatial dimension. Cell 136:719–730. doi: 10.1016/j.cell.2009.01.044 PubMedPubMedCentralCrossRefGoogle Scholar
  93. 93.
    Buchan JR, Parker R (2009) Eukaryotic stress granules: the ins and outs of translation. Mol Cell 36:932–941. doi: 10.1016/j.molcel.2009.11.020 PubMedPubMedCentralCrossRefGoogle Scholar
  94. 94.
    Brown JAL, Roberts TL, Richards R et al (2011) A novel role for hSMG-1 in stress granule formation. Mol Cell Biol 31:4417–4429. doi: 10.1128/MCB.05987-11 PubMedPubMedCentralCrossRefGoogle Scholar
  95. 95.
    Abrahamyan LG, Chatel-Chaix L, Ajamian L et al (2010) Novel Staufen1 ribonucleoproteins prevent formation of stress granules but favour encapsidation of HIV-1 genomic RNA. J Cell Sci 123:369–383. doi: 10.1242/jcs.055897 PubMedCrossRefGoogle Scholar
  96. 96.
    Louros SR, Osterweil EK (2016) Perturbed proteostasis in autism spectrum disorders. J Neurochem. doi: 10.1111/jnc.13723 PubMedPubMedCentralGoogle Scholar
  97. 97.
    Thomas MG, Martinez Tosar LJ, Desbats MA et al (2009) Mammalian Staufen 1 is recruited to stress granules and impairs their assembly. J Cell Sci 122:563–573. doi: 10.1242/jcs.038208 PubMedPubMedCentralCrossRefGoogle Scholar
  98. 98.
    Leung AKL, Calabrese JM, Sharp PA (2006) Quantitative analysis of Argonaute protein reveals microRNA-dependent localization to stress granules. Proc Natl Acad Sci USA 103:18125–18130. doi: 10.1073/pnas.0608845103 PubMedPubMedCentralCrossRefGoogle Scholar
  99. 99.
    Leung AKL, Vyas S, Rood JE et al (2011) Poly(ADP-Ribose) regulates stress responses and microRNA activity in the cytoplasm. Mol Cell 42:489–499. doi: 10.1016/j.molcel.2011.04.015 PubMedPubMedCentralCrossRefGoogle Scholar
  100. 100.
    Leung AKL (2015) The whereabouts of microRNA actions: cytoplasm and beyond. Trends Cell Biol 25:601–610. doi: 10.1016/j.tcb.2015.07.005 PubMedPubMedCentralCrossRefGoogle Scholar
  101. 101.
    Wiesen JL, Tomasi TB (2009) Dicer is regulated by cellular stresses and interferons. Mol Immunol 46:1222–1228. doi: 10.1016/j.molimm.2008.11.012 PubMedCrossRefGoogle Scholar
  102. 102.
    Mori MA, Raghavan P, Thomou T et al (2012) Role of microRNA processing in adipose tissue in stress defense and longevity. Cell Metab 16:336–347. doi: 10.1016/j.cmet.2012.07.017 PubMedPubMedCentralCrossRefGoogle Scholar
  103. 103.
    Anderson P, Kedersha N (2002) Visibly stressed: the role of eIF2, TIA-1, and stress granules in protein translation. Cell Stress Chaperones 7:213–221PubMedPubMedCentralCrossRefGoogle Scholar
  104. 104.
    Wu S, Lin L, Zhao W et al (2014) AUF1 is recruited to the stress granules induced by coxsackievirus B3. Virus Res 192:52–61. doi: 10.1016/j.virusres.2014.08.003 PubMedCrossRefGoogle Scholar
  105. 105.
    Fred RG, Mehrabi S, Adams CM, Welsh N (2016) PTB and TIAR binding to insulin mRNA 3′- and 5′UTRs; implications for insulin biosynthesis and messenger stability. Heliyon. doi: 10.1016/j.heliyon.2016.e00159 PubMedPubMedCentralGoogle Scholar
  106. 106.
    Aulas A, Caron G, Gkogkas CG et al (2015) G3BP1 promotes stress-induced RNA granule interactions to preserve polyadenylated mRNA. J Cell Biol 209:73–84. doi: 10.1083/jcb.201408092 PubMedPubMedCentralCrossRefGoogle Scholar
  107. 107.
    Bley N, Lederer M, Pfalz B et al (2015) Stress granules are dispensable for mRNA stabilization during cellular stress. Nucleic Acids Res 43:e26. doi: 10.1093/nar/gku1275 PubMedCrossRefGoogle Scholar
  108. 108.
    Kedersha N, Panas MD, Achom C et al (2016) G3BP-Caprin1-USP10 complexes mediate stress granule condensation and associate with 40S subunits. J Cell Biol 212:845–860PubMedPubMedCentralCrossRefGoogle Scholar
  109. 109.
    Liu C, Karam R, Zhou Y et al (2014) The UPF1 RNA surveillance gene is commonly mutated in pancreatic adenosquamous carcinoma. Nat Med 20:596–598. doi: 10.1038/nm.3548 PubMedPubMedCentralCrossRefGoogle Scholar
  110. 110.
    Cho H, Han S, Park OH, Kim YK (2013) SMG1 regulates adipogenesis via targeting of staufen1-mediated mRNA decay. Biochim Biophys Acta 1829:1276–1287. doi: 10.1016/j.bbagrm.2013.10.004 PubMedCrossRefGoogle Scholar
  111. 111.
    Estrela JM, Ortega A, Obrador E (2006) Glutathione in cancer biology and therapy. Crit Rev Clin Lab Sci 43:143–181. doi: 10.1080/10408360500523878 PubMedCrossRefGoogle Scholar
  112. 112.
    Valko M, Leibfritz D, Moncol J et al (2007) Free radicals and antioxidants in normal physiological functions and human disease. Int J Biochem Cell Biol 39:44–84. doi: 10.1016/j.biocel.2006.07.001 PubMedCrossRefGoogle Scholar
  113. 113.
    Lewerenz J, Hewett SJ, Huang Y et al (2013) The cystine/glutamate antiporter system x(c)(-) in health and disease: from molecular mechanisms to novel therapeutic opportunities. Antioxid Redox Signal 18:522–555. doi: 10.1089/ars.2011.4391 PubMedPubMedCentralCrossRefGoogle Scholar
  114. 114.
    Martin L, Gardner LB (2015) Stress-induced inhibition of nonsense-mediated RNA decay regulates intracellular cystine transport and intracellular glutathione through regulation of the cystine/glutamate exchanger SLC7A11. Oncogene 34:4211–4218. doi: 10.1038/onc.2014.352 PubMedCrossRefGoogle Scholar
  115. 115.
    Garcia-Huerta P, Troncoso-Escudero P, Jerez C et al (2016) The intersection between growth factors, autophagy and ER stress: a new target to treat neurodegenerative diseases? Brain Res. doi: 10.1016/j.brainres.2016.02.052 Google Scholar
  116. 116.
    Kania E, Pająk B, Orzechowski A (2015) Calcium homeostasis and ER stress in control of autophagy in cancer cells. Biomed Res Int 2015:352794. doi: 10.1155/2015/352794 PubMedPubMedCentralCrossRefGoogle Scholar
  117. 117.
    Wengrod J, Martin L, Wang D et al (2013) Inhibition of nonsense-mediated RNA decay activates autophagy. Mol Cell Biol 33:2128–2135. doi: 10.1128/MCB.00174-13 PubMedPubMedCentralCrossRefGoogle Scholar
  118. 118.
    Sun X, Perlick HA, Dietz HC, Maquat LE (1998) A mutated human homologue to yeast Upf1 protein has a dominant-negative effect on the decay of nonsense-containing mRNAs in mammalian cells. Proc Natl Acad Sci USA 95:10009–10014PubMedPubMedCentralCrossRefGoogle Scholar
  119. 119.
    Oren YS, McClure ML, Rowe SM et al (2014) The unfolded protein response affects readthrough of premature termination codons. EMBO Mol Med 6:685–701. doi: 10.1002/emmm.201303347 PubMedPubMedCentralGoogle Scholar
  120. 120.
    Rouschop KMA, Ramaekers CHMA, Schaaf MBE et al (2009) Autophagy is required during cycling hypoxia to lower production of reactive oxygen species. Radiother Oncol 92:411–416. doi: 10.1016/j.radonc.2009.06.029 PubMedCrossRefGoogle Scholar
  121. 121.
    Ondrej M, Cechakova L, Durisova K et al (2016) To live or let die: unclear task of autophagy in the radiosensitization battle. Radiother Oncol 119:265–275. doi: 10.1016/j.radonc.2016.02.028 PubMedCrossRefGoogle Scholar
  122. 122.
    Xie W-Y, Zhou X-D, Yang J et al (2016) Inhibition of autophagy enhances heat-induced apoptosis in human non-small cell lung cancer cells through ER stress pathways. Arch Biochem Biophys 607:55–66. doi: 10.1016/j.abb.2016.08.016 PubMedCrossRefGoogle Scholar
  123. 123.
    Jia J, Furlan A, Gonzalez-Hilarion S et al (2015) Caspases shutdown nonsense-mediated mRNA decay during apoptosis. Cell Death Differ 22:1754–1763. doi: 10.1038/cdd.2015.18 PubMedPubMedCentralCrossRefGoogle Scholar
  124. 124.
    Popp MW, Maquat LE (2015) Attenuation of nonsense-mediated mRNA decay facilitates the response to chemotherapeutics. Nat Commun 6:6632. doi: 10.1038/ncomms7632 PubMedPubMedCentralCrossRefGoogle Scholar
  125. 125.
    Takekawa M, Saito H (1998) A family of stress-inducible GADD45-like proteins mediate activation of the stress-responsive MTK1/MEKK4 MAPKKK. Cell 95:521–530PubMedCrossRefGoogle Scholar
  126. 126.
    Peretz G, Bakhrat A, Abdu U (2007) Expression of the Drosophila melanogaster GADD45 homolog (CG11086) affects egg asymmetric development that is mediated by the c-Jun N-terminal kinase pathway. Genetics 177:1691–1702. doi: 10.1534/genetics.107.079517 PubMedPubMedCentralCrossRefGoogle Scholar
  127. 127.
    Rehwinkel J, Letunic I, Raes J et al (2005) Nonsense-mediated mRNA decay factors act in concert to regulate common mRNA targets. RNA 11:1530–1544. doi: 10.1261/rna.2160905 PubMedPubMedCentralCrossRefGoogle Scholar
  128. 128.
    Tani H, Imamachi N, Salam KA et al (2012) Identification of hundreds of novel UPF1 target transcripts by direct determination of whole transcriptome stability. RNA Biol 9:1370–1379. doi: 10.4161/rna.22360 PubMedPubMedCentralCrossRefGoogle Scholar
  129. 129.
    Kurosaki T, Li W, Hoque M et al (2014) A post-translational regulatory switch on UPF1 controls targeted mRNA degradation. Genes Dev 28:1900–1916. doi: 10.1101/gad.245506.114 PubMedPubMedCentralCrossRefGoogle Scholar
  130. 130.
    Viegas MH, Gehring NH, Breit S et al (2007) The abundance of RNPS1, a protein component of the exon junction complex, can determine the variability in efficiency of the nonsense mediated decay pathway. Nucleic Acids Res 35:4542–4551. doi: 10.1093/nar/gkm461 PubMedPubMedCentralCrossRefGoogle Scholar
  131. 131.
    Yue F, Cheng Y, Breschi A et al (2014) A comparative encyclopedia of DNA elements in the mouse genome. Nature 515:355–364. doi: 10.1038/nature13992 PubMedPubMedCentralCrossRefGoogle Scholar
  132. 132.
    Mocquet V, Neusiedler J, Rende F et al (2012) The human T-lymphotropic virus type 1 tax protein inhibits nonsense-mediated mRNA decay by interacting with INT6/EIF3E and UPF1. J Virol 86:7530–7543. doi: 10.1128/JVI.07021-11 PubMedPubMedCentralCrossRefGoogle Scholar
  133. 133.
    Tani H, Torimura M, Akimitsu N (2013) The RNA degradation pathway regulates the function of GAS5 a non-coding RNA in mammalian cells. PLoS One 8:e55684. doi: 10.1371/journal.pone.0055684 PubMedPubMedCentralCrossRefGoogle Scholar
  134. 134.
    Tani H, Mizutani R, Salam KA et al (2012) Genome-wide determination of RNA stability reveals hundreds of short-lived noncoding transcripts in mammals. Genome Res 22:947–956. doi: 10.1101/gr.130559.111 PubMedPubMedCentralCrossRefGoogle Scholar
  135. 135.
    Deveraux QL, Reed JC (1999) IAP family proteins—suppressors of apoptosis. Genes Dev 13:239–252PubMedCrossRefGoogle Scholar
  136. 136.
    Mikosz CA, Brickley DR, Sharkey MS et al (2001) Glucocorticoid receptor-mediated protection from apoptosis is associated with induction of the serine/threonine survival kinase gene, sgk-1. J Biol Chem 276:16649–16654. doi: 10.1074/jbc.M010842200 PubMedCrossRefGoogle Scholar
  137. 137.
    Kino T, Hurt DE, Ichijo T et al (2010) Noncoding RNA gas5 is a growth arrest- and starvation-associated repressor of the glucocorticoid receptor. Sci Signal 3:ra8. doi: 10.1126/scisignal.2000568 PubMedPubMedCentralGoogle Scholar
  138. 138.
    Ideue T, Sasaki YTF, Hagiwara M, Hirose T (2007) Introns play an essential role in splicing-dependent formation of the exon junction complex. Genes Dev 21:1993–1998. doi: 10.1101/gad.1557907 PubMedPubMedCentralCrossRefGoogle Scholar
  139. 139.
    Blattner C, Kannouche P, Litfin M et al (2000) UV-Induced stabilization of c-fos and other short-lived mRNAs. Mol Cell Biol 20:3616–3625PubMedPubMedCentralCrossRefGoogle Scholar
  140. 140.
    Friedel CC, Dölken L, Ruzsics Z et al (2009) Conserved principles of mammalian transcriptional regulation revealed by RNA half-life. Nucleic Acids Res 37:e115. doi: 10.1093/nar/gkp542 PubMedPubMedCentralCrossRefGoogle Scholar
  141. 141.
    Pal M, Ishigaki Y, Nagy E, Maquat LE (2001) Evidence that phosphorylation of human Upfl protein varies with intracellular location and is mediated by a wortmannin-sensitive and rapamycin-sensitive PI 3-kinase-related kinase signaling pathway. RNA 7:5–15PubMedPubMedCentralCrossRefGoogle Scholar
  142. 142.
    Clerici M, Deniaud A, Boehm V et al (2014) Structural and functional analysis of the three MIF4G domains of nonsense-mediated decay factor UPF2. Nucleic Acids Res 42:2673–2686. doi: 10.1093/nar/gkt1197 PubMedCrossRefGoogle Scholar
  143. 143.
    Rayson S, Arciga-Reyes L, Wootton L et al (2012) A role for nonsense-mediated mRNA decay in plants: pathogen responses are induced in Arabidopsis thaliana NMD mutants. PLoS One 7:e31917. doi: 10.1371/journal.pone.0031917 PubMedPubMedCentralCrossRefGoogle Scholar
  144. 144.
    Shi C, Baldwin IT, Wu J (2012) Arabidopsis plants having defects in nonsense-mediated mRNA decay factors UPF1, UPF2, and UPF3 show photoperiod-dependent phenotypes in development and stress responses. J Integr Plant Biol 54:99–114. doi: 10.1111/j.1744-7909.2012.01093.x PubMedCrossRefGoogle Scholar
  145. 145.
    Yoine M, Ohto M, Onai K et al (2006) The lba1 mutation of UPF1 RNA helicase involved in nonsense-mediated mRNA decay causes pleiotropic phenotypic changes and altered sugar signalling in Arabidopsis. Plant J 47:49–62. doi: 10.1111/j.1365-313X.2006.02771.x PubMedCrossRefGoogle Scholar
  146. 146.
    Arciga-Reyes L, Wootton L, Kieffer M, Davies B (2006) UPF1 is required for nonsense-mediated mRNA decay (NMD) and RNAi in Arabidopsis. Plant J 47:480–489. doi: 10.1111/j.1365-313X.2006.02802.x PubMedCrossRefGoogle Scholar
  147. 147.
    Hori K, Watanabe Y (2005) UPF3 suppresses aberrant spliced mRNA in Arabidopsis. Plant J 43:530–540. doi: 10.1111/j.1365-313X.2005.02473.x PubMedCrossRefGoogle Scholar
  148. 148.
    Kalyna M, Simpson CG, Syed NH et al (2012) Alternative splicing and nonsense-mediated decay modulate expression of important regulatory genes in Arabidopsis. Nucleic Acids Res 40:2454–2469. doi: 10.1093/nar/gkr932 PubMedCrossRefGoogle Scholar
  149. 149.
    Kertész S, Kerényi Z, Mérai Z et al (2006) Both introns and long 3′-UTRs operate as cis-acting elements to trigger nonsense-mediated decay in plants. Nucleic Acids Res 34:6147–6157. doi: 10.1093/nar/gkl737 PubMedPubMedCentralCrossRefGoogle Scholar
  150. 150.
    Nyikó T, Kerényi F, Szabadkai L et al (2013) Plant nonsense-mediated mRNA decay is controlled by different autoregulatory circuits and can be induced by an EJC-like complex. Nucleic Acids Res 41:6715–6728. doi: 10.1093/nar/gkt366 PubMedPubMedCentralCrossRefGoogle Scholar
  151. 151.
    Nyikó T, Sonkoly B, Mérai Z et al (2009) Plant upstream ORFs can trigger nonsense-mediated mRNA decay in a size-dependent manner. Plant Mol Biol 71:367–378. doi: 10.1007/s11103-009-9528-4 PubMedCrossRefGoogle Scholar
  152. 152.
    Saul H, Elharrar E, Gaash R et al (2009) The upstream open reading frame of the Arabidopsis AtMHX gene has a strong impact on transcript accumulation through the nonsense-mediated mRNA decay pathway. Plant J 60:1031–1042. doi: 10.1111/j.1365-313X.2009.04021.x PubMedCrossRefGoogle Scholar
  153. 153.
    Toma KG, Rebbapragada I, Durand S, Lykke-Andersen J (2015) Identification of elements in human long 3′UTRs that inhibit nonsense-mediated decay. RNA 21:887–897. doi: 10.1261/rna.048637.114 PubMedPubMedCentralCrossRefGoogle Scholar
  154. 154.
    Mocquet V, Durand S, Jalinot P (2015) How retroviruses escape the nonsense-mediated mRNA decay. AIDS Res Hum Retrovir 31:948–958. doi: 10.1089/AID.2014.0326 PubMedCrossRefGoogle Scholar
  155. 155.
    Rodríguez-Gabriel MA, Watt S, Bähler J, Russell P (2006) Upf1, an RNA helicase required for nonsense-mediated mRNA decay, modulates the transcriptional response to oxidative stress in fission yeast. Mol Cell Biol 26:6347–6356. doi: 10.1128/MCB.00286-06 PubMedPubMedCentralCrossRefGoogle Scholar
  156. 156.
    Isken O, Maquat LE (2008) The multiple lives of NMD factors: balancing roles in gene and genome regulation. Nat Rev Genet 9:699–712. doi: 10.1038/nrg2402 PubMedPubMedCentralCrossRefGoogle Scholar
  157. 157.
    Azzalin CM, Lingner J (2006) The human RNA surveillance factor UPF1 is required for S phase progression and genome stability. Curr Biol 16:433–439. doi: 10.1016/j.cub.2006.01.018 PubMedCrossRefGoogle Scholar
  158. 158.
    Brogna S, McLeod T, Petric M (2016) The meaning of NMD: translate or perish. Trends Genet 32:395–407. doi: 10.1016/j.tig.2016.04.007 PubMedCrossRefGoogle Scholar
  159. 159.
    Nijhawan D, Honarpour N, Wang X (2000) Apoptosis in neural development and disease. Annu Rev Neurosci 23:73–87. doi: 10.1146/annurev.neuro.23.1.73 PubMedCrossRefGoogle Scholar
  160. 160.
    Opferman JT, Korsmeyer SJ (2003) Apoptosis in the development and maintenance of the immune system. Nat Immunol 4:410–415. doi: 10.1038/ni0503-410 PubMedCrossRefGoogle Scholar
  161. 161.
    Greenhalgh DG (1998) The role of apoptosis in wound healing. Int J Biochem Cell Biol 30:1019–1030PubMedCrossRefGoogle Scholar
  162. 162.
    Kawashima T, Douglass S, Gabunilas J et al (2014) Widespread use of non-productive alternative splice sites in Saccharomyces cerevisiae. PLoS Genet 10:e1004249. doi: 10.1371/journal.pgen.1004249 PubMedPubMedCentralCrossRefGoogle Scholar
  163. 163.
    Garre E, Romero-Santacreu L, Barneo-Muñoz M et al (2013) Nonsense-mediated mRNA decay controls the changes in yeast ribosomal protein pre-mRNAs levels upon osmotic stress. PLoS One 8:e61240. doi: 10.1371/journal.pone.0061240 PubMedPubMedCentralCrossRefGoogle Scholar
  164. 164.
    Lim Y, Cho H, Kim E-K (2016) Brain metabolism as a modulator of autophagy in neurodegeneration. Brain Res 1649:158–165PubMedCrossRefGoogle Scholar
  165. 165.
    Atwood CS, Bowen RL (2015) A unified hypothesis of early- and late-onset Alzheimer’s disease pathogenesis. J Alzheimers Dis 47:33–47. doi: 10.3233/JAD-143210 PubMedPubMedCentralCrossRefGoogle Scholar
  166. 166.
    Singh S, Mishra A, Srivastava N, Shukla S (2016) MK-801 (Dizocilpine) regulates multiple steps of adult hippocampal neurogenesis and alters psychological symptoms via Wnt/β-catenin signaling in parkinsonian rats. ACS Chem Neurosci. doi: 10.1021/acschemneuro.6b00354 Google Scholar
  167. 167.
    Eixarch H, Calvo-Barreiro L, Montalban X, Espejo C (2017) Bone morphogenetic proteins in multiple sclerosis: role in neuroinflammation. Brain Behav Immun. doi: 10.1016/j.bbi.2017.02.019 PubMedGoogle Scholar

Copyright information

© Springer International Publishing 2017

Authors and Affiliations

  1. 1.Department of Reproductive Medicine, School of MedicineUniversity of California San DiegoLa JollaUSA

Personalised recommendations