Cellular and Molecular Life Sciences

, Volume 74, Issue 19, pp 3599–3611 | Cite as

Extracellular vesicles regulate the human osteoclastogenesis: divergent roles in discrete inflammatory arthropathies

  • Nikolett Marton
  • Orsolya Tünde Kovács
  • Eszter Baricza
  • Ágnes Kittel
  • Dávid Győri
  • Attila Mócsai
  • Florian M. P. Meier
  • Carl S. Goodyear
  • Iain B. McInnes
  • Edit I. Buzás
  • György NagyEmail author
Original Article



Extracellular vesicles (EVs) are subcellular signalosomes. Although characteristic EV production is associated with numerous physiological and pathological conditions, the effect of blood-derived EVs on bone homeostasis is unknown. Herein we evaluated the role of circulating EVs on human osteoclastogenesis.


Blood samples from healthy volunteers, rheumatoid arthritis (RA) and psoriatic arthritis (PsA) patients were collected. Size-based EV sub-fractions were isolated by gravity-driven filtration and differential centrifugation. To investigate the properties of EV samples, resistive pulse sensing technique, transmission electron microscopy, flow cytometry and western blot were performed. CD14+ monocytes were separated from PBMCs, and stimulated with recombinant human M-CSF, RANKL and blood-derived EV sub-fractions. After 7 days, the cells were fixed and stained for tartrate-resistant acid phosphatase and counted.


EVs isolated by size-based sub-fractions were characterized as either microvesicles or exosomes (EXO). Healthy (n = 11) and RA-derived (n = 12) EXOs profoundly inhibited osteoclast differentiation (70%, p < 0.01; 65%, p < 0.01, respectively). In contrast, PsA-derived (n = 10) EXOs had a stimulatory effect (75%, p < 0.05). In cross-treatment experiments where EXOs and CD14+ cells were interchanged between the three groups, only healthy (n = 5) and RA (n = 5)-derived EXOs inhibited (p < 0.01, respectively) the generation of osteoclasts in all groups, whereas PsA (n = 7)-derived EXOs were unable to mediate this effect.


Our data suggest that blood-derived EXOs are novel regulators of the human osteoclastogenesis and may offer discrete effector function in distinct inflammatory arthropathies.


Osteoclast Exosome Microvesicle Rheumatoid arthritis Psoriatic arthritis 



Acid citrate dextrose-A


American College of Rheumatology


Analysis of variance


American Type Culture Collection


Calcitonin receptor


Cluster of differentiation 14


Cellular oncogene Fos


Macrophage colony-stimulating factor receptor


Catepsin K




Disease activity score


Transmembrane 7 superfamily member 4


European League Against Rheumatism


Extracellular vesicle




Fluorescence-activated cell sorting


Fetal bovine serum


Fluorescein isothiocyanate


Glyceraldehyde-3-phosphate dehydrogenase


Immunoglobulin G


International Society for Extracellular Vesicles




Macrophage colony-stimulating factor






Nuclear factor of activated T cells cytoplasmic 1




Osteoclast-associated immunglobulin-like receptor


Peripheral blood mononuclear cell


Phosphate-buffered saline


Polymerase chain reaction


Receptor activator of nuclear factor kappa B


RANK ligand


Revolution per minute


Roswell Park Memorial Institute medium


Recombinant Staphylococcal Protein A


Room temperature


Size-exclusion chromatography


Soluble immune complex


Src-like adaptor protein


Transmission electron microscopy


Tartrate-resistant acid phosphatase



This work was supported by the Hungarian Scientific Research Fund OTKA-NN111023, OTKA-NKFIH #11958; MEDINPROT and BMBS COST Action BM1202 ME HAD. Funding was provided by National Heart Program (Grant Nos. OTKA 120237, NKFIA, and KP-16-1-2016-0017).

Author contributions

All authors were involved in drafting the article or revising it critically for important intellectual content, and all authors approved the final version to be published. Dr. Nagy had full access to all of the data in the study and takes responsibility for the integrity of the data and the accuracy of the data analysis.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no competing interests.

Supplementary material

18_2017_2535_MOESM1_ESM.tif (3.6 mb)
Supplementary Figure 1 Flow cytometry gate determination for ‘MV’ analysis. A, The experiment was carried out using MegaMix Beads (BioCytex, Marseille, France) and was optimized with 1 μm Silica Beads Fluo-Green (Kisker, Steinfurt, Germany). Logarithmic FSC, SSC scales were used during the measurements to visualize the ‘MVs’. ‘MVs’ are EVs of 100–1000 nm diameter. B, C, Decreased number of Annexin V positive events were detected in the ‘MV gate’ after detergent treatment. (TIFF 3711 kb)
18_2017_2535_MOESM2_ESM.tif (2.4 mb)
Supplementary Figure 2 The effect of different concentrations of SICs on the OC differentiation. SICs were generated freshly and used in different concentrations: 0.25X; 0.5X; 1X and 2X SIC treatment means that 0.25; 0.5; 1 and 2 µL of SIC samples were added to 100 µL media. The graph represents the fold increase in the number TRAP-positive cells with ≥ 3 nuclei. The values mark the mean ± SEM. *p < 0.05, **p < 0.01, ***p < 0.001. (TIFF 2480 kb)
18_2017_2535_MOESM3_ESM.tif (736 kb)
Supplementary Figure 3 The effect of size exclusion chromatography purified EXO samples on human in vitro osteoclastogenesis. Platelet free plasma samples of healthy donors (n = 2) were filtrated with 0.8 µm nanopore membranes and purified with qEV Size Exclusion Columns (Izon Science, Christchurch, New Zealand) according to manufacturer’s instructions. Then the samples were centrifuged with 100 000g, resuspended in 1*PBS and used to treat differentiating OC samples as in the previously described experiments. The graph represents the fold increase in the number of OCs (TRAP-positive cells with ≥ 3 nuclei). The values represent the mean ± SEM. *p < 0.05 ‘EXO’ refers to small EVs of approximately 100 nm diameter. (TIFF 735 kb)
18_2017_2535_MOESM4_ESM.jpg (190 kb)
Supplementary Figure 4 OPG, RANK, RANKL expression of EVs. EXO samples, conjugated to aldehyde/sulfate latex beads were studied by flow cytometry. Differential detergent lysis was used to study the MVs. The values represent the mean ± SEM. *p < 0.05. (JPEG 189 kb)
18_2017_2535_MOESM5_ESM.tif (13.3 mb)
Supplementary Figure 5 The detection of various CD markers on EV samples. EXO samples, conjugated to aldehyde/sulfate latex beads were studied by flow cytometry. Differential detergent lysis was used to identify the MVs. The values represent the mean ± SEM. *p < 0.05. (TIFF 13634 kb)
18_2017_2535_MOESM6_ESM.docx (16 kb)
Supplementary material 6 (DOCX 15 kb)


  1. 1.
    Keller S, Ridinger J, Rupp AK, Janssen JW, Altevogt P (2011) Body fluid derived exosomes as a novel template for clinical diagnostics. J Transl Med 9:86. doi: 10.1186/1479-5876-9-86 CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Kowal J, Arras G, Colombo M, Jouve M, Morath JP, Primdal-Bengtson B, Dingli F, Loew D, Tkach M, Thery C (2016) Proteomic comparison defines novel markers to characterize heterogeneous populations of extracellular vesicle subtypes. Proc Natl Acad Sci USA 113(8):E968–E977. doi: 10.1073/pnas.1521230113 CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Lee EY, Choi DY, Kim DK, Kim JW, Park JO, Kim S, Kim SH, Desiderio DM, Kim YK, Kim KP, Gho YS (2009) Gram-positive bacteria produce membrane vesicles: proteomics-based characterization of Staphylococcus aureus-derived membrane vesicles. Proteomics 9(24):5425–5436. doi: 10.1002/pmic.200900338 CrossRefPubMedGoogle Scholar
  4. 4.
    Lotvall J, Hill AF, Hochberg F, Buzas EI, Di Vizio D, Gardiner C, Gho YS, Kurochkin IV, Mathivanan S, Quesenberry P, Sahoo S, Tahara H, Wauben MH, Witwer KW, Thery C (2014) Minimal experimental requirements for definition of extracellular vesicles and their functions: a position statement from the International Society for Extracellular Vesicles. J Extracell Vesicles 3:26913CrossRefPubMedGoogle Scholar
  5. 5.
    Thery C, Zitvogel L, Amigorena S (2002) Exosomes: composition, biogenesis and function. Nat Rev Immunol 2(8):569–579. doi: 10.1038/nri855 PubMedGoogle Scholar
  6. 6.
    Szabo GT, Tarr B, Paloczi K, Eder K, Lajko E, Kittel A, Toth S, Gyorgy B, Pasztoi M, Nemeth A, Osteikoetxea X, Pallinger E, Falus A, Szabo-Taylor K, Buzas EI (2014) Critical role of extracellular vesicles in modulating the cellular effects of cytokines. Cell Mol Life Sci 71(20):4055–4067. doi: 10.1007/s00018-014-1618-z CrossRefPubMedGoogle Scholar
  7. 7.
    Sellam J, Proulle V, Jungel A, Ittah M, Miceli Richard C, Gottenberg JE, Toti F, Benessiano J, Gay S, Freyssinet JM, Mariette X (2009) Increased levels of circulating microparticles in primary Sjogren’s syndrome, systemic lupus erythematosus and rheumatoid arthritis and relation with disease activity. Arthritis Res Ther 11(5):R156. doi: 10.1186/ar2833 CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Buzas EI, Gyorgy B, Nagy G, Falus A, Gay S (2014) Emerging role of extracellular vesicles in inflammatory diseases. Nat Rev Rheumatol. doi: 10.1038/nrrheum.2014.19 PubMedGoogle Scholar
  9. 9.
    Caby MP, Lankar D, Vincendeau-Scherrer C, Raposo G, Bonnerot C (2005) Exosomal-like vesicles are present in human blood plasma. Int Immunol 17(7):879–887. doi: 10.1093/intimm/dxh267 CrossRefPubMedGoogle Scholar
  10. 10.
    Cloutier N, Pare A, Farndale RW, Schumacher HR, Nigrovic PA, Lacroix S, Boilard E (2012) Platelets can enhance vascular permeability. Blood 120(6):1334–1343. doi: 10.1182/blood-2012-02-413047 CrossRefPubMedGoogle Scholar
  11. 11.
    Skriner K, Adolph K, Jungblut PR, Burmester GR (2006) Association of citrullinated proteins with synovial exosomes. Arthritis Rheum 54(12):3809–3814. doi: 10.1002/art.22276 CrossRefPubMedGoogle Scholar
  12. 12.
    Lo Cicero A, Majkowska I, Nagase H, Di Liegro I, Troeberg L (2012) Microvesicles shed by oligodendroglioma cells and rheumatoid synovial fibroblasts contain aggrecanase activity. Matrix Biol 31(4):229–233. doi: 10.1016/j.matbio.2012.02.005 CrossRefPubMedGoogle Scholar
  13. 13.
    Cheung KL, Jarrett R, Subramaniam S, Salimi M, Gutowska-Owsiak D, Chen YL, Hardman C, Xue L, Cerundolo V, Ogg G (2016) Psoriatic T cells recognize neolipid antigens generated by mast cell phospholipase delivered by exosomes and presented by CD1a. J Exp Med 213(11):2399–2412. doi: 10.1084/jem.20160258 CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Lee JY, Park JK, Lee EY, Lee EB, Song YW (2016) Circulating exosomes from patients with systemic lupus erythematosus induce an proinflammatory immune response. Arthritis Res Ther 18(1):264. doi: 10.1186/s13075-016-1159-y CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Aletaha D, Neogi T, Silman AJ, Funovits J, Felson DT, Bingham CO, Birnbaum NS, Burmester GR, Bykerk VP, Cohen MD, Combe B, Costenbader KH, Dougados M, Emery P, Ferraccioli G, Hazes JMW, Hobbs K, Huizinga TWJ, Kavanaugh A, Kay J, Kvien TK, Laing T, Mease P, Ménard HA, Moreland LW, Naden RL, Pincus T, Smolen JS, Stanislawska-Biernat E, Symmons D, Tak PP, Upchurch KS, Vencovský J, Wolfe F, Hawker G (2010) 2010 Rheumatoid arthritis classification criteria: an American College of Rheumatology/European League Against Rheumatism collaborative initiative. Arthritis Rheum 62(9):2569–2581. doi: 10.1002/art.27584 CrossRefPubMedGoogle Scholar
  16. 16.
    Taylor W, Gladman D, Helliwell P, Marchesoni A, Mease P, Mielants H (2006) Classification criteria for psoriatic arthritis: development of new criteria from a large international study. Arthritis Rheum 54(8):2665–2673. doi: 10.1002/art.21972 CrossRefPubMedGoogle Scholar
  17. 17.
    Mc Ardle A, Flatley B, Pennington SR, FitzGerald O (2015) Early biomarkers of joint damage in rheumatoid and psoriatic arthritis. Arthritis Res Ther 17:141. doi: 10.1186/s13075-015-0652-z CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Takayanagi H (2009) Osteoimmunology and the effects of the immune system on bone. Nat Rev Rheumatol 5(12):667–676. doi: 10.1038/nrrheum.2009.217 CrossRefPubMedGoogle Scholar
  19. 19.
    Harre U, Georgess D, Bang H, Bozec A, Axmann R, Ossipova E, Jakobsson PJ, Baum W, Nimmerjahn F, Szarka E, Sarmay G, Krumbholz G, Neumann E, Toes R, Scherer HU, Catrina AI, Klareskog L, Jurdic P, Schett G (2012) Induction of osteoclastogenesis and bone loss by human autoantibodies against citrullinated vimentin. J Clin Invest 122(5):1791–1802. doi: 10.1172/JCI60975 CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Oliveira MC, Di Ceglie I, Arntz OJ, van den Berg WB, van den Hoogen FH, Ferreira AV, van Lent PL, van de Loo FA (2016) Milk-derived nanoparticle fraction promotes the formation of small osteoclasts but reduces bone resorption. J Cell Physiol. doi: 10.1002/jcp.25414 Google Scholar
  21. 21.
    Deng L, Wang Y, Peng Y, Wu Y, Ding Y, Jiang Y, Shen Z, Fu Q (2015) Osteoblast-derived microvesicles: a novel mechanism for communication between osteoblasts and osteoclasts. Bone 79:37–42. doi: 10.1016/j.bone.2015.05.022 CrossRefPubMedGoogle Scholar
  22. 22.
    Huynh N, VonMoss L, Smith D, Rahman I, Felemban MF, Zuo J, Rody WJ Jr, McHugh KP, Holliday LS (2016) Characterization of regulatory extracellular vesicles from osteoclasts. J Dent Res. doi: 10.1177/0022034516633189 PubMedPubMedCentralGoogle Scholar
  23. 23.
    Li D, Liu J, Guo B, Liang C, Dang L, Lu C, He X, Cheung HY, Xu L, He B, Liu B, Shaikh AB, Li F, Wang L, Yang Z, Au DW, Peng S, Zhang Z, Zhang BT, Pan X, Qian A, Shang P, Xiao L, Jiang B, Wong CK, Xu J, Bian Z, Liang Z, Guo DA, Zhu H, Tan W, Lu A, Zhang G (2016) Osteoclast-derived exosomal miR-214-3p inhibits osteoblastic bone formation. Nat Commun 7:10872. doi: 10.1038/ncomms10872 CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Gyori D, Csete D, Benko S, Kulkarni S, Mandl P, Dobo-Nagy C, Vanhaesebroeck B, Stephens L, Hawkins PT, Mocsai A (2014) The phosphoinositide 3-kinase isoform PI3Kbeta regulates osteoclast-mediated bone resorption in humans and mice. Arthritis Rheumatol 66(8):2210–2221. doi: 10.1002/art.38660 CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Gyorgy B, Paloczi K, Kovacs A, Barabas E, Beko G, Varnai K, Pallinger E, Szabo-Taylor K, Szabo TG, Kiss AA, Falus A, Buzas EI (2014) Improved circulating microparticle analysis in acid-citrate dextrose (ACD) anticoagulant tube. Thromb Res 133(2):285–292. doi: 10.1016/j.thromres.2013.11.010 CrossRefPubMedGoogle Scholar
  26. 26.
    Gyorgy B, Szabo TG, Turiak L, Wright M, Herczeg P, Ledeczi Z, Kittel A, Polgar A, Toth K, Derfalvi B, Zelenak G, Borocz I, Carr B, Nagy G, Vekey K, Gay S, Falus A, Buzas EI (2012) Improved flow cytometric assessment reveals distinct microvesicle (cell-derived microparticle) signatures in joint diseases. PLoS One 7(11):e49726. doi: 10.1371/journal.pone.0049726 CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Baranyai T, Herczeg K, Onodi Z, Voszka I, Modos K, Marton N, Nagy G, Mager I, Wood MJ, El Andaloussi S, Palinkas Z, Kumar V, Nagy P, Kittel A, Buzas EI, Ferdinandy P, Giricz Z (2015) Isolation of exosomes from blood plasma: qualitative and quantitative comparison of ultracentrifugation and size exclusion chromatography methods. PLoS One 10(12):e0145686. doi: 10.1371/journal.pone.0145686 CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Osteikoetxea X, Sodar B, Nemeth A, Szabo-Taylor K, Paloczi K, Vukman KV, Tamasi V, Balogh A, Kittel A, Pallinger E, Buzas EI (2015) Differential detergent sensitivity of extracellular vesicle subpopulations. Org Biomol Chem 13(38):9775–9782. doi: 10.1039/c5ob01451d CrossRefPubMedGoogle Scholar
  29. 29.
    Sodar BW, Kittel A, Paloczi K, Vukman KV, Osteikoetxea X, Szabo-Taylor K, Nemeth A, Sperlagh B, Baranyai T, Giricz Z, Wiener Z, Turiak L, Drahos L, Pallinger E, Vekey K, Ferdinandy P, Falus A, Buzas EI (2016) Low-density lipoprotein mimics blood plasma-derived exosomes and microvesicles during isolation and detection. Sci Rep 6:24316. doi: 10.1038/srep24316 CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Gyorgy B, Modos K, Pallinger E, Paloczi K, Pasztoi M, Misjak P, Deli MA, Sipos A, Szalai A, Voszka I, Polgar A, Toth K, Csete M, Nagy G, Gay S, Falus A, Kittel A, Buzas EI (2011) Detection and isolation of cell-derived microparticles are compromised by protein complexes resulting from shared biophysical parameters. Blood 117(4):e39–e48. doi: 10.1182/blood-2010-09-307595 CrossRefPubMedGoogle Scholar
  31. 31.
    MacLellan LM, Montgomery J, Sugiyama F, Kitson SM, Thummler K, Silverman GJ, Beers SA, Nibbs RJ, McInnes IB, Goodyear CS (2011) Co-opting endogenous immunoglobulin for the regulation of inflammation and osteoclastogenesis in humans and mice. Arthritis Rheum 63(12):3897–3907. doi: 10.1002/art.30629 CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Boing AN, van der Pol E, Grootemaat AE, Coumans FA, Sturk A, Nieuwland R (2014) Single-step isolation of extracellular vesicles by size-exclusion chromatography. J Extracell Vesicles. doi: 10.3402/jev.v3.23430 Google Scholar
  33. 33.
    Ell B, Mercatali L, Ibrahim T, Campbell N, Schwarzenbach H, Pantel K, Amadori D, Kang Y (2013) Tumor-induced osteoclast miRNA changes as regulators and biomarkers of osteolytic bone metastasis. Cancer Cell 24(4):542–556. doi: 10.1016/j.ccr.2013.09.008 CrossRefPubMedGoogle Scholar
  34. 34.
    Inder KL, Ruelcke JE, Petelin L, Moon H, Choi E, Rae J, Blumenthal A, Hutmacher D, Saunders NA, Stow JL, Parton RG, Hill MM (2014) Cavin-1/PTRF alters prostate cancer cell-derived extracellular vesicle content and internalization to attenuate extracellular vesicle-mediated osteoclastogenesis and osteoblast proliferation. J Extracell Vesicles. doi: 10.3402/jev.v3.23784 PubMedPubMedCentralGoogle Scholar
  35. 35.
    Raimondi L, De Luca A, Amodio N, Manno M, Raccosta S, Taverna S, Bellavia D, Naselli F, Fontana S, Schillaci O, Giardino R, Fini M, Tassone P, Santoro A, De Leo G, Giavaresi G, Alessandro R (2015) Involvement of multiple myeloma cell-derived exosomes in osteoclast differentiation. Oncotarget 6(15):13772–13789. doi: 10.18632/oncotarget.3830 CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Osteikoetxea X, Balogh A, Szabo-Taylor K, Nemeth A, Szabo TG, Paloczi K, Sodar B, Kittel A, Gyorgy B, Pallinger E, Matko J, Buzas EI (2015) Improved characterization of EV preparations based on protein to lipid ratio and lipid properties. PLoS One 10(3):e0121184. doi: 10.1371/journal.pone.0121184 CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Artoni A, Merati G, Padovan L, Scalambrino E, Chantarangkul V, Tripodi A (2012) Residual platelets are the main determinants of microparticles count in frozen-thawed plasma. Thromb Res 130(3):561–562. doi: 10.1016/j.thromres.2012.04.012 CrossRefPubMedGoogle Scholar
  38. 38.
    Gyorgy B, Szabo TG, Pasztoi M, Pal Z, Misjak P, Aradi B, Laszlo V, Pallinger E, Pap E, Kittel A, Nagy G, Falus A, Buzas EI (2011) Membrane vesicles, current state-of-the-art: emerging role of extracellular vesicles. Cell Mol Life Sci 68(16):2667–2688. doi: 10.1007/s00018-011-0689-3 CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Willekens FL, Werre JM, Kruijt JK, Roerdinkholder-Stoelwinder B, Groenen-Dopp YA, van den Bos AG, Bosman GJ, van Berkel TJ (2005) Liver Kupffer cells rapidly remove red blood cell-derived vesicles from the circulation by scavenger receptors. Blood 105(5):2141–2145. doi: 10.1182/blood-2004-04-1578 CrossRefPubMedGoogle Scholar
  40. 40.
    Feng D, Zhao WL, Ye YY, Bai XC, Liu RQ, Chang LF, Zhou Q, Sui SF (2010) Cellular internalization of exosomes occurs through phagocytosis. Traffic 11(5):675–687. doi: 10.1111/j.1600-0854.2010.01041.x CrossRefPubMedGoogle Scholar
  41. 41.
    Peinado H, Aleckovic M, Lavotshkin S, Matei I, Costa-Silva B, Moreno-Bueno G, Hergueta-Redondo M, Williams C, Garcia-Santos G, Ghajar C, Nitadori-Hoshino A, Hoffman C, Badal K, Garcia BA, Callahan MK, Yuan J, Martins VR, Skog J, Kaplan RN, Brady MS, Wolchok JD, Chapman PB, Kang Y, Bromberg J, Lyden D (2012) Melanoma exosomes educate bone marrow progenitor cells toward a pro-metastatic phenotype through MET. Nat Med 18(6):883–891. doi: 10.1038/nm.2753 CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Szarka E, Babos F, Magyar A, Huber K, Szittner Z, Papp K, Prechl J, Pozsgay J, Neer Z, Adori M, Nagy G, Rojkovich B, Gati T, Kelemen J, Baka Z, Brozik M, Pazar B, Poor G, Hudecz F, Sarmay G (2014) Recognition of new citrulline-containing peptide epitopes by autoantibodies produced in vivo and in vitro by B cells of rheumatoid arthritis patients. Immunology 141(2):181–191. doi: 10.1111/imm.12175 CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Knijff-Dutmer EA, Koerts J, Nieuwland R, Kalsbeek-Batenburg EM, van de Laar MA (2002) Elevated levels of platelet microparticles are associated with disease activity in rheumatoid arthritis. Arthritis Rheum 46(6):1498–1503. doi: 10.1002/art.10312 CrossRefPubMedGoogle Scholar
  44. 44.
    Veale DJ, Fearon U (2015) What makes psoriatic and rheumatoid arthritis so different? RMD Open 1(1):e000025. doi: 10.1136/rmdopen-2014-000025 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing 2017

Authors and Affiliations

  • Nikolett Marton
    • 1
  • Orsolya Tünde Kovács
    • 1
  • Eszter Baricza
    • 1
  • Ágnes Kittel
    • 2
  • Dávid Győri
    • 3
    • 4
  • Attila Mócsai
    • 3
    • 4
  • Florian M. P. Meier
    • 5
  • Carl S. Goodyear
    • 5
  • Iain B. McInnes
    • 5
  • Edit I. Buzás
    • 1
  • György Nagy
    • 1
    • 6
    Email author
  1. 1.Department of Genetics, Cell- and ImmunobiologySemmelweis UniversityBudapestHungary
  2. 2.Institute of Experimental MedicineHungarian Academy of SciencesBudapestHungary
  3. 3.Department of PhysiologySemmelweis UniversityBudapestHungary
  4. 4.MTA-SE “Lendület” Inflammation Physiology Research Group of the Hungarian Academy of Sciences and the Semmelweis UniversityBudapestHungary
  5. 5.Institute of Infection, Immunity and InflammationUniversity of GlasgowGlasgowUK
  6. 6.Department of Rheumatology, 3rd Department of Internal MedicineSemmelweis UniversityBudapestHungary

Personalised recommendations