Cellular and Molecular Life Sciences

, Volume 74, Issue 18, pp 3317–3334 | Cite as

Shaping the cellular landscape with Set2/SETD2 methylation

Review

Abstract

Chromatin structure is a major barrier to gene transcription that must be disrupted and re-set during each round of transcription. Central to this process is the Set2/SETD2 methyltransferase that mediates co-transcriptional methylation to histone H3 at lysine 36 (H3K36me). Studies reveal that H3K36me not only prevents inappropriate transcriptional initiation from arising within gene bodies, but that it has other conserved functions that include the repair of damaged DNA and regulation of pre-mRNA splicing. Consistent with the importance of Set2/SETD2 in chromatin biology, mutations of SETD2, or mutations at or near H3K36 in H3.3, have recently been found to underlie cancer development. This review will summarize the latest insights into the functions of Set2/SETD2 in genome regulation and cancer development.

Keywords

Histone H3K36 methylation Set2 SETD2 Transcriptional regulation Cryptic transcription 

References

  1. 1.
    Luger K, Mader AW, Richmond RK, Sargent DF, Richmond TJ (1997) Crystal structure of the nucleosome core particle at 2.8 A resolution. Nature 389(6648):251–260PubMedCrossRefGoogle Scholar
  2. 2.
    Kornberg RD (1974) Chromatin structure: a repeating unit of histones and DNA. Science 184(4139):868–871PubMedCrossRefGoogle Scholar
  3. 3.
    Kornberg RD, Lorch Y (1999) Twenty-five years of the nucleosome, fundamental particle of the eukaryote chromosome. Cell 98(3):285–294PubMedCrossRefGoogle Scholar
  4. 4.
    Oudet P, Gross-Bellard M, Chambon P (1975) Electron microscopic and biochemical evidence that chromatin structure is a repeating unit. Cell 4(4):281–300PubMedCrossRefGoogle Scholar
  5. 5.
    Bannister AJ, Kouzarides T (2011) Regulation of chromatin by histone modifications. Cell Res 21(3):381–395PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    Rothbart SB, Strahl BD (2014) Interpreting the language of histone and DNA modifications. Biochim Biophys Acta 1839(8):627–643PubMedPubMedCentralCrossRefGoogle Scholar
  7. 7.
    Ng MK, Cheung P (2016) A brief histone in time: understanding the combinatorial functions of histone PTMs in the nucleosome context. Biochem Cell Biol 94(1):33–42PubMedCrossRefGoogle Scholar
  8. 8.
    Black JC, Van Rechem C, Whetstine JR (2012) Histone lysine methylation dynamics: establishment, regulation, and biological impact. Mol Cell 48(4):491–507PubMedCrossRefGoogle Scholar
  9. 9.
    Tessarz P, Kouzarides T (2014) Histone core modifications regulating nucleosome structure and dynamics. Nat Rev Mol Cell Biol 15(11):703–708PubMedCrossRefGoogle Scholar
  10. 10.
    Wozniak GG, Strahl BD (2014) Hitting the ‘mark’: interpreting lysine methylation in the context of active transcription. Biochim Biophys Acta 1839(12):1353–1361PubMedCrossRefGoogle Scholar
  11. 11.
    Weiner A, Hsieh TH, Appleboim A, Chen HV, Rahat A, Amit I, Rando OJ, Friedman N (2015) High-resolution chromatin dynamics during a yeast stress response. Mol Cell 58(2):371–386PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    Ho JW, Jung YL, Liu T, Alver BH, Lee S, Ikegami K, Sohn KA, Minoda A, Tolstorukov MY, Appert A et al (2014) Comparative analysis of metazoan chromatin organization. Nature 512(7515):449–452PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    Strahl BD, Grant PA, Briggs SD, Sun ZW, Bone JR, Caldwell JA, Mollah S, Cook RG, Shabanowitz J, Hunt DF et al (2002) Set2 is a nucleosomal histone H3-selective methyltransferase that mediates transcriptional repression. Mol Cell Biol 22(5):1298–1306PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    Bell O, Wirbelauer C, Hild M, Scharf AN, Schwaiger M, MacAlpine DM, Zilbermann F, van Leeuwen F, Bell SP, Imhof A et al (2007) Localized H3K36 methylation states define histone H4K16 acetylation during transcriptional elongation in Drosophila. EMBO J 26(24):4974–4984PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Wagner EJ, Carpenter PB (2012) Understanding the language of Lys36 methylation at histone H3. Nat Rev Mol Cell Biol 13(2):115–126PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Yi X, Jiang XJ, Li XY, Jiang DS (2015) Histone methyltransferases: novel targets for tumor and developmental defects. Am J Transl Res 7(11):2159–2175PubMedPubMedCentralGoogle Scholar
  17. 17.
    Edmunds JW, Mahadevan LC, Clayton AL (2008) Dynamic histone H3 methylation during gene induction: HYPB/Setd2 mediates all H3K36 trimethylation. EMBO J 27(2):406–420PubMedCrossRefGoogle Scholar
  18. 18.
    Wang Y, Niu Y, Li B (2015) Balancing acts of SRI and an auto-inhibitory domain specify Set2 function at transcribed chromatin. Nucleic Acids Res 43(10):4881–4892PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    Hacker KE, Fahey CC, Shinsky SA, Chiang YJ, DiFiore JV, Jha DK, Vo AH, Shavit JA, Davis IJ, Strahl BD et al (2016) Structure/function analysis of recurrent mutations in SETD2 reveals a critical and conserved role for a SET domain residue in maintaining protein stability and H3K36 trimethylation. J Biol Chem 291:21283–21295PubMedCrossRefGoogle Scholar
  20. 20.
    Du HN, Fingerman IM, Briggs SD (2008) Histone H3 K36 methylation is mediated by a trans-histone methylation pathway involving an interaction between Set2 and histone H4. Genes Dev 22(20):2786–2798PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Du HN, Briggs SD (2010) A nucleosome surface formed by histone H4, H2A, and H3 residues is needed for proper histone H3 Lys36 methylation, histone acetylation, and repression of cryptic transcription. J Biol Chem 285(15):11704–11713PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Sudol M, Chen HI, Bougeret C, Einbond A, Bork P (1995) Characterization of a novel protein-binding module—the WW domain. FEBS Lett 369(1):67–71PubMedCrossRefGoogle Scholar
  23. 23.
    Sudol M, Sliwa K, Russo T (2001) Functions of WW domains in the nucleus. FEBS Lett 490(3):190–195PubMedCrossRefGoogle Scholar
  24. 24.
    Xiao T, Hall H, Kizer KO, Shibata Y, Hall MC, Borchers CH, Strahl BD (2003) Phosphorylation of RNA polymerase II CTD regulates H3 methylation in yeast. Genes Dev 17(5):654–663PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Gao YG, Yang H, Zhao J, Jiang YJ, Hu HY (2014) Autoinhibitory structure of the WW domain of HYPB/SETD2 regulates its interaction with the proline-rich region of huntingtin. Structure 22(3):378–386PubMedCrossRefGoogle Scholar
  26. 26.
    Faber PW, Barnes GT, Srinidhi J, Chen J, Gusella JF, MacDonald ME (1998) Huntingtin interacts with a family of WW domain proteins. Hum Mol Genet 7(9):1463–1474PubMedCrossRefGoogle Scholar
  27. 27.
    Poon BP, Mekhail K (2011) Cohesin and related coiled-coil domain-containing complexes physically and functionally connect the dots across the genome. Cell Cycle 10(16):2669–2682PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Rebehmed J, Revy P, Faure G, de Villartay JP, Callebaut I (2014) Expanding the SRI domain family: a common scaffold for binding the phosphorylated C-terminal domain of RNA polymerase II. FEBS Lett 588(23):4431–4437PubMedCrossRefGoogle Scholar
  29. 29.
    Kizer KO, Phatnani HP, Shibata Y, Hall H, Greenleaf AL, Strahl BD (2005) A novel domain in Set2 mediates RNA polymerase II interaction and couples histone H3 K36 methylation with transcript elongation. Mol Cell Biol 25(8):3305–3316PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    Schaft D, Roguev A, Kotovic KM, Shevchenko A, Sarov M, Shevchenko A, Neugebauer KM, Stewart AF (2003) The histone 3 lysine 36 methyltransferase, SET2, is involved in transcriptional elongation. Nucleic Acids Res 31(10):2475–2482PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Li M, Phatnani HP, Guan Z, Sage H, Greenleaf AL, Zhou P (2005) Solution structure of the Set2-Rpb1 interacting domain of human Set2 and its interaction with the hyperphosphorylated C-terminal domain of Rpb1. Proc Natl Acad Sci USA 102(49):17636–17641PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Vojnic E, Simon B, Strahl BD, Sattler M, Cramer P (2006) Structure and carboxyl-terminal domain (CTD) binding of the Set2 SRI domain that couples histone H3 Lys36 methylation to transcription. J Biol Chem 281(1):13–15PubMedCrossRefGoogle Scholar
  33. 33.
    Li B, Howe L, Anderson S, Yates JR 3rd, Workman JL (2003) The Set2 histone methyltransferase functions through the phosphorylated carboxyl-terminal domain of RNA polymerase II. J Biol Chem 278(11):8897–8903PubMedCrossRefGoogle Scholar
  34. 34.
    Youdell ML, Kizer KO, Kisseleva-Romanova E, Fuchs SM, Duro E, Strahl BD, Mellor J (2008) Roles for Ctk1 and Spt6 in regulating the different methylation states of histone H3 lysine 36. Mol Cell Biol 28(16):4915–4926PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Suzuki S, Kato H, Suzuki Y, Chikashige Y, Hiraoka Y, Kimura H, Nagao K, Obuse C, Takahata S, Murakami Y (2016) Histone H3K36 trimethylation is essential for multiple silencing mechanisms in fission yeast. Nucleic Acids Res 44(9):4147–4162PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    Jones JC, Phatnani HP, Haystead TA, MacDonald JA, Alam SM, Greenleaf AL (2004) C-terminal repeat domain kinase I phosphorylates Ser2 and Ser5 of RNA polymerase II C-terminal domain repeats. J Biol Chem 279(24):24957–24964PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    Suh H, Ficarro SB, Kang UB, Chun Y, Marto JA, Buratowski S (2016) Direct analysis of phosphorylation sites on the Rpb1 C-terminal domain of RNA polymerase II. Mol Cell 61(2):297–304PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Qiu H, Hu C, Hinnebusch AG (2009) Phosphorylation of the Pol II CTD by KIN28 enhances BUR1/BUR2 recruitment and Ser2 CTD phosphorylation near promoters. Mol Cell 33(6):752–762PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    Liu Y, Warfield L, Zhang C, Luo J, Allen J, Lang WH, Ranish J, Shokat KM, Hahn S (2009) Phosphorylation of the transcription elongation factor Spt5 by yeast Bur1 kinase stimulates recruitment of the PAF complex. Mol Cell Biol 29(17):4852–4863PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    Chu Y, Sutton A, Sternglanz R, Prelich G (2006) The BUR1 cyclin-dependent protein kinase is required for the normal pattern of histone methylation by SET2. Mol Cell Biol 26(8):3029–3038PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Chu Y, Simic R, Warner MH, Arndt KM, Prelich G (2007) Regulation of histone modification and cryptic transcription by the Bur1 and Paf1 complexes. EMBO J 26(22):4646–4656PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    Keogh MC, Podolny V, Buratowski S (2003) Bur1 kinase is required for efficient transcription elongation by RNA polymerase II. Mol Cell Biol 23(19):7005–7018PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Laribee RN, Krogan NJ, Xiao T, Shibata Y, Hughes TR, Greenblatt JF, Strahl BD (2005) BUR kinase selectively regulates H3 K4 trimethylation and H2B ubiquitylation through recruitment of the PAF elongation complex. Curr Biol 15(16):1487–1493PubMedCrossRefGoogle Scholar
  44. 44.
    Zhou K, Kuo WH, Fillingham J, Greenblatt JF (2009) Control of transcriptional elongation and cotranscriptional histone modification by the yeast BUR kinase substrate Spt5. Proc Natl Acad Sci USA 106(17):6956–6961PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Dronamraju R, Strahl BD (2014) A feed forward circuit comprising Spt6, Ctk1 and PAF regulates Pol II CTD phosphorylation and transcription elongation. Nucleic Acids Res 42(2):870–881PubMedCrossRefGoogle Scholar
  46. 46.
    Fuchs SM, Kizer KO, Braberg H, Krogan NJ, Strahl BD (2012) RNA polymerase II carboxyl-terminal domain phosphorylation regulates protein stability of the Set2 methyltransferase and histone H3 di- and trimethylation at lysine 36. J Biol Chem 287(5):3249–3256PubMedCrossRefGoogle Scholar
  47. 47.
    Zhu K, Lei PJ, Ju LG, Wang X, Huang K, Yang B, Shao C, Zhu Y, Wei G, Fu XD et al (2016) SPOP-containing complex regulates SETD2 stability and H3K36me3-coupled alternative splicing. Nucleic Acids Res 45:92–105PubMedPubMedCentralCrossRefGoogle Scholar
  48. 48.
    Bortvin A, Winston F (1996) Evidence that Spt6p controls chromatin structure by a direct interaction with histones. Science 272(5267):1473–1476PubMedCrossRefGoogle Scholar
  49. 49.
    Clark-Adams CD, Winston F (1987) The SPT6 gene is essential for growth and is required for delta-mediated transcription in Saccharomyces cerevisiae. Mol Cell Biol 7(2):679–686PubMedPubMedCentralCrossRefGoogle Scholar
  50. 50.
    Swanson MS, Carlson M, Winston F (1990) SPT6, an essential gene that affects transcription in Saccharomyces cerevisiae, encodes a nuclear protein with an extremely acidic amino terminus. Mol Cell Biol 10(9):4935–4941PubMedPubMedCentralCrossRefGoogle Scholar
  51. 51.
    Diebold ML, Loeliger E, Koch M, Winston F, Cavarelli J, Romier C (2010) Noncanonical tandem SH2 enables interaction of elongation factor Spt6 with RNA polymerase II. J Biol Chem 285(49):38389–38398PubMedPubMedCentralCrossRefGoogle Scholar
  52. 52.
    Sun M, Lariviere L, Dengl S, Mayer A, Cramer P (2010) A tandem SH2 domain in transcription elongation factor Spt6 binds the phosphorylated RNA polymerase II C-terminal repeat domain (CTD). J Biol Chem 285(53):41597–41603PubMedPubMedCentralCrossRefGoogle Scholar
  53. 53.
    Yoh SM, Lucas JS, Jones KA (2008) The Iws1:Spt6:CTD complex controls cotranscriptional mRNA biosynthesis and HYPB/Setd2-mediated histone H3K36 methylation. Genes Dev 22(24):3422–3434PubMedPubMedCentralCrossRefGoogle Scholar
  54. 54.
    DeGennaro CM, Alver BH, Marguerat S, Stepanova E, Davis CP, Bahler J, Park PJ, Winston F (2013) Spt6 regulates intragenic and antisense transcription, nucleosome positioning, and histone modifications genome-wide in fission yeast. Mol Cell Biol 33(24):4779–4792PubMedPubMedCentralCrossRefGoogle Scholar
  55. 55.
    Cheung V, Chua G, Batada NN, Landry CR, Michnick SW, Hughes TR, Winston F (2008) Chromatin- and transcription-related factors repress transcription from within coding regions throughout the Saccharomyces cerevisiae genome. PLoS Biol 6(11):e277PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    Zhang L, Fletcher AG, Cheung V, Winston F, Stargell LA (2008) Spn1 regulates the recruitment of Spt6 and the Swi/Snf complex during transcriptional activation by RNA polymerase II. Mol Cell Biol 28(4):1393–1403PubMedCrossRefGoogle Scholar
  57. 57.
    Ng HH, Dole S, Struhl K (2003) The Rtf1 component of the Paf1 transcriptional elongation complex is required for ubiquitination of histone H2B. J Biol Chem 278(36):33625–33628PubMedCrossRefGoogle Scholar
  58. 58.
    Wood A, Schneider J, Dover J, Johnston M, Shilatifard A (2003) The Paf1 complex is essential for histone monoubiquitination by the Rad6-Bre1 complex, which signals for histone methylation by COMPASS and Dot1p. J Biol Chem 278(37):34739–34742PubMedCrossRefGoogle Scholar
  59. 59.
    Mueller CL, Porter SE, Hoffman MG, Jaehning JA (2004) The Paf1 complex has functions independent of actively transcribing RNA polymerase II. Mol Cell 14(4):447–456PubMedCrossRefGoogle Scholar
  60. 60.
    Van Oss SB, Shirra MK, Bataille AR, Wier AD, Yen K, Vinayachandran V, Byeon IL, Cucinotta CE, Heroux A, Jeon J et al (2016) The histone modification domain of Paf1 complex subunit Rtf1 directly stimulates H2B ubiquitylation through an interaction with Rad6. Mol Cell 64(4):815–825PubMedCrossRefGoogle Scholar
  61. 61.
    Nordick K, Hoffman MG, Betz JL, Jaehning JA (2008) Direct interactions between the Paf1 complex and a cleavage and polyadenylation factor are revealed by dissociation of Paf1 from RNA polymerase II. Eukaryot Cell 7(7):1158–1167PubMedPubMedCentralCrossRefGoogle Scholar
  62. 62.
    Klose RJ, Gardner KE, Liang G, Erdjument-Bromage H, Tempst P, Zhang Y (2007) Demethylation of histone H3K36 and H3K9 by Rph1: a vestige of an H3K9 methylation system in Saccharomyces cerevisiae? Mol Cell Biol 27(11):3951–3961PubMedPubMedCentralCrossRefGoogle Scholar
  63. 63.
    Fang J, Hogan GJ, Liang G, Lieb JD, Zhang Y (2007) The Saccharomyces cerevisiae histone demethylase Jhd1 fine-tunes the distribution of H3K36me2. Mol Cell Biol 27(13):5055–5065PubMedPubMedCentralCrossRefGoogle Scholar
  64. 64.
    Tu S, Bulloch EM, Yang L, Ren C, Huang WC, Hsu PH, Chen CH, Liao CL, Yu HM, Lo WS et al (2007) Identification of histone demethylases in Saccharomyces cerevisiae. J Biol Chem 282(19):14262–14271PubMedPubMedCentralCrossRefGoogle Scholar
  65. 65.
    Kim T, Buratowski S (2007) Two Saccharomyces cerevisiae JmjC domain proteins demethylate histone H3 Lys36 in transcribed regions to promote elongation. J Biol Chem 282(29):20827–20835PubMedCrossRefGoogle Scholar
  66. 66.
    Blackledge NP, Zhou JC, Tolstorukov MY, Farcas AM, Park PJ, Klose RJ (2010) CpG islands recruit a histone H3 lysine 36 demethylase. Mol Cell 38(2):179–190PubMedPubMedCentralCrossRefGoogle Scholar
  67. 67.
    Zhou JC, Blackledge NP, Farcas AM, Klose RJ (2012) Recognition of CpG island chromatin by KDM2A requires direct and specific interaction with linker DNA. Mol Cell Biol 32(2):479–489PubMedPubMedCentralCrossRefGoogle Scholar
  68. 68.
    Borgel J, Tyl M, Schiller K, Pusztai Z, Dooley CM, Deng W, Wooding C, White RJ, Warnecke T, Leonhardt H et al (2016) KDM2A integrates DNA and histone modification signals through a CXXC/PHD module and direct interaction with HP1. Nucleic Acids Res 45:1114–1129PubMedCentralGoogle Scholar
  69. 69.
    Whetstine JR, Nottke A, Lan F, Huarte M, Smolikov S, Chen Z, Spooner E, Li E, Zhang G, Colaiacovo M et al (2006) Reversal of histone lysine trimethylation by the JMJD2 family of histone demethylases. Cell 125(3):467–481PubMedCrossRefGoogle Scholar
  70. 70.
    Black JC, Manning AL, Van Rechem C, Kim J, Ladd B, Cho J, Pineda CM, Murphy N, Daniels DL, Montagna C et al (2013) KDM4A lysine demethylase induces site-specific copy gain and rereplication of regions amplified in tumors. Cell 154(3):541–555PubMedCrossRefGoogle Scholar
  71. 71.
    Salifou K, Ray S, Verrier L, Aguirrebengoa M, Trouche D, Panov KI, Vandromme M (2016) The histone demethylase JMJD2A/KDM4A links ribosomal RNA transcription to nutrients and growth factors availability. Nat Commun 7:10174PubMedPubMedCentralCrossRefGoogle Scholar
  72. 72.
    Li H, An J, Wu M, Zheng Q, Gui X, Li T, Pu H, Lu D (2015) LncRNA HOTAIR promotes human liver cancer stem cell malignant growth through downregulation of SETD2. Oncotarget 6(29):27847–27864PubMedPubMedCentralCrossRefGoogle Scholar
  73. 73.
    Xiang W, He J, Huang C, Chen L, Tao D, Wu X, Wang M, Luo G, Xiao X, Zeng F et al (2015) miR-106b-5p targets tumor suppressor gene SETD2 to inactive its function in clear cell renal cell carcinoma. Oncotarget 6(6):4066–4079PubMedPubMedCentralCrossRefGoogle Scholar
  74. 74.
    Tang L, Zhang W, Su B, Yu B (2013) Long noncoding RNA HOTAIR is associated with motility, invasion, and metastatic potential of metastatic melanoma. Biomed Res Int 2013:251098PubMedPubMedCentralGoogle Scholar
  75. 75.
    Liu F, Gong J, Huang W, Wang Z, Wang M, Yang J, Wu C, Wu Z, Han B (2014) MicroRNA-106b-5p boosts glioma tumorigensis by targeting multiple tumor suppressor genes. Oncogene 33(40):4813–4822PubMedCrossRefGoogle Scholar
  76. 76.
    Schwabish MA, Struhl K (2006) Asf1 mediates histone eviction and deposition during elongation by RNA polymerase II. Mol Cell 22(3):415–422PubMedCrossRefGoogle Scholar
  77. 77.
    Dengl S, Mayer A, Sun M, Cramer P (2009) Structure and in vivo requirement of the yeast Spt6 SH2 domain. J Mol Biol 389(1):211–225PubMedCrossRefGoogle Scholar
  78. 78.
    Schwabish MA, Struhl K (2004) Evidence for eviction and rapid deposition of histones upon transcriptional elongation by RNA polymerase II. Mol Cell Biol 24(23):10111–10117PubMedPubMedCentralCrossRefGoogle Scholar
  79. 79.
    Adkins MW, Tyler JK (2004) The histone chaperone Asf1p mediates global chromatin disassembly in vivo. J Biol Chem 279(50):52069–52074PubMedCrossRefGoogle Scholar
  80. 80.
    Rufiange A, Jacques PE, Bhat W, Robert F, Nourani A (2007) Genome-wide replication-independent histone H3 exchange occurs predominantly at promoters and implicates H3 K56 acetylation and Asf1. Mol Cell 27(3):393–405PubMedCrossRefGoogle Scholar
  81. 81.
    Lin LJ, Minard LV, Johnston GC, Singer RA, Schultz MC (2010) Asf1 can promote trimethylation of H3 K36 by Set2. Mol Cell Biol 30(5):1116–1129PubMedPubMedCentralCrossRefGoogle Scholar
  82. 82.
    Venkatesh S, Smolle M, Li H, Gogol MM, Saint M, Kumar S, Natarajan K, Workman JL (2012) Set2 methylation of histone H3 lysine 36 suppresses histone exchange on transcribed genes. Nature 489(7416):452–455PubMedCrossRefGoogle Scholar
  83. 83.
    Vary JC Jr, Gangaraju VK, Qin J, Landel CC, Kooperberg C, Bartholomew B, Tsukiyama T (2003) Yeast Isw1p forms two separable complexes in vivo. Mol Cell Biol 23(1):80–91PubMedCrossRefGoogle Scholar
  84. 84.
    Vermeulen M, Eberl HC, Matarese F, Marks H, Denissov S, Butter F, Lee KK, Olsen JV, Hyman AA, Stunnenberg HG et al (2010) Quantitative interaction proteomics and genome-wide profiling of epigenetic histone marks and their readers. Cell 142(6):967–980PubMedCrossRefGoogle Scholar
  85. 85.
    Maltby VE, Martin BJ, Schulze JM, Johnson I, Hentrich T, Sharma A, Kobor MS, Howe L (2012) Histone H3 lysine 36 methylation targets the Isw1b remodeling complex to chromatin. Mol Cell Biol 32(17):3479–3485PubMedPubMedCentralCrossRefGoogle Scholar
  86. 86.
    Smolle M, Venkatesh S, Gogol MM, Li H, Zhang Y, Florens L, Washburn MP, Workman JL (2012) Chromatin remodelers Isw1 and Chd1 maintain chromatin structure during transcription by preventing histone exchange. Nat Struct Mol Biol 19(9):884–892PubMedPubMedCentralCrossRefGoogle Scholar
  87. 87.
    Lee CH, Wu J, Li B (2013) Chromatin remodelers fine-tune H3K36me-directed deacetylation of neighbor nucleosomes by Rpd3S. Mol Cell 52(2):255–263PubMedCrossRefGoogle Scholar
  88. 88.
    Gilbert TM, McDaniel SL, Byrum SD, Cades JA, Dancy BC, Wade H, Tackett AJ, Strahl BD, Taverna SD (2014) A PWWP domain-containing protein targets the NuA3 acetyltransferase complex via histone H3 lysine 36 trimethylation to coordinate transcriptional elongation at coding regions. Mol Cell Proteomics 13(11):2883–2895PubMedPubMedCentralCrossRefGoogle Scholar
  89. 89.
    Taverna SD, Ilin S, Rogers RS, Tanny JC, Lavender H, Li H, Baker L, Boyle J, Blair LP, Chait BT et al (2006) Yng1 PHD finger binding to H3 trimethylated at K4 promotes NuA3 HAT activity at K14 of H3 and transcription at a subset of targeted ORFs. Mol Cell 24(5):785–796PubMedPubMedCentralCrossRefGoogle Scholar
  90. 90.
    Carrozza MJ, Li B, Florens L, Suganuma T, Swanson SK, Lee KK, Shia WJ, Anderson S, Yates J, Washburn MP et al (2005) Histone H3 methylation by Set2 directs deacetylation of coding regions by Rpd3S to suppress spurious intragenic transcription. Cell 123(4):581–592PubMedCrossRefGoogle Scholar
  91. 91.
    Joshi AA, Struhl K (2005) Eaf3 chromodomain interaction with methylated H3-K36 links histone deacetylation to Pol II elongation. Mol Cell 20(6):971–978PubMedCrossRefGoogle Scholar
  92. 92.
    Sun B, Hong J, Zhang P, Dong X, Shen X, Lin D, Ding J (2008) Molecular basis of the interaction of Saccharomyces cerevisiae Eaf3 chromo domain with methylated H3K36. J Biol Chem 283(52):36504–36512PubMedPubMedCentralCrossRefGoogle Scholar
  93. 93.
    Xu C, Cui G, Botuyan MV, Mer G (2008) Structural basis for the recognition of methylated histone H3K36 by the Eaf3 subunit of histone deacetylase complex Rpd3S. Structure 16(11):1740–1750PubMedPubMedCentralCrossRefGoogle Scholar
  94. 94.
    Keogh MC, Kurdistani SK, Morris SA, Ahn SH, Podolny V, Collins SR, Schuldiner M, Chin K, Punna T, Thompson NJ et al (2005) Cotranscriptional Set2 methylation of histone H3 lysine 36 recruits a repressive Rpd3 complex. Cell 123(4):593–605PubMedCrossRefGoogle Scholar
  95. 95.
    Li B, Gogol M, Carey M, Lee D, Seidel C, Workman JL (2007) Combined action of PHD and chromo domains directs the Rpd3S HDAC to transcribed chromatin. Science 316(5827):1050–1054PubMedCrossRefGoogle Scholar
  96. 96.
    Ruan C, Cui H, Lee CH, Li S, Li B (2016) Homodimeric PHD-domain containing Rco1 constitutes a critical interaction hub within the Rpd3S histone deacetylase complex. J Biol Chem 291:5428–5438PubMedPubMedCentralCrossRefGoogle Scholar
  97. 97.
    McDaniel SL, Fligor JE, Ruan C, Cui H, Bridgers JB, DiFiore JV, Guo AH, Li B, Strahl BD (2016) Combinatorial histone readout by the dual plant homeodomain (PHD) fingers of Rco1 mediates Rpd3S chromatin recruitment and the maintenance of transcriptional fidelity. J Biol Chem 291(28):14796–14802PubMedPubMedCentralCrossRefGoogle Scholar
  98. 98.
    Drouin S, Laramee L, Jacques PE, Forest A, Bergeron M, Robert F (2010) DSIF and RNA polymerase II CTD phosphorylation coordinate the recruitment of Rpd3S to actively transcribed genes. PLoS Genet 6(10):e1001173PubMedPubMedCentralCrossRefGoogle Scholar
  99. 99.
    Govind CK, Qiu H, Ginsburg DS, Ruan C, Hofmeyer K, Hu C, Swaminathan V, Workman JL, Li B, Hinnebusch AG (2010) Phosphorylated Pol II CTD recruits multiple HDACs, including Rpd3C(S), for methylation-dependent deacetylation of ORF nucleosomes. Mol Cell 39(2):234–246PubMedPubMedCentralCrossRefGoogle Scholar
  100. 100.
    Ruan C, Lee CH, Cui H, Li S, Li B (2015) Nucleosome contact triggers conformational changes of Rpd3S driving high-affinity H3K36me nucleosome engagement. Cell Rep 10(2):204–215PubMedPubMedCentralCrossRefGoogle Scholar
  101. 101.
    Huh JW, Wu J, Lee CH, Yun M, Gilada D, Brautigam CA, Li B (2012) Multivalent di-nucleosome recognition enables the Rpd3S histone deacetylase complex to tolerate decreased H3K36 methylation levels. EMBO J 31(17):3564–3574PubMedPubMedCentralCrossRefGoogle Scholar
  102. 102.
    Rayasam GV, Wendling O, Angrand PO, Mark M, Niederreither K, Song L, Lerouge T, Hager GL, Chambon P, Losson R (2003) NSD1 is essential for early post-implantation development and has a catalytically active SET domain. EMBO J 22(12):3153–3163PubMedPubMedCentralCrossRefGoogle Scholar
  103. 103.
    Angrand PO, Apiou F, Stewart AF, Dutrillaux B, Losson R, Chambon P (2001) NSD3, a new SET domain-containing gene, maps to 8p12 and is amplified in human breast cancer cell lines. Genomics 74(1):79–88PubMedCrossRefGoogle Scholar
  104. 104.
    Eram MS, Kuznetsova E, Li F, Lima-Fernandes E, Kennedy S, Chau I, Arrowsmith CH, Schapira M, Vedadi M (2015) Kinetic characterization of human histone H3 lysine 36 methyltransferases, ASH1L and SETD2. Biochim Biophys Acta 1850(9):1842–1848PubMedCrossRefGoogle Scholar
  105. 105.
    Sun XJ, Wei J, Wu XY, Hu M, Wang L, Wang HH, Zhang QH, Chen SJ, Huang QH, Chen Z (2005) Identification and characterization of a novel human histone H3 lysine 36-specific methyltransferase. J Biol Chem 280(42):35261–35271PubMedCrossRefGoogle Scholar
  106. 106.
    Li J, Duns G, Westers H, Sijmons R, van den Berg A, Kok K (2016) SETD2: an epigenetic modifier with tumor suppressor functionality. Oncotarget 7:50719–50734PubMedPubMedCentralCrossRefGoogle Scholar
  107. 107.
    Jelinic P, Pellegrino J, David G (2011) A novel mammalian complex containing Sin3B mitigates histone acetylation and RNA polymerase II progression within transcribed loci. Mol Cell Biol 31(1):54–62PubMedCrossRefGoogle Scholar
  108. 108.
    Kumar GS, Chang W, Xie T, Patel A, Zhang Y, Wang GG, David G, Radhakrishnan I (2012) Sequence requirements for combinatorial recognition of histone H3 by the MRG15 and Pf1 subunits of the Rpd3S/Sin3S corepressor complex. J Mol Biol 422(4):519–531PubMedPubMedCentralCrossRefGoogle Scholar
  109. 109.
    Luco RF, Pan Q, Tominaga K, Blencowe BJ, Pereira-Smith OM, Misteli T (2010) Regulation of alternative splicing by histone modifications. Science 327(5968):996–1000PubMedPubMedCentralCrossRefGoogle Scholar
  110. 110.
    Wen H, Li Y, Xi Y, Jiang S, Stratton S, Peng D, Tanaka K, Ren Y, Xia Z, Wu J et al (2014) ZMYND11 links histone H3.3K36me3 to transcription elongation and tumour suppression. Nature 508:263–268PubMedPubMedCentralCrossRefGoogle Scholar
  111. 111.
    Guo R, Zheng L, Park JW, Lv R, Chen H, Jiao F, Xu W, Mu S, Wen H, Qiu J et al (2014) BS69/ZMYND11 reads and connects histone H3.3 lysine 36 trimethylation-decorated chromatin to regulated pre-mRNA processing. Mol Cell 56(2):298–310PubMedPubMedCentralCrossRefGoogle Scholar
  112. 112.
    Baubec T, Colombo DF, Wirbelauer C, Schmidt J, Burger L, Krebs AR, Akalin A, Schubeler D (2015) Genomic profiling of DNA methyltransferases reveals a role for DNMT3B in genic methylation. Nature 520(7546):243–247PubMedCrossRefGoogle Scholar
  113. 113.
    Morselli M, Pastor WA, Montanini B, Nee K, Ferrari R, Fu K, Bonora G, Rubbi L, Clark AT, Ottonello S et al (2015) In vivo targeting of de novo DNA methylation by histone modifications in yeast and mouse. eLife 4:e06205PubMedPubMedCentralCrossRefGoogle Scholar
  114. 114.
    Cai L, Rothbart SB, Lu R, Xu B, Chen WY, Tripathy A, Rockowitz S, Zheng D, Patel DJ, Allis CD et al (2013) An H3K36 methylation-engaging Tudor motif of polycomb-like proteins mediates PRC2 complex targeting. Mol Cell 49(3):571–582PubMedCrossRefGoogle Scholar
  115. 115.
    Ballare C, Lange M, Lapinaite A, Martin GM, Morey L, Pascual G, Liefke R, Simon B, Shi Y, Gozani O et al (2012) Phf19 links methylated Lys36 of histone H3 to regulation of Polycomb activity. Nat Struct Mol Biol 19(12):1257–1265PubMedPubMedCentralCrossRefGoogle Scholar
  116. 116.
    Brien GL, Gambero G, O’Connell DJ, Jerman E, Turner SA, Egan CM, Dunne EJ, Jurgens MC, Wynne K, Piao L et al (2012) Polycomb PHF19 binds H3K36me3 and recruits PRC2 and demethylase NO66 to embryonic stem cell genes during differentiation. Nat Struct Mol Biol 19(12):1273–1281PubMedCrossRefGoogle Scholar
  117. 117.
    Fang R, Chen F, Dong Z, Hu D, Barbera AJ, Clark EA, Fang J, Yang Y, Mei P, Rutenberg M et al (2013) LSD2/KDM1B and its cofactor NPAC/GLYR1 endow a structural and molecular model for regulation of H3K4 demethylation. Mol Cell 49(3):558–570PubMedCrossRefGoogle Scholar
  118. 118.
    Pradeepa MM, Sutherland HG, Ule J, Grimes GR, Bickmore WA (2012) Psip1/Ledgf p52 binds methylated histone H3K36 and splicing factors and contributes to the regulation of alternative splicing. PLoS Genet 8(5):e1002717PubMedPubMedCentralCrossRefGoogle Scholar
  119. 119.
    Li F, Mao G, Tong D, Huang J, Gu L, Yang W, Li GM (2013) The histone mark H3K36me3 regulates human DNA mismatch repair through its interaction with MutSalpha. Cell 153(3):590–600PubMedPubMedCentralCrossRefGoogle Scholar
  120. 120.
    Kaplan CD, Laprade L, Winston F (2003) Transcription elongation factors repress transcription initiation from cryptic sites. Science 301(5636):1096–1099PubMedCrossRefGoogle Scholar
  121. 121.
    Neil H, Malabat C, d’Aubenton-Carafa Y, Xu Z, Steinmetz LM, Jacquier A (2009) Widespread bidirectional promoters are the major source of cryptic transcripts in yeast. Nature 457(7232):1038–1042PubMedCrossRefGoogle Scholar
  122. 122.
    Xu Z, Wei W, Gagneur J, Perocchi F, Clauder-Munster S, Camblong J, Guffanti E, Stutz F, Huber W, Steinmetz LM (2009) Bidirectional promoters generate pervasive transcription in yeast. Nature 457(7232):1033–1037PubMedPubMedCentralCrossRefGoogle Scholar
  123. 123.
    Li B, Gogol M, Carey M, Pattenden SG, Seidel C, Workman JL (2007) Infrequently transcribed long genes depend on the Set2/Rpd3S pathway for accurate transcription. Genes Dev 21(11):1422–1430PubMedPubMedCentralCrossRefGoogle Scholar
  124. 124.
    Wyers F, Rougemaille M, Badis G, Rousselle JC, Dufour ME, Boulay J, Regnault B, Devaux F, Namane A, Seraphin B et al (2005) Cryptic pol II transcripts are degraded by a nuclear quality control pathway involving a new poly(A) polymerase. Cell 121(5):725–737PubMedCrossRefGoogle Scholar
  125. 125.
    van Dijk EL, Chen CL, d’Aubenton-Carafa Y, Gourvennec S, Kwapisz M, Roche V, Bertrand C, Silvain M, Legoix-Ne P, Loeillet S et al (2011) XUTs are a class of Xrn1-sensitive antisense regulatory non-coding RNA in yeast. Nature 475(7354):114–117PubMedCrossRefGoogle Scholar
  126. 126.
    Venkatesh S, Li H, Gogol MM, Workman JL (2016) Selective suppression of antisense transcription by Set2-mediated H3K36 methylation. Nat Commun 7:13610PubMedPubMedCentralCrossRefGoogle Scholar
  127. 127.
    Churchman LS, Weissman JS (2011) Nascent transcript sequencing visualizes transcription at nucleotide resolution. Nature 469(7330):368–373PubMedCrossRefGoogle Scholar
  128. 128.
    Neri F, Rapelli S, Krepelova A, Incarnato D, Parlato C, Basile G, Maldotti M, Anselmi F, Oliviero S (2017) Intragenic DNA methylation prevents spurious transcription initiation. Nature 543(7643):72–77PubMedCrossRefGoogle Scholar
  129. 129.
    Silva AC, Xu X, Kim HS, Fillingham J, Kislinger T, Mennella TA, Keogh MC (2012) The replication-independent histone H3-H4 chaperones HIR, ASF1, and RTT106 co-operate to maintain promoter fidelity. J Biol Chem 287(3):1709–1718PubMedCrossRefGoogle Scholar
  130. 130.
    Lenstra TL, Benschop JJ, Kim T, Schulze JM, Brabers NA, Margaritis T, van de Pasch LA, van Heesch SA, Brok MO, Groot Koerkamp MJ et al (2011) The specificity and topology of chromatin interaction pathways in yeast. Mol Cell 42(4):536–549PubMedPubMedCentralCrossRefGoogle Scholar
  131. 131.
    Huber F, Bunina D, Gupta I, Khmelinskii A, Meurer M, Theer P, Steinmetz LM, Knop M (2016) Protein abundance control by non-coding antisense transcription. Cell Rep 15(12):2625–2636PubMedPubMedCentralCrossRefGoogle Scholar
  132. 132.
    Kim JH, Lee BB, Oh YM, Zhu C, Steinmetz LM, Lee Y, Kim WK, Lee SB, Buratowski S, Kim T (2016) Modulation of mRNA and lncRNA expression dynamics by the Set2-Rpd3S pathway. Nat Commun 7:13534PubMedPubMedCentralCrossRefGoogle Scholar
  133. 133.
    Sen P, Dang W, Donahue G, Dai J, Dorsey J, Cao X, Liu W, Cao K, Perry R, Lee JY et al (2015) H3K36 methylation promotes longevity by enhancing transcriptional fidelity. Genes Dev 29(13):1362–1376PubMedPubMedCentralCrossRefGoogle Scholar
  134. 134.
    Hu Z, Chen K, Xia Z, Chavez M, Pal S, Seol JH, Chen CC, Li W, Tyler JK (2014) Nucleosome loss leads to global transcriptional up-regulation and genomic instability during yeast aging. Genes Dev 28(4):396–408PubMedPubMedCentralCrossRefGoogle Scholar
  135. 135.
    Hamilton B, Dong Y, Shindo M, Liu W, Odell I, Ruvkun G, Lee SS (2005) A systematic RNAi screen for longevity genes in C. elegans. Genes Dev 19(13):1544–1555PubMedPubMedCentralCrossRefGoogle Scholar
  136. 136.
    Pu M, Ni Z, Wang M, Wang X, Wood JG, Helfand SL, Yu H, Lee SS (2015) Trimethylation of Lys36 on H3 restricts gene expression change during aging and impacts life span. Genes Dev 29(7):718–731PubMedPubMedCentralCrossRefGoogle Scholar
  137. 137.
    Simon JM, Hacker KE, Singh D, Brannon AR, Parker JS, Weiser M, Ho TH, Kuan PF, Jonasch E, Furey TS et al (2014) Variation in chromatin accessibility in human kidney cancer links H3K36 methyltransferase loss with widespread RNA processing defects. Genome Res 24(2):241–250PubMedPubMedCentralCrossRefGoogle Scholar
  138. 138.
    Sorenson MR, Jha DK, Ucles SA, Flood DM, Strahl BD, Stevens SW, Kress TL (2016) Histone H3K36 methylation regulates pre-mRNA splicing in Saccharomyces cerevisiae. RNA Biol 13(4):412–426PubMedPubMedCentralCrossRefGoogle Scholar
  139. 139.
    Jha DK, Strahl BD (2014) An RNA polymerase II-coupled function for histone H3K36 methylation in checkpoint activation and DSB repair. Nat Commun 5:3965PubMedPubMedCentralCrossRefGoogle Scholar
  140. 140.
    Pai CC, Deegan RS, Subramanian L, Gal C, Sarkar S, Blaikley EJ, Walker C, Hulme L, Bernhard E, Codlin S et al (2014) A histone H3K36 chromatin switch coordinates DNA double-strand break repair pathway choice. Nat Commun 5:4091PubMedPubMedCentralCrossRefGoogle Scholar
  141. 141.
    Winsor TS, Bartkowiak B, Bennett CB, Greenleaf AL (2013) A DNA damage response system associated with the phosphoCTD of elongating RNA polymerase II. PLoS ONE 8(4):e60909PubMedPubMedCentralCrossRefGoogle Scholar
  142. 142.
    Carvalho S, Vitor AC, Sridhara SC, Martins FB, Raposo AC, Desterro JM, Ferreira J, de Almeida SF (2014) SETD2 is required for DNA double-strand break repair and activation of the p53-mediated checkpoint. eLife 3:e02482PubMedPubMedCentralCrossRefGoogle Scholar
  143. 143.
    Kanu N, Gronroos E, Martinez P, Burrell RA, Yi Goh X, Bartkova J, Maya-Mendoza A, Mistrik M, Rowan AJ, Patel H et al (2015) SETD2 loss-of-function promotes renal cancer branched evolution through replication stress and impaired DNA repair. Oncogene 34(46):5699–5708PubMedPubMedCentralCrossRefGoogle Scholar
  144. 144.
    Pfister SX, Ahrabi S, Zalmas LP, Sarkar S, Aymard F, Bachrati CZ, Helleday T, Legube G, La Thangue NB, Porter AC et al (2014) SETD2-dependent histone H3K36 trimethylation is required for homologous recombination repair and genome stability. Cell Rep 7(6):2006–2018PubMedPubMedCentralCrossRefGoogle Scholar
  145. 145.
    Qin S, Guo Y, Xu C, Bian C, Fu M, Gong S, Min J (2013) Tudor domains of the PRC2 components PHF1 and PHF19 selectively bind to histone H3K36me3. Biochem Biophys Res Commun 430(2):547–553PubMedCrossRefGoogle Scholar
  146. 146.
    Dhayalan A, Rajavelu A, Rathert P, Tamas R, Jurkowska RZ, Ragozin S, Jeltsch A (2010) The Dnmt3a PWWP domain reads histone 3 lysine 36 trimethylation and guides DNA methylation. J Biol Chem 285(34):26114–26120PubMedPubMedCentralCrossRefGoogle Scholar
  147. 147.
    Rondelet G, Dal Maso T, Willems L, Wouters J (2016) Structural basis for recognition of histone H3K36me3 nucleosome by human de novo DNA methyltransferases 3A and 3B. J Struct Biol 194(3):357–367PubMedCrossRefGoogle Scholar
  148. 148.
    Jin B, Ernst J, Tiedemann RL, Xu H, Sureshchandra S, Kellis M, Dalton S, Liu C, Choi JH, Robertson KD (2012) Linking DNA methyltransferases to epigenetic marks and nucleosome structure genome-wide in human tumor cells. Cell Rep 2(5):1411–1424PubMedPubMedCentralCrossRefGoogle Scholar
  149. 149.
    Jones PA (2012) Functions of DNA methylation: islands, start sites, gene bodies and beyond. Nat Rev Genet 13(7):484–492PubMedCrossRefGoogle Scholar
  150. 150.
    Park IY, Powell RT, Tripathi DN, Dere R, Ho TH, Blasius TL, Chiang YC, Davis IJ, Fahey CC, Hacker KE et al (2016) Dual chromatin and cytoskeletal remodeling by SETD2. Cell 166(4):950–962PubMedCrossRefGoogle Scholar
  151. 151.
    Zhang X, Huang Y, Shi X (2015) Emerging roles of lysine methylation on non-histone proteins. Cell Mol Life Sci 72(22):4257–4272PubMedCrossRefGoogle Scholar
  152. 152.
    Stabell M, Larsson J, Aalen RB, Lambertsson A (2007) Drosophila dSet2 functions in H3-K36 methylation and is required for development. Biochem Biophys Res Commun 359(3):784–789PubMedCrossRefGoogle Scholar
  153. 153.
    McKay DJ, Klusza S, Penke TJ, Meers MP, Curry KP, McDaniel SL, Malek PY, Cooper SW, Tatomer DC, Lieb JD et al (2015) Interrogating the function of metazoan histones using engineered gene clusters. Dev Cell 32(3):373–386PubMedPubMedCentralCrossRefGoogle Scholar
  154. 154.
    Hu M, Sun XJ, Zhang YL, Kuang Y, Hu CQ, Wu WL, Shen SH, Du TT, Li H, He F et al (2010) Histone H3 lysine 36 methyltransferase Hypb/Setd2 is required for embryonic vascular remodeling. Proc Natl Acad Sci USA 107(7):2956–2961PubMedPubMedCentralCrossRefGoogle Scholar
  155. 155.
    Zhang Y, Xie S, Zhou Y, Xie Y, Liu P, Sun M, Xiao H, Jin Y, Sun X, Chen Z et al (2014) H3K36 histone methyltransferase Setd2 is required for murine embryonic stem cell differentiation toward endoderm. Cell Rep 8(6):1989–2002PubMedCrossRefGoogle Scholar
  156. 156.
    Dalgliesh GL, Furge K, Greenman C, Chen L, Bignell G, Butler A, Davies H, Edkins S, Hardy C, Latimer C et al (2010) Systematic sequencing of renal carcinoma reveals inactivation of histone modifying genes. Nature 463(7279):360–363PubMedPubMedCentralCrossRefGoogle Scholar
  157. 157.
    Gerlinger M, Rowan AJ, Horswell S, Larkin J, Endesfelder D, Gronroos E, Martinez P, Matthews N, Stewart A, Tarpey P et al (2012) Intratumor heterogeneity and branched evolution revealed by multiregion sequencing. N Engl J Med 366(10):883–892PubMedPubMedCentralCrossRefGoogle Scholar
  158. 158.
    Varela I, Tarpey P, Raine K, Huang D, Ong CK, Stephens P, Davies H, Jones D, Lin ML, Teague J et al (2011) Exome sequencing identifies frequent mutation of the SWI/SNF complex gene PBRM1 in renal carcinoma. Nature 469(7331):539–542PubMedPubMedCentralCrossRefGoogle Scholar
  159. 159.
    Mar BG, Bullinger LB, McLean KM, Grauman PV, Harris MH, Stevenson K, Neuberg DS, Sinha AU, Sallan SE, Silverman LB et al (2014) Mutations in epigenetic regulators including SETD2 are gained during relapse in paediatric acute lymphoblastic leukaemia. Nat Commun 5:3469PubMedPubMedCentralCrossRefGoogle Scholar
  160. 160.
    Zhu X, He F, Zeng H, Ling S, Chen A, Wang Y, Yan X, Wei W, Pang Y, Cheng H et al (2014) Identification of functional cooperative mutations of SETD2 in human acute leukemia. Nat Genet 46(3):287–293PubMedPubMedCentralCrossRefGoogle Scholar
  161. 161.
    Lawrence MS, Stojanov P, Mermel CH, Robinson JT, Garraway LA, Golub TR, Meyerson M, Gabriel SB, Lander ES, Getz G (2014) Discovery and saturation analysis of cancer genes across 21 tumour types. Nature 505(7484):495–501PubMedPubMedCentralCrossRefGoogle Scholar
  162. 162.
    Grosso AR, Leite AP, Carvalho S, Matos MR, Martins FB, Vitor AC, Desterro JM, Carmo-Fonseca M, de Almeida SF (2015) Pervasive transcription read-through promotes aberrant expression of oncogenes and RNA chimeras in renal carcinoma. eLife 4:e09214PubMedPubMedCentralCrossRefGoogle Scholar
  163. 163.
    Schwartzentruber J, Korshunov A, Liu XY, Jones DT, Pfaff E, Jacob K, Sturm D, Fontebasso AM, Quang DA, Tonjes M et al (2012) Driver mutations in histone H3.3 and chromatin remodelling genes in paediatric glioblastoma. Nature 482(7384):226–231PubMedCrossRefGoogle Scholar
  164. 164.
    Wu G, Broniscer A, McEachron TA, Lu C, Paugh BS, Becksfort J, Qu C, Ding L, Huether R, Parker M et al (2012) Somatic histone H3 alterations in pediatric diffuse intrinsic pontine gliomas and non-brainstem glioblastomas. Nat Genet 44(3):251–253PubMedPubMedCentralCrossRefGoogle Scholar
  165. 165.
    Behjati S, Tarpey PS, Presneau N, Scheipl S, Pillay N, Van Loo P, Wedge DC, Cooke SL, Gundem G, Davies H et al (2013) Distinct H3F3A and H3F3B driver mutations define chondroblastoma and giant cell tumor of bone. Nat Genet 45(12):1479–1482PubMedCrossRefGoogle Scholar
  166. 166.
    Shah MA, Denton EL, Arrowsmith CH, Lupien M, Schapira M (2014) A global assessment of cancer genomic alterations in epigenetic mechanisms. Epigenetics Chromatin 7(1):29PubMedPubMedCentralCrossRefGoogle Scholar
  167. 167.
    Fang D, Gan H, Lee JH, Han J, Wang Z, Riester SM, Jin L, Chen J, Zhou H, Wang J et al (2016) The histone H3.3K36M mutation reprograms the epigenome of chondroblastomas. Science 352(6291):1344–1348PubMedPubMedCentralCrossRefGoogle Scholar
  168. 168.
    Lu C, Jain SU, Hoelper D, Bechet D, Molden RC, Ran L, Murphy D, Venneti S, Hameed M, Pawel BR et al (2016) Histone H3K36 mutations promote sarcomagenesis through altered histone methylation landscape. Science 352(6287):844–849PubMedPubMedCentralCrossRefGoogle Scholar
  169. 169.
    Venneti S, Garimella MT, Sullivan LM, Martinez D, Huse JT, Heguy A, Santi M, Thompson CB, Judkins AR (2013) Evaluation of histone 3 lysine 27 trimethylation (H3K27me3) and enhancer of Zest 2 (EZH2) in pediatric glial and glioneuronal tumors shows decreased H3K27me3 in H3F3A K27M mutant glioblastomas. Brain Pathol 23(5):558–564PubMedCrossRefGoogle Scholar
  170. 170.
    Lewis PW, Muller MM, Koletsky MS, Cordero F, Lin S, Banaszynski LA, Garcia BA, Muir TW, Becher OJ, Allis CD (2013) Inhibition of PRC2 activity by a gain-of-function H3 mutation found in pediatric glioblastoma. Science 340(6134):857–861PubMedPubMedCentralCrossRefGoogle Scholar
  171. 171.
    Chan KM, Fang D, Gan H, Hashizume R, Yu C, Schroeder M, Gupta N, Mueller S, James CD, Jenkins R et al (2013) The histone H3.3K27M mutation in pediatric glioma reprograms H3K27 methylation and gene expression. Genes Dev 27(9):985–990PubMedPubMedCentralCrossRefGoogle Scholar
  172. 172.
    Justin N, Zhang Y, Tarricone C, Martin SR, Chen S, Underwood E, De Marco V, Haire LF, Walker PA, Reinberg D et al (2016) Structural basis of oncogenic histone H3K27M inhibition of human polycomb repressive complex 2. Nat Commun 7:11316PubMedPubMedCentralCrossRefGoogle Scholar
  173. 173.
    Yang S, Zheng X, Lu C, Li GM, Allis CD, Li H (2016) Molecular basis for oncohistone H3 recognition by SETD2 methyltransferase. Genes Dev 30(14):1611–1616PubMedPubMedCentralCrossRefGoogle Scholar
  174. 174.
    Bjerke L, Mackay A, Nandhabalan M, Burford A, Jury A, Popov S, Bax DA, Carvalho D, Taylor KR, Vinci M et al (2013) Histone H3.3. mutations drive pediatric glioblastoma through upregulation of MYCN. Cancer Discov 3(5):512–519PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer International Publishing 2017

Authors and Affiliations

  1. 1.Department of Biomolecular ChemistryUniversity of WisconsinMadisonUSA
  2. 2.Curriculum in Genetics and Molecular BiologyUniversity of North CarolinaChapel HillUSA
  3. 3.Department of BiochemistryUniversity of North CarolinaChapel HillUSA
  4. 4.Lineberger Comprehensive Cancer CenterUniversity of North CarolinaChapel HillUSA

Personalised recommendations