Cellular and Molecular Life Sciences

, Volume 74, Issue 11, pp 2039–2054 | Cite as

Innate and intrinsic antiviral immunity in Drosophila

  • Assel Mussabekova
  • Laurent Daeffler
  • Jean-Luc Imler


The fruit fly Drosophila melanogaster has been a valuable model to investigate the genetic mechanisms of innate immunity. Initially focused on the resistance to bacteria and fungi, these studies have been extended to include antiviral immunity over the last decade. Like all living organisms, insects are continually exposed to viruses and have developed efficient defense mechanisms. We review here our current understanding on antiviral host defense in fruit flies. A major antiviral defense in Drosophila is RNA interference, in particular the small interfering (si) RNA pathway. In addition, complex inducible responses and restriction factors contribute to the control of infections. Some of the genes involved in these pathways have been conserved through evolution, highlighting loci that may account for susceptibility to viral infections in humans. Other genes are not conserved and represent species-specific innovations.


Argonaute 2 Dicer-2 Jak/STAT pathway IMD pathway NF-κB 



We thank Dr. Nelson Martins and Dr. David Gubb for critical reading and comments on the manuscript and Dr. Carine Meignin for help with the figures. Work in our laboratory was supported by CNRS and grants from NIH (PO1 AI070167), ANR (ANR-13-BSV3-009), Infect-ERA (ANR-14-IFEC-0005), and Investissements d’Avenir Programs (ANR-10-LABX-36 ; ANR-11-EQPX-0022).


  1. 1.
    Bellen HJ, Yamamoto S (2015) Morgan’s legacy: fruit flies and the functional annotation of conserved genes. Cell 163:12–14. doi: 10.1016/j.cell.2015.09.009 PubMedPubMedCentralCrossRefGoogle Scholar
  2. 2.
    Hoffmann JA, Kafatos FC, Janeway CA, Ezekowitz RA (1999) Phylogenetic perspectives in innate immunity. Science 284:1313–1318PubMedCrossRefGoogle Scholar
  3. 3.
    Medzhitov R, Janeway CAJ (2002) Decoding the patterns of self and nonself by the innate immune system. Science 296:298–300PubMedCrossRefGoogle Scholar
  4. 4.
    Imler J-L, Bulet P (2005) Antimicrobial peptides in Drosophila: structures, activities and gene regulation. Chem Immunol Allergy 86:1–21. doi: 10.1159/000086648 PubMedCrossRefGoogle Scholar
  5. 5.
    Hoffmann JA (2003) The immune response of Drosophila. Nature 426:33–38PubMedCrossRefGoogle Scholar
  6. 6.
    Hultmark D (2003) Drosophila immunity: paths and patterns. Curr Opin Immunol 15:12–19PubMedCrossRefGoogle Scholar
  7. 7.
    Veillard F, Troxler L, Reichhart J-M (2016) Drosophila melanogaster clip-domain serine proteases: structure, function and regulation. Biochimie 122:255–269. doi: 10.1016/j.biochi.2015.10.007 PubMedCrossRefGoogle Scholar
  8. 8.
    Theopold U, Krautz R, Dushay MS (2014) The Drosophila clotting system and its messages for mammals. Dev Comp Immunol 42:42–46. doi: 10.1016/j.dci.2013.03.014 PubMedCrossRefGoogle Scholar
  9. 9.
    Weavers H, Evans IR, Martin P, Wood W (2016) Corpse engulfment generates a molecular memory that primes the macrophage inflammatory response. Cell 165:1658–1671. doi: 10.1016/j.cell.2016.04.049 PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    Gold KS, Brückner K (2015) Macrophages and cellular immunity in Drosophila melanogaster. Semin Immunol 27:357–368. doi: 10.1016/j.smim.2016.03.010 PubMedCrossRefGoogle Scholar
  11. 11.
    Letourneau M, Lapraz F, Sharma A et al (2016) Drosophilahematopoiesis under normal conditions and in response to immune stress. FEBS Lett. doi: 10.1002/1873-3468.12327 PubMedGoogle Scholar
  12. 12.
    Marques JT, Imler J-L (2016) The diversity of insect antiviral immunity: insights from viruses. Curr Opin Microbiol 32:71–76. doi: 10.1016/j.mib.2016.05.002 PubMedCrossRefGoogle Scholar
  13. 13.
    Bronkhorst AW, van Rij RP (2014) The long and short of antiviral defense: small RNA-based immunity in insects. Current Opin Virol 7:19–28. doi: 10.1016/j.coviro.2014.03.010 CrossRefGoogle Scholar
  14. 14.
    Karlikow M, Goic B, Saleh M-C (2014) RNAi and antiviral defense in Drosophila: setting up a systemic immune response. Dev Comp Immunol 42:85–92. doi: 10.1016/j.dci.2013.05.004 PubMedCrossRefGoogle Scholar
  15. 15.
    Xu J, Cherry S (2014) Viruses and antiviral immunity in Drosophila. Dev Comp Immunol 42:67–84. doi: 10.1016/j.dci.2013.05.002 PubMedCrossRefGoogle Scholar
  16. 16.
    Kingsolver MB, Huang Z, Hardy RW (2013) Insect antiviral innate immunity: pathways, effectors, and connections. J Mol Biol 425:4921–4936. doi: 10.1016/j.jmb.2013.10.006 PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    Ding SW, Ding S-W (2010) RNA-based antiviral immunity. Nat Rev Immunol 10:632–644. doi: 10.1038/nri2824 PubMedCrossRefGoogle Scholar
  18. 18.
    Lamiable O, Imler J-L (2014) Induced antiviral innate immunity in Drosophila. Curr Opin Microbiol 20:62–68. doi: 10.1016/j.mib.2014.05.006 PubMedCrossRefGoogle Scholar
  19. 19.
    Ratcliff F (1997) A similarity between viral defense and gene silencing in plants. Science 276:1558–1560. doi: 10.1126/science.276.5318.1558 PubMedCrossRefGoogle Scholar
  20. 20.
    Fire A, Fire A, Xu S et al (1998) Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391:806–811. doi: 10.1038/35888 PubMedCrossRefGoogle Scholar
  21. 21.
    Berezikov E, Robine N, Samsonova A et al (2011) Deep annotation of Drosophila melanogaster microRNAs yields insights into their processing, modification, and emergence. Genome Res 21:203–215. doi: 10.1101/gr.116657.110 PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Carthew RW, Agbu P, Giri R (2016) MicroRNA function in Drosophila melanogaster. Semin Cell Dev Biol. doi: 10.1016/j.semcdb.2016.03.015 PubMedGoogle Scholar
  23. 23.
    Landthaler M, Yalcin A, Tuschl T (2004) The human DiGeorge syndrome critical region gene 8 and Its D. melanogaster homolog are required for miRNA biogenesis. Curr Biol 14:2162–2167. doi: 10.1016/j.cub.2004.11.001 PubMedCrossRefGoogle Scholar
  24. 24.
    Marques JT, Kim K, Wu P-H et al (2009) Loqs and R2D2 act sequentially in the siRNA pathway in Drosophila. Nat Struct Mol Biol 17:24–30. doi: 10.1038/nsmb.1735 PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Saito K, Ishizuka A, Siomi H, Siomi MC (2005) Processing of pre-microRNAs by the Dicer-1–Loquacious complex in Drosophila cells. PLoS Biol 3:e235. doi: 10.1371/journal.pbio.0030235 PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Kwon SC, Nguyen TA, Choi Y-G et al (2016) Structure of human DROSHA. Cell 164:81–90. doi: 10.1016/j.cell.2015.12.019 PubMedCrossRefGoogle Scholar
  27. 27.
    Förstemann K, Horwich MD, Wee L et al (2007) Drosophila microRNAs are sorted into functionally distinct argonaute complexes after production by Dicer-1. Cell 130:287–297. doi: 10.1016/j.cell.2007.05.056 PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Skalsky RL, Cullen BR (2010) Viruses, microRNAs, and host interactions. Annu Rev Microbiol 64:123–141. doi: 10.1146/annurev.micro.112408.134243 PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Hussain M, Asgari S (2014) MicroRNAs as mediators of insect host–pathogen interactions and immunity. J Insect Physiol 70:151–158. doi: 10.1016/j.jinsphys.2014.08.003 PubMedCrossRefGoogle Scholar
  30. 30.
    Webster CL, Waldron FM, Robertson S et al (2015) The discovery, distribution, and evolution of viruses associated with Drosophila melanogaster. PLoS Biol 13:e1002210. doi: 10.1371/journal.pbio.1002210 PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Weber F, Wagner V, Rasmussen SB et al (2006) Double-stranded RNA is produced by positive-strand RNA viruses and DNA viruses but not in detectable amounts by negative-strand RNA viruses. J Virol 80:5059–5064PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Mueller S, Gausson V, Vodovar N et al (2010) RNAi-mediated immunity provides strong protection against the negative-strand RNA vesicular stomatitis virus in Drosophila. Proc Natl Acad Sci USA 107:19390–19395. doi: 10.1073/pnas.1014378107 PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Sabin LR, Zheng Q, Thekkat P et al (2013) Dicer-2 processes diverse viral RNA species. PLoS One 8:e55458. doi: 10.1371/journal.pone.0055458 PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Son K-N, Liang Z, Lipton HL (2015) Double-stranded rna is detected by immunofluorescence analysis in RNA and DNA virus infections, including those by negative-stranded RNA viruses. J Virol 89:9383–9392. doi: 10.1128/JVI.01299-15 PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Kemp C, Mueller S, Goto A et al (2013) Broad RNA interference-mediated antiviral immunity and virus-specific inducible responses in Drosophila. J Immunol 190:650–658. doi: 10.4049/jimmunol.1102486 PubMedCrossRefGoogle Scholar
  36. 36.
    Bronkhorst AW, van Cleef KWR, Vodovar N et al (2012) The DNA virus invertebrate iridescent virus 6 is a target of the Drosophila RNAi machinery. Proc Natl Acad Sci USA 109:E3604–E3613. doi: 10.1073/pnas.1207213109 PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    Marques JT, Wang J-P, Wang X et al (2013) Functional specialization of the small interfering RNA pathway in response to virus infection. PLoS Pathog 9:e1003579. doi: 10.1371/journal.ppat.1003579 PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Malone CD, Malone CD, Brennecke J et al (2009) Specialized piRNA pathways act in germline and somatic tissues of the Drosophila ovary. Cell 137:522–535. doi: 10.1016/j.cell.2009.03.040 PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    Brennecke J, Aravin AA, Stark A et al (2007) Discrete small RNA-generating loci as master regulators of transposon activity in Drosophila. Cell 128:1089–1103PubMedCrossRefGoogle Scholar
  40. 40.
    Wang H, Ma Z, Niu K, et al (2016) Antagonistic roles of Nibbler and Hen1 in modulating piRNA 3′ ends in Drosophila. Development 143:530–539. doi: 10.1242/dev.128116 PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Vodovar N, Bronkhorst AW, van Cleef KWR et al (2012) Arbovirus-derived piRNAs exhibit a ping-pong signature in mosquito cells. PLoS One 7:e30861. doi: 10.1371/journal.pone.0030861 PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    Morazzani EM, Wiley MR, Murreddu MG et al (2012) Production of virus-derived ping-pong-dependent piRNA-like small RNAs in the mosquito soma. PLoS Pathog 8:e1002470. doi: 10.1371/journal.ppat.1002470 PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Léger P, Lara E, Jagla B et al (2013) Dicer-2- and Piwi-mediated RNA interference in Rift Valley fever virus-infected mosquito cells. J Virol 87:1631–1648. doi: 10.1128/JVI.02795-12 PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    Miesen P, Girardi E, van Rij RP (2015) Distinct sets of PIWI proteins produce arbovirus and transposon-derived piRNAs in Aedes aegypti mosquito cells. Nucleic Acids Res 43:6545–6556. doi: 10.1093/nar/gkv590 PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Schnettler E, Donald CL, Human S et al (2013) Knockdown of piRNA pathway proteins results in enhanced Semliki Forest virus production in mosquito cells. J Gen Virol 94:1680–1689. doi: 10.1099/vir.0.053850-0 PubMedPubMedCentralCrossRefGoogle Scholar
  46. 46.
    Aguiar ERGR, Olmo RP, Paro S et al (2015) Sequence-independent characterization of viruses based on the pattern of viral small RNAs produced by the host. Nucleic Acids Res 43(13):6191–6206PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    Wu Q, Luo Y, Lu R et al (2010) Virus discovery by deep sequencing and assembly of virus-derived small silencing RNAs. Proc Natl Acad Sci 107:1606–1611. doi: 10.1073/pnas.0911353107 PubMedPubMedCentralCrossRefGoogle Scholar
  48. 48.
    Petit M, Mongelli V, Frangeul L et al (2016) piRNA pathway is not required for antiviral defense in Drosophila melanogaster. Proc Natl Acad Sci USA 113:E4218–E4227. doi: 10.1073/pnas.1607952113 PubMedPubMedCentralCrossRefGoogle Scholar
  49. 49.
    Iwasaki S, Sasaki HM, Sakaguchi Y et al (2015) Defining fundamental steps in the assembly of the Drosophila RNAi enzyme complex. Nature 521:533–536. doi: 10.1038/nature14254 PubMedCrossRefGoogle Scholar
  50. 50.
    Liang C, Wang Y, Murota Y et al (2015) TAF11 assembles the RISC loading complex to enhance RNAi efficiency. Mol Cell 59:807–818. doi: 10.1016/j.molcel.2015.07.006 PubMedPubMedCentralCrossRefGoogle Scholar
  51. 51.
    Nishida KM, Miyoshi K, Ogino A et al (2013) Roles of R2D2, a cytoplasmic D2 body component, in the endogenous siRNA pathway in Drosophila. Mol Cell 49:680–691. doi: 10.1016/j.molcel.2012.12.024 PubMedCrossRefGoogle Scholar
  52. 52.
    Spellberg MJ, Marr MT, Marr MT II (2015) FOXO regulates RNA interference in Drosophilaand protects from RNA virus infection. Proc Natl Acad Sci 112:14587–14592. doi: 10.1073/pnas.1517124112 PubMedPubMedCentralCrossRefGoogle Scholar
  53. 53.
    Durdevic Z, Mobin MB, Hanna K, et al (2013) The RNA methyltransferase Dnmt2 is required for efficient Dicer-2-dependent siRNA pathway activity in Drosophila. Cell Rep 4:931–937. doi: 10.1016/j.celrep.2013.07.046 PubMedCrossRefGoogle Scholar
  54. 54.
    Durdevic Z, Hanna K, Gold B et al (2013) Efficient RNA virus control in Drosophila requires the RNA methyltransferase Dnmt2. EMBO Rep 14:269–275. doi: 10.1038/embor.2013.3 PubMedPubMedCentralCrossRefGoogle Scholar
  55. 55.
    van Rij RP, Saleh M-C, Berry B et al (2006) The RNA silencing endonuclease Argonaute 2 mediates specific antiviral immunity in Drosophila melanogaster. Genes Dev 20:2985–2995. doi: 10.1101/gad.1482006 PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    van Cleef KWR, van Mierlo JT, Miesen P et al (2014) Mosquito and Drosophila entomobirnaviruses suppress dsRNA- and siRNA-induced RNAi. Nucleic Acids Res 42:8732–8744. doi: 10.1093/nar/gku528 PubMedPubMedCentralCrossRefGoogle Scholar
  57. 57.
    Bronkhorst AW, van Cleef KWR, Venselaar H, van Rij RP (2014) A dsRNA-binding protein of a complex invertebrate DNA virus suppresses the Drosophila RNAi response. Nucleic Acids Res 42:12237–12248. doi: 10.1093/nar/gku910 PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    Chao JA, Lee JH, Chapados BR et al (2005) Dual modes of RNA-silencing suppression by Flock House virus protein B2. Nat Struct Mol Biol 12:952–957PubMedCrossRefGoogle Scholar
  59. 59.
    Han YH, Luo YJ, Wu Q et al (2011) RNA-based immunity terminates viral infection in adult Drosophila in the absence of viral suppression of RNA interference: characterization of viral small interfering RNA populations in wild-type and mutant flies. J Virol 85:13153–13163. doi: 10.1128/JVI.05518-11 PubMedPubMedCentralCrossRefGoogle Scholar
  60. 60.
    Petrillo JE, Petrillo JE, Venter PA et al (2013) Cytoplasmic granule formation and translational inhibition of nodaviral RNAs in the absence of the double-stranded RNA binding protein B2. J Virol 87:13409–13421. doi: 10.1128/JVI.02362-13 PubMedPubMedCentralCrossRefGoogle Scholar
  61. 61.
    Obbard DJ, Jiggins FM, Halligan DL, Little TJ (2006) Natural selection drives extremely rapid evolution in antiviral RNAi genes. Curr Biol 16:580–585PubMedCrossRefGoogle Scholar
  62. 62.
    van Mierlo JT, Overheul GJ, Obadia B et al (2014) Novel Drosophila viruses encode host-specific suppressors of RNAi. PLoS Pathog 10:e1004256. doi: 10.1371/journal.ppat.1004256 PubMedPubMedCentralCrossRefGoogle Scholar
  63. 63.
    Roignant J-Y, Carré C, Mugat B et al (2003) Absence of transitive and systemic pathways allows cell-specific and isoform-specific RNAi in Drosophila. RNA 9:299–308. doi: 10.1261/rna.2154103 PubMedPubMedCentralCrossRefGoogle Scholar
  64. 64.
    Longdon B, Cao C, Martinez J, Jiggins FM (2013) Previous exposure to an RNA virus does not protect against subsequent infection in Drosophila melanogaster. PLoS One 8:e73833. doi: 10.1371/journal.pone.0073833 PubMedPubMedCentralCrossRefGoogle Scholar
  65. 65.
    Saleh M-C, Tassetto M, van Rij RP et al (2009) Antiviral immunity in Drosophila requires systemic RNA interference spread. Nature 458:346–350. doi: 10.1038/nature07712 PubMedPubMedCentralCrossRefGoogle Scholar
  66. 66.
    Saleh M-C, van Rij RP, Hekele A et al (2006) The endocytic pathway mediates cell entry of dsRNA to induce RNAi silencing. Nat Cell Biol 8:793–802. doi: 10.1038/ncb1439 PubMedPubMedCentralCrossRefGoogle Scholar
  67. 67.
    Goic B, Vodovar N, Mondotte JA et al (2013) RNA-mediated interference and reverse transcription control the persistence of RNA viruses in the insect model Drosophila. Nat Immunol 14:396–403. doi: 10.1038/ni.2542 PubMedCrossRefGoogle Scholar
  68. 68.
    Karlikow M, Goic B, Mongelli V, et al (2016) Drosophila cells use nanotube-like structures to transfer dsRNA and RNAi machinery between cells. Sci Rep 6:27085. doi: 10.1038/srep27085 PubMedPubMedCentralCrossRefGoogle Scholar
  69. 69.
    Valanne S, Wang J-H, Rämet M (2011) The Drosophila Toll signaling pathway. J Immunol 186:649–656. doi: 10.4049/jimmunol.1002302 PubMedCrossRefGoogle Scholar
  70. 70.
    Kleino A, Silverman N (2014) The Drosophila IMD pathway in the activation of the humoral immune response. Dev Comp Immunol 42:25–35. doi: 10.1016/j.dci.2013.05.014 PubMedCrossRefGoogle Scholar
  71. 71.
    Zeidler MP, Bausek N (2013) The Drosophila JAK-STAT pathway. JAKSTAT 2:e25353. doi: 10.4161/jkst.25353 PubMedPubMedCentralGoogle Scholar
  72. 72.
    Dostert C, Jouanguy E, Irving P et al (2005) The Jak-STAT signaling pathway is required but not sufficient for the antiviral response of drosophila. Nat Immunol 6:946–953. doi: 10.1038/ni1237 PubMedCrossRefGoogle Scholar
  73. 73.
    Merkling SH, Bronkhorst AW, Kramer JM et al (2015) The epigenetic regulator G9a mediates tolerance to RNA virus infection in Drosophila. PLoS Pathog 11:e1004692. doi: 10.1371/journal.ppat.1004692 PubMedPubMedCentralCrossRefGoogle Scholar
  74. 74.
    Zambon RA, Nandakumar M, Vakharia VN, Wu LP (2005) The Toll pathway is important for an antiviral response in Drosophila. Proc Natl Acad Sci 102:7257–7262. doi: 10.1073/pnas.0409181102 PubMedPubMedCentralCrossRefGoogle Scholar
  75. 75.
    Ferreira ÁG, Naylor H, Esteves SS et al (2014) The Toll-dorsal pathway is required for resistance to viral oral infection in Drosophila. PLoS Pathog 10:e1004507. doi: 10.1371/journal.ppat.1004507 PubMedPubMedCentralCrossRefGoogle Scholar
  76. 76.
    Bitra K, Suderman RJ, Strand MR (2012) Polydnavirus Ank proteins bind NF-κB homodimers and inhibit processing of Relish. PLoS Pathog 8:e1002722. doi: 10.1371/journal.ppat.1002722 PubMedPubMedCentralCrossRefGoogle Scholar
  77. 77.
    Gueguen G, Kalamarz ME, Ramroop J et al (2013) Polydnaviral ankyrin proteins aid parasitic wasp survival by coordinate and selective inhibition of hematopoietic and immune NF-kappa B signaling in insect hosts. PLoS Pathog 9:e1003580. doi: 10.1371/journal.ppat.1003580 PubMedPubMedCentralCrossRefGoogle Scholar
  78. 78.
    Avadhanula V, Weasner BP, Hardy GG et al (2009) A novel system for the launch of alphavirus RNA synthesis reveals a role for the Imd pathway in arthropod antiviral response. PLoS Pathog 5:e1000582. doi: 10.1371/journal.ppat.1000582 PubMedPubMedCentralCrossRefGoogle Scholar
  79. 79.
    Costa A, Jan E, Sarnow P, Schneider D (2009) The Imd pathway is involved in antiviral immune responses in Drosophila. PLoS ONE 4:e7436. doi: 10.1371/journal.pone.0007436 PubMedPubMedCentralCrossRefGoogle Scholar
  80. 80.
    Huang Z, Kingsolver MB, Avadhanula V, Hardy RW (2013) An antiviral role for antimicrobial peptides during the arthropod response to alphavirus replication. J Virol 87:4272–4280. doi: 10.1128/JVI.03360-12 PubMedPubMedCentralCrossRefGoogle Scholar
  81. 81.
    Lamiable O, Kellenberger C, Kemp C et al (2016) Cytokine Diedel and a viral homologue suppress the IMD pathway in Drosophila. Proc Natl Acad Sci USA 113:698–703. doi: 10.1073/pnas.1516122113 PubMedPubMedCentralCrossRefGoogle Scholar
  82. 82.
    Merkling SH, Overheul GJ, van Mierlo JT, et al (2015) The heat shock response restricts virus infection in Drosophila. Sci Rep 5:12758. doi: 10.1038/srep12758 PubMedPubMedCentralCrossRefGoogle Scholar
  83. 83.
    Xu J, Grant G, Sabin LR et al (2012) Transcriptional pausing controls a rapid antiviral innate immune response in Drosophila. Cell Host Microbe 12:531–543. doi: 10.1016/j.chom.2012.08.011 PubMedPubMedCentralCrossRefGoogle Scholar
  84. 84.
    Xu J, Hopkins K, Sabin L et al (2013) ERK signaling couples nutrient status to antiviral defense in the insect gut. Proc Natl Acad Sci USA 110:15025–15030. doi: 10.1073/pnas.1303193110 PubMedPubMedCentralCrossRefGoogle Scholar
  85. 85.
    Sansone CL, Cohen J, Yasunaga A et al (2015) Microbiota-dependent priming of antiviral intestinal immunity in Drosophila. Cell Host Microbe 18:571–581. doi: 10.1016/j.chom.2015.10.010 PubMedPubMedCentralCrossRefGoogle Scholar
  86. 86.
    Goubau D, Deddouche S, Reis e Sousa C (2013) Cytosolic sensing of viruses. Immunity 38:855–869. doi: 10.1016/j.immuni.2013.05.007 PubMedCrossRefGoogle Scholar
  87. 87.
    Deddouche S, Matt N, Budd A et al (2008) The DExD/H-box helicase Dicer-2 mediates the induction of antiviral activity in drosophila. Nat Immunol 9:1425–1432. doi: 10.1038/ni 0.1664 PubMedCrossRefGoogle Scholar
  88. 88.
    Paradkar PN, Trinidad L, Voysey R et al (2012) Secreted Vago restricts West Nile virus infection in Culex mosquito cells by activating the Jak-STAT pathway. Proc Natl Acad Sci USA 109:18915–18920. doi: 10.1073/pnas.1205231109 PubMedPubMedCentralCrossRefGoogle Scholar
  89. 89.
    Paro S, Imler J-L, Meignin C (2015) Sensing viral RNAs by Dicer/RIG-I like ATPases across species. Curr Opin Immunol 32:106–113. doi: 10.1016/j.coi.2015.01.009 PubMedCrossRefGoogle Scholar
  90. 90.
    Paradkar PN, Duchemin J-B, Voysey R, Walker PJ (2014) Dicer-2-dependent activation of Culex Vago occurs via the TRAF-Rel2 signaling pathway. PLoS Negl Trop Dis 8:e2823. doi: 10.1371/journal.pntd.0002823 PubMedPubMedCentralCrossRefGoogle Scholar
  91. 91.
    Mukae N, Yokoyama H, Yokokura T et al (2002) Activation of the innate immunity in Drosophila by endogenous chromosomal DNA that escaped apoptotic degradation. Genes Dev 16:2662–2671. doi: 10.1101/gad.1022802 PubMedPubMedCentralCrossRefGoogle Scholar
  92. 92.
    Liu X, Sano T, Guan Y et al (2012) Drosophila EYA regulates the immune response against DNA through an evolutionarily conserved threonine phosphatase motif. PLoS One 7:e42725. doi: 10.1371/journal.pone.0042725 PubMedPubMedCentralCrossRefGoogle Scholar
  93. 93.
    Ming M, Obata F, Kuranaga E, Miura M (2014) Persephone/Spätzle pathogen sensors mediate the activation of Toll receptor signaling in response to endogenous danger signals in apoptosis-deficient Drosophila. J Biol Chem 289:7558–7568. doi: 10.1074/jbc.M113.543884 PubMedPubMedCentralCrossRefGoogle Scholar
  94. 94.
    Clem RJ (2015) Viral IAPs, then and now. Semin Cell Dev Biol 39:72–79. doi: 10.1016/j.semcdb.2015.01.011 PubMedCrossRefGoogle Scholar
  95. 95.
    Garrey JL, Lee Y-Y, Au HHT et al (2010) Host and viral translational mechanisms during cricket paralysis virus infection. J Virol 84:1124–1138. doi: 10.1128/JVI.02006-09 PubMedCrossRefGoogle Scholar
  96. 96.
    Chtarbanova S, Lamiable O, Lee K-Z et al (2014) Drosophila C virus systemic infection leads to intestinal obstruction. J Virol 88:14057–14069. doi: 10.1128/JVI.02320-14 PubMedPubMedCentralCrossRefGoogle Scholar
  97. 97.
    Becker T, Loch G, Beyer M et al (2010) FOXO-dependent regulation of innate immune homeostasis. Nature 463:369–373. doi: 10.1038/nature08698 PubMedCrossRefGoogle Scholar
  98. 98.
    Panda D, Pascual-Garcia P, Dunagin M et al (2014) Nup98 promotes antiviral gene expression to restrict RNA viral infection in Drosophila. Proc Natl Acad Sci USA 111:E3890–E3899. doi: 10.1073/pnas.1410087111 PubMedPubMedCentralCrossRefGoogle Scholar
  99. 99.
    Panda D, Gold B, Tartell MA, et al (2015) The transcription factor FoxK participates with Nup98 to regulate antiviral gene expression. MBio 6:e02509–14. doi: 10.1128/mBio.02509-14 PubMedPubMedCentralCrossRefGoogle Scholar
  100. 100.
    Klotman ME, Chang TL (2006) Defensins in innate antiviral immunity. Nat Rev Immunol 6:447–456. doi: 10.1038/nri1860 PubMedCrossRefGoogle Scholar
  101. 101.
    Luplertlop N, Surasombatpattana P, Patramool S et al (2011) Induction of a peptide with activity against a broad spectrum of pathogens in the Aedes aegypti salivary gland, following infection with dengue virus. PLoS Pathog 7:e1001252. doi: 10.1371/journal.ppat.1001252 PubMedPubMedCentralCrossRefGoogle Scholar
  102. 102.
    Souza-Neto JA, Sim S, Dimopoulos G (2009) An evolutionary conserved function of the JAK-STAT pathway in anti-dengue defense. Proc Natl Acad Sci USA 106:17841–17846. doi: 10.1073/pnas.0905006106 PubMedPubMedCentralCrossRefGoogle Scholar
  103. 103.
    Settles EW, Friesen PD (2008) Flock house virus induces apoptosis by depletion of Drosophila inhibitor-of-apoptosis protein DIAP1. J Virol 82:1378–1388PubMedCrossRefGoogle Scholar
  104. 104.
    Liu B, Behura SK, Clem RJ et al (2013) P53-mediated rapid induction of apoptosis conveys resistance to viral infection in Drosophila melanogaster. PLoS Pathog 9:e1003137. doi: 10.1371/journal.ppat.1003137 PubMedPubMedCentralCrossRefGoogle Scholar
  105. 105.
    Lamiable O, Arnold J, de Faria IJDS et al (2016) Analysis of the contribution of hemocytes and autophagy to Drosophila antiviral immunity. J Virol 90:5415–5426. doi: 10.1128/JVI.00238-16 PubMedPubMedCentralCrossRefGoogle Scholar
  106. 106.
    Nainu F, Nainu F, Tanaka Y et al (2015) Protection of insects against viral infection by apoptosis-dependent phagocytosis. J Immunol 195:5696–5706. doi: 10.4049/jimmunol.1500613 PubMedCrossRefGoogle Scholar
  107. 107.
    Kluge SF, Sauter D, Kirchhoff F (2015) SnapShot: antiviral restriction factors. Cell 163(774–774):e1. doi: 10.1016/j.cell.2015.10.019 Google Scholar
  108. 108.
    Duggal NK, Emerman M (2012) Evolutionary conflicts between viruses and restriction factors shape immunity. Nat Rev Immunol 12:687–695. doi: 10.1038/nri3295 PubMedPubMedCentralCrossRefGoogle Scholar
  109. 109.
    Harris RS, Hultquist JF, Evans DT (2012) The restriction factors of human immunodeficiency virus. J Biol Chem 287:40875–40883. doi: 10.1074/jbc.R112.416925 PubMedPubMedCentralCrossRefGoogle Scholar
  110. 110.
    van Montfoort N, Olagnier D, Hiscott J (2014) Unmasking immune sensing of retroviruses: Interplay between innate sensors and host effectors. Cytokine Growth Factor Rev 25:657–668. doi: 10.1016/j.cytogfr.2014.08.006 PubMedCrossRefGoogle Scholar
  111. 111.
    Smith RM, Pernstich C, Halford SE (2014) TstI, a Type II restriction-modification protein with DNA recognition, cleavage and methylation functions in a single polypeptide. Nucleic Acids Res 42:5809–5822. doi: 10.1093/nar/gku187 PubMedPubMedCentralCrossRefGoogle Scholar
  112. 112.
    Simon V, Bloch N, Landau NR (2015) Intrinsic host restrictions to HIV-1 and mechanisms of viral escape. Nat Immunol 16:546–553. doi: 10.1038/ni.3156 PubMedCrossRefGoogle Scholar
  113. 113.
    Jia X, Zhao Q, Xiong Y (2015) HIV suppression by host restriction factors and viral immune evasion. Curr Opin Struct Biol 31:106–114. doi: 10.1016/ PubMedPubMedCentralCrossRefGoogle Scholar
  114. 114.
    Zhou L-Y (2016) Host restriction factors for hepatitis C virus. World J Gastroenterol 22:1477. doi: 10.3748/wjg.v22.i4.1477 PubMedPubMedCentralCrossRefGoogle Scholar
  115. 115.
    Cogni R, Cao C, Day JP et al (2016) The genetic architecture of resistance to virus infection in Drosophila. Mol Ecol. doi: 10.1111/mec.13769 PubMedPubMedCentralGoogle Scholar
  116. 116.
    Gay P (1978) Drosophila genes which intervene in multiplication of sigma virus. Mol Gen Genet 159:269–283. doi: 10.1007/BF00268263 PubMedCrossRefGoogle Scholar
  117. 117.
    Lhéritier P (1958) The hereditary virus of Drosophila. In: Advances in virus research, vol 5. Elsevier, Amsterdam, pp 195–245Google Scholar
  118. 118.
    Contamine D, Petitjean AM, Ashburner M (1989) Genetic resistance to viral infection: the molecular cloning of a Drosophila gene that restricts infection by the rhabdovirus sigma. Genetics 123:525–533PubMedPubMedCentralGoogle Scholar
  119. 119.
    Wayne ML, Contamine D, Kreitman M (1996) Molecular population genetics of ref(2)P, a locus which confers viral resistance in Drosophila. Mol Biol Evol 13:191–199PubMedCrossRefGoogle Scholar
  120. 120.
    Dru P, Bras F, Dezélée S et al (1993) Unusual variability of the Drosophila melanogaster ref(2)P protein which controls the multiplication of sigma rhabdovirus. Genetics 133:943–954PubMedPubMedCentralGoogle Scholar
  121. 121.
    Wyers F, Dru P, Simonet B, Contamine D (1993) Immunological cross-reactions and interactions between the Drosophila melanogaster ref(2)P protein and sigma rhabdovirus proteins. J Virol 67:3208–3216PubMedPubMedCentralGoogle Scholar
  122. 122.
    Contamine D (1981) Role of the Drosophila genome in Sigma virus multiplication. I. Role of the ret(2)P gene; selection of host-adapted mutants at the nonpermissive allele Pp. Virology 114:474–488PubMedCrossRefGoogle Scholar
  123. 123.
    Fleuriet A, Periquet G (1993) Evolution of the Drosophila melanogaster-sigma virus system in natural populations from Languedoc (southern France). Arch Virol 129:131–143PubMedCrossRefGoogle Scholar
  124. 124.
    Carré-Mlouka A, Gaumer S, Gay P et al (2007) Control of sigma virus multiplication by the ref(2)P gene of Drosophila melanogaster: an in vivo study of the PB1 domain of Ref(2)P. Genetics 176:409–419. doi: 10.1534/genetics.106.063826 PubMedPubMedCentralCrossRefGoogle Scholar
  125. 125.
    Avila A, Silverman N, Diaz-Meco MT, Moscat J (2002) The Drosophila atypical protein kinase C-ref(2)p complex constitutes a conserved module for signaling in the toll pathway. Mol Cell Biol 22:8787–8795. doi: 10.1128/MCB.22.24.8787-8795.2002 PubMedPubMedCentralCrossRefGoogle Scholar
  126. 126.
    Goto A, Blandin S, Royet J et al (2003) Silencing of Toll pathway components by direct injection of double-stranded RNA into Drosophila adult flies. Nucleic Acids Res 31:6619–6623. doi: 10.1093/nar/gkg852 PubMedPubMedCentralCrossRefGoogle Scholar
  127. 127.
    Ktistakis NT, Tooze SA (2016) Digesting the expanding mechanisms of autophagy. Trends Cell Biol 26:624–635. doi: 10.1016/j.tcb.2016.03.006 PubMedCrossRefGoogle Scholar
  128. 128.
    Nezis IP, Simonsen A, Sagona AP et al (2008) Ref(2)P, the Drosophila melanogaster homologue of mammalian p62, is required for the formation of protein aggregates in adult brain. J Cell Biol 180:1065–1071. doi: 10.1083/jcb.200711108 PubMedPubMedCentralCrossRefGoogle Scholar
  129. 129.
    Shelly S, Lukinova N, Bambina S et al (2009) Autophagy is an essential component of Drosophila immunity against vesicular stomatitis virus. Immunity 30:588–598. doi: 10.1016/j.immuni.2009.02.009 PubMedPubMedCentralCrossRefGoogle Scholar
  130. 130.
    Joubert P-E, Meiffren G, Grégoire IP et al (2009) Autophagy induction by the pathogen receptor CD46. Cell Host Microbe 6:354–366. doi: 10.1016/j.chom.2009.09.006 PubMedCrossRefGoogle Scholar
  131. 131.
    Richetta C, Faure M (2013) Autophagy in antiviral innate immunity. Cell Microbiol 15:368–376. doi: 10.1111/cmi.12043 PubMedCrossRefGoogle Scholar
  132. 132.
    Richetta C, Grégoire IP, Verlhac P et al (2013) Sustained autophagy contributes to measles virus infectivity. PLoS Pathog 9:e1003599. doi: 10.1371/journal.ppat.1003599 PubMedPubMedCentralCrossRefGoogle Scholar
  133. 133.
    Mauthe M, Langereis M, Jung J et al (2016) An siRNA screen for ATG protein depletion reveals the extent of the unconventional functions of the autophagy proteome in virus replication. J Cell Biol 214:619–635. doi: 10.1083/jcb.201602046 PubMedPubMedCentralCrossRefGoogle Scholar
  134. 134.
    Cao C, Magwire MM, Bayer F, Jiggins FM (2016) A polymorphism in the processing body component Ge-1 controls resistance to a naturally occurring rhabdovirus in Drosophila. PLoS Pathog 12:e1005387. doi: 10.1371/journal.ppat.1005387 PubMedPubMedCentralCrossRefGoogle Scholar
  135. 135.
    Yu JH, Yang W-H, Gulick T et al (2005) Ge-1 is a central component of the mammalian cytoplasmic mRNA processing body. RNA 11:1795–1802. doi: 10.1261/rna.2142405 PubMedPubMedCentralCrossRefGoogle Scholar
  136. 136.
    Xu J, Yang J-Y, Niu Q-W, Chua N-H (2006) Arabidopsis DCP2, DCP1, and VARICOSE form a decapping complex required for postembryonic development. Plant Cell 18:3386–3398. doi: 10.1105/tpc.106.047605 PubMedPubMedCentralCrossRefGoogle Scholar
  137. 137.
    Hopkins KC, McLane LM, Maqbool T et al (2013) A genome-wide RNAi screen reveals that mRNA decapping restricts bunyaviral replication by limiting the pools of Dcp2-accessible targets for cap-snatching. Genes Dev 27:1511–1525. doi: 10.1101/gad.215384.113 PubMedPubMedCentralCrossRefGoogle Scholar
  138. 138.
    Magwire MM, Bayer F, Webster CL et al (2011) Successive increases in the resistance of Drosophila to viral infection through a transposon insertion followed by a duplication. PLoS Genet 7:e1002337. doi: 10.1371/journal.pgen.1002337 PubMedPubMedCentralCrossRefGoogle Scholar
  139. 139.
    Magwire MM, Fabian DK, Schweyen H et al (2012) Genome-wide association studies reveal a simple genetic basis of resistance to naturally coevolving viruses in Drosophila melanogaster. PLoS Genet 8:e1003057. doi: 10.1371/journal.pgen.1003057 PubMedPubMedCentralCrossRefGoogle Scholar
  140. 140.
    Martins NE, Faria VG, Nolte V et al (2014) Host adaptation to viruses relies on few genes with different cross-resistance properties. Proc Natl Acad Sci USA 111:5938–5943. doi: 10.1073/pnas.1400378111 PubMedPubMedCentralCrossRefGoogle Scholar
  141. 141.
    Doyle T, Goujon C, Malim MH (2015) HIV-1 and interferons: who’s interfering with whom? Nat Rev Microbiol 13:403–413. doi: 10.1038/nrmicro3449 PubMedCrossRefGoogle Scholar
  142. 142.
    Moy RH, Cole BS, Yasunaga A et al (2014) Stem-loop recognition by DDX17 facilitates miRNA processing and antiviral defense. Cell 158:764–777. doi: 10.1016/j.cell.2014.06.023 PubMedPubMedCentralCrossRefGoogle Scholar
  143. 143.
    Yasunaga A, Hanna SL, Li J et al (2014) Genome-wide RNAi screen identifies broadly-acting host factors that inhibit arbovirus infection. PLoS Pathog 10:e1003914. doi: 10.1371/journal.ppat.1003914 PubMedPubMedCentralCrossRefGoogle Scholar
  144. 144.
    Shapiro JS, Schmid S, Aguado LC et al (2014) Drosha as an interferon-independent antiviral factor. Proc Natl Acad Sci USA 111:7108–7113. doi: 10.1073/pnas.1319635111 PubMedPubMedCentralCrossRefGoogle Scholar
  145. 145.
    Molleston JM, Sabin LR, Moy RH et al (2016) A conserved virus-induced cytoplasmic TRAMP-like complex recruits the exosome to target viral RNA for degradation. Genes Dev 30:1658–1670. doi: 10.1101/gad.284604.116 PubMedPubMedCentralCrossRefGoogle Scholar
  146. 146.
    Faria VG, Martins NE, Magalhães S et al (2016) Drosophila adaptation to viral infection through defensive symbiont evolution. PLoS Genet 12:e1006297. doi: 10.1371/journal.pgen.1006297 PubMedPubMedCentralCrossRefGoogle Scholar
  147. 147.
    Wong ZS, Brownlie JC, Johnson KN (2016) Impact of ERK activation on fly survival and Wolbachia-mediated protection during virus infection. J Gen Virol 97:1446–1452. doi: 10.1099/jgv.0.000456 PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing 2017

Authors and Affiliations

  1. 1.Institut de Biologie Moléculaire et Cellulaire, CNRS UPR9022Université de StrasbourgStrasbourgFrance
  2. 2.Faculté des Sciences de la VieUniversité de StrasbourgStrasbourgFrance

Personalised recommendations