Cellular and Molecular Life Sciences

, Volume 74, Issue 10, pp 1793–1803 | Cite as

The role of dietary carbohydrates in organismal aging

  • Dongyeop Lee
  • Heehwa G. Son
  • Yoonji Jung
  • Seung-Jae V. Lee


Carbohydrates are essential nutrients that are used as a primary source of energy. Carbohydrate utilization should be properly controlled, as abnormal regulation of carbohydrate metabolism is associated with diseases, such as diabetes, cardiovascular diseases, and stroke. These metabolic syndromes have become a serious problem in developed countries, and there is an increased need for research examining the influence of carbohydrates on animal physiology. Diets enriched in glucose, a major carbohydrate, are also associated with accelerated aging in several model organisms, including yeast and Caenorhabditis elegans (C. elegans). Genetic factors that mediate the effects of high glucose diets on aging have been identified during the last decade, mostly through the use of C. elegans. In this review, we describe studies that determine the effects of carbohydrate-enriched diets on aging by focusing on the mechanisms through which evolutionarily conserved pathways mediate the lifespan-altering effects of glucose in C. elegans. These include the insulin/insulin-like growth factor-1, sterol-regulatory element-binding protein, and AMP-activated protein kinase signaling pathways. We also discuss the effects of various carbohydrates and carbohydrate-derived metabolites on aging in model organisms and cultured mammalian cells. Finally, we discuss how dietary carbohydrates influence health and aging in humans.


Sugar FOXO MDT-15 Dihydroxyacetone phosphate Reactive oxygen species Longevity 



We thank Dr. Murat Artan and other Lee lab members for helpful comments. This research was supported by the National Research Foundation of Korea (NRF) Grant funded by the Korean government (Ministry of Science, ICT, and Future Planning; NRF-2012R1A4A1028200) and a Grant of the Korean Health Technology R&D Project, Ministry of Health and Welfare (HI14C2337 to S.-J.V.L.).


  1. 1.
    Dickinson DJ, Goldstein B (2016) CRISPR-based methods for Caenorhabditis elegans genome engineering. Genetics 202(3):885–901. doi: 10.1534/genetics.115.182162 CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Corsi AK, Wightman B, Chalfie M (2015) A transparent window into biology: a primer on Caenorhabditis elegans. Genetics 200(2):387–407. doi: 10.1534/genetics.115.176099 CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Kenyon CJ (2010) The genetics of ageing. Nature 464(7288):504–512. doi: 10.1038/nature08980 CrossRefPubMedGoogle Scholar
  4. 4.
    Lee Y, An SWA, Artan M, Seo M, Hwang AB, Jeong D-E, Son HG, Hwang W, Lee D, Seo K, Altintas O, Park S, Lee S-JV (2015) Genes and pathways that influence longevity in Caenorhabditis elegans. In: Mori N, Mook-Jung I (eds) Aging mechanisms: longevity, metabolism, and brain aging. Springer, Tokyo, pp 123–169. doi: 10.1007/978-4-431-55763-0_8
  5. 5.
    Stiernagle T (2006) Maintenance of C. elegans. WormBook. doi: 10.1895/wormbook.1.101.1 PubMedPubMedCentralGoogle Scholar
  6. 6.
    Saltiel AR, Kahn CR (2001) Insulin signalling and the regulation of glucose and lipid metabolism. Nature 414(6865):799–806. doi: 10.1038/414799a CrossRefPubMedGoogle Scholar
  7. 7.
    Altintas O, Park S, Lee SJ (2016) The role of insulin/IGF-1 signaling in the longevity of model invertebrates, C. elegans and D. melanogaster. BMB Rep 49(2):81–92CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Riddle DL, Swanson MM, Albert PS (1981) Interacting genes in nematode dauer larva formation. Nature 290(5808):668–671CrossRefPubMedGoogle Scholar
  9. 9.
    Morley JF, Morimoto RI (2004) Regulation of longevity in Caenorhabditis elegans by heat shock factor and molecular chaperones. Mol Biol Cell 15(2):657–664. doi: 10.1091/mbc.E03-07-0532 CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Hsu AL, Murphy CT, Kenyon C (2003) Regulation of aging and age-related disease by DAF-16 and heat-shock factor. Science 300(5622):1142–1145. doi: 10.1126/science.1083701 CrossRefPubMedGoogle Scholar
  11. 11.
    Lee SS, Kennedy S, Tolonen AC, Ruvkun G (2003) DAF-16 target genes that control C. elegans life-span and metabolism. Science 300(5619):644–647. doi: 10.1126/science.1083614 CrossRefPubMedGoogle Scholar
  12. 12.
    Murphy CT, McCarroll SA, Bargmann CI, Fraser A, Kamath RS, Ahringer J, Li H, Kenyon C (2003) Genes that act downstream of DAF-16 to influence the lifespan of Caenorhabditis elegans. Nature 424(6946):277–283. doi: 10.1038/nature01789 CrossRefPubMedGoogle Scholar
  13. 13.
    Tullet JM, Hertweck M, An JH, Baker J, Hwang JY, Liu S, Oliveira RP, Baumeister R, Blackwell TK (2008) Direct inhibition of the longevity-promoting factor SKN-1 by insulin-like signaling in C. elegans. Cell 132(6):1025–1038. doi: 10.1016/j.cell.2008.01.030 CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Lee SJ, Murphy CT, Kenyon C (2009) Glucose shortens the life span of C. elegans by downregulating DAF-16/FOXO activity and aquaporin gene expression. Cell Metab 10(5):379–391. doi: 10.1016/j.cmet.2009.10.003 CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
  16. 16.
    Murphy CT, Lee SJ, Kenyon C (2007) Tissue entrainment by feedback regulation of insulin gene expression in the endoderm of Caenorhabditis elegans. Proc Natl Acad Sci USA 104(48):19046–19050. doi: 10.1073/pnas.0709613104 CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Hibuse T, Maeda N, Funahashi T, Yamamoto K, Nagasawa A, Mizunoya W, Kishida K, Inoue K, Kuriyama H, Nakamura T, Fushiki T, Kihara S, Shimomura I (2005) Aquaporin 7 deficiency is associated with development of obesity through activation of adipose glycerol kinase. Proc Natl Acad Sci USA 102(31):10993–10998. doi: 10.1073/pnas.0503291102 CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Rojek AM, Skowronski MT, Fuchtbauer EM, Fuchtbauer AC, Fenton RA, Agre P, Frokiaer J, Nielsen S (2007) Defective glycerol metabolism in aquaporin 9 (AQP9) knockout mice. Proc Natl Acad Sci USA 104(9):3609–3614. doi: 10.1073/pnas.0610894104 CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Pang S, Lynn DA, Lo JY, Paek J, Curran SP (2014) SKN-1 and Nrf2 couples proline catabolism with lipid metabolism during nutrient deprivation. Nat Commun 5:5048. doi: 10.1038/ncomms6048 CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Bishop NA, Guarente L (2007) Two neurons mediate diet-restriction-induced longevity in C. elegans. Nature 447(7144):545–549. doi: 10.1038/nature05904 CrossRefPubMedGoogle Scholar
  21. 21.
    Fontana L, Partridge L (2015) Promoting health and longevity through diet: from model organisms to humans. Cell 161(1):106–118. doi: 10.1016/j.cell.2015.02.020 CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Walker AK, Näär AM (2012) SREBPs: regulators of cholesterol/lipids as therapeutic targets in metabolic disorders, cancers and viral diseases. Clin Lipidol 7(1):27–36CrossRefGoogle Scholar
  23. 23.
    Horton JD, Shimomura I, Brown MS, Hammer RE, Goldstein JL, Shimano H (1998) Activation of cholesterol synthesis in preference to fatty acid synthesis in liver and adipose tissue of transgenic mice overproducing sterol regulatory element-binding protein-2. J Clin Invest 101(11):2331–2339. doi: 10.1172/JCI2961 CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    McKay RM, McKay JP, Avery L, Graff JM (2003) C elegans: a model for exploring the genetics of fat storage. Dev Cell 4(1):131–142CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Walker AK, Jacobs RL, Watts JL, Rottiers V, Jiang K, Finnegan DM, Shioda T, Hansen M, Yang F, Niebergall LJ, Vance DE, Tzoneva M, Hart AC, Naar AM (2011) A conserved SREBP-1/phosphatidylcholine feedback circuit regulates lipogenesis in metazoans. Cell 147(4):840–852. doi: 10.1016/j.cell.2011.09.045 CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Walker AK, Yang F, Jiang K, Ji JY, Watts JL, Purushotham A, Boss O, Hirsch ML, Ribich S, Smith JJ, Israelian K, Westphal CH, Rodgers JT, Shioda T, Elson SL, Mulligan P, Najafi-Shoushtari H, Black JC, Thakur JK, Kadyk LC, Whetstine JR, Mostoslavsky R, Puigserver P, Li X, Dyson NJ, Hart AC, Naar AM (2010) Conserved role of SIRT1 orthologs in fasting-dependent inhibition of the lipid/cholesterol regulator SREBP. Genes Dev 24(13):1403–1417. doi: 10.1101/gad.1901210 CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Lee D, Jeong DE, Son HG, Yamaoka Y, Kim H, Seo K, Khan AA, Roh TY, Moon DW, Lee Y, Lee SJ (2015) SREBP and MDT-15 protect C. elegans from glucose-induced accelerated aging by preventing accumulation of saturated fat. Genes Dev 29(23):2490–2503. doi: 10.1101/gad.266304.115 CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Nomura T, Horikawa M, Shimamura S, Hashimoto T, Sakamoto K (2010) Fat accumulation in Caenorhabditis elegans is mediated by SREBP homolog SBP-1. Genes Nutr 5(1):17–27. doi: 10.1007/s12263-009-0157-y CrossRefPubMedGoogle Scholar
  29. 29.
    Yang F, Vought BW, Satterlee JS, Walker AK, Jim Sun ZY, Watts JL, DeBeaumont R, Saito RM, Hyberts SG, Yang S, Macol C, Iyer L, Tjian R, van den Heuvel S, Hart AC, Wagner G, Naar AM (2006) An ARC/mediator subunit required for SREBP control of cholesterol and lipid homeostasis. Nature 442(7103):700–704. doi: 10.1038/nature04942 CrossRefPubMedGoogle Scholar
  30. 30.
    Allen BL, Taatjes DJ (2015) The mediator complex: a central integrator of transcription. Nat Rev Mol Cell Biol 16(3):155–166. doi: 10.1038/nrm3951 CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Taubert S, Van Gilst MR, Hansen M, Yamamoto KR (2006) A Mediator subunit, MDT-15, integrates regulation of fatty acid metabolism by NHR-49-dependent and -independent pathways in C. elegans. Genes Dev 20(9):1137–1149. doi: 10.1101/gad.1395406 CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Goh GY, Martelli KL, Parhar KS, Kwong AW, Wong MA, Mah A, Hou NS, Taubert S (2014) The conserved Mediator subunit MDT-15 is required for oxidative stress responses in Caenorhabditis elegans. Aging Cell 13(1):70–79. doi: 10.1111/acel.12154 CrossRefPubMedGoogle Scholar
  33. 33.
    McGhee JD (2007) The C. elegans intestine. WormBook. doi: 10.1895/wormbook.1.133.1 PubMedPubMedCentralGoogle Scholar
  34. 34.
    Becard D, Hainault I, Azzout-Marniche D, Bertry-Coussot L, Ferre P, Foufelle F (2001) Adenovirus-mediated overexpression of sterol regulatory element binding protein-1c mimics insulin effects on hepatic gene expression and glucose homeostasis in diabetic mice. Diabetes 50(11):2425–2430CrossRefPubMedGoogle Scholar
  35. 35.
    Takahashi A, Shimano H, Nakagawa Y, Yamamoto T, Motomura K, Matsuzaka T, Sone H, Suzuki H, Toyoshima H, Yamada N (2005) Transgenic mice overexpressing SREBP-1a under the control of the PEPCK promoter exhibit insulin resistance, but not diabetes. Biochim Biophys Acta 1740(3):427–433. doi: 10.1016/j.bbadis.2004.11.006 CrossRefPubMedGoogle Scholar
  36. 36.
    Poitout V, Robertson RP (2008) Glucolipotoxicity: fuel excess and beta-cell dysfunction. Endocr Rev 29(3):351–366. doi: 10.1210/er.2007-0023 CrossRefPubMedGoogle Scholar
  37. 37.
    Goodridge AG (1972) Regulation of the activity of acetyl coenzyme A carboxylase by palmitoyl coenzyme A and citrate. J Biol Chem 247(21):6946–6952PubMedGoogle Scholar
  38. 38.
    Ogiwara H, Tanabe T, Nikawa J, Numa S (1978) Inhibition of rat-liver acetyl-coenzyme-A carboxylase by palmitoyl-coenzyme A. Formation of equimolar enzyme-inhibitor complex. Eur J Biochem 89(1):33–41CrossRefPubMedGoogle Scholar
  39. 39.
    Rabbani N, Thornalley PJ (2015) Dicarbonyl stress in cell and tissue dysfunction contributing to ageing and disease. Biochem Biophys Res Commun 458(2):221–226. doi: 10.1016/j.bbrc.2015.01.140 CrossRefPubMedGoogle Scholar
  40. 40.
    Schlotterer A, Kukudov G, Bozorgmehr F, Hutter H, Du X, Oikonomou D, Ibrahim Y, Pfisterer F, Rabbani N, Thornalley P, Sayed A, Fleming T, Humpert P, Schwenger V, Zeier M, Hamann A, Stern D, Brownlee M, Bierhaus A, Nawroth P, Morcos M (2009) C. elegans as model for the study of high glucose- mediated life span reduction. Diabetes 58(11):2450–2456. doi: 10.2337/db09-0567 CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Hardie DG, Ross FA, Hawley SA (2012) AMPK: a nutrient and energy sensor that maintains energy homeostasis. Nat Rev Mol Cell Biol 13(4):251–262. doi: 10.1038/nrm3311 CrossRefPubMedGoogle Scholar
  42. 42.
    Mair W, Morantte I, Rodrigues AP, Manning G, Montminy M, Shaw RJ, Dillin A (2011) Lifespan extension induced by AMPK and calcineurin is mediated by CRTC-1 and CREB. Nature 470(7334):404–408. doi: 10.1038/nature09706 CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Sagi D, Kim SK (2012) An engineering approach to extending lifespan in C. elegans. PLoS Genet 8(6):e1002780. doi: 10.1371/journal.pgen.1002780 CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Hwang AB, Ryu EA, Artan M, Chang HW, Kabir MH, Nam HJ, Lee D, Yang JS, Kim S, Mair WB, Lee C, Lee SS, Lee SJ (2014) Feedback regulation via AMPK and HIF-1 mediates ROS-dependent longevity in Caenorhabditis elegans. Proc Natl Acad Sci USA 111(42):E4458–E4467. doi: 10.1073/pnas.1411199111 CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Apfeld J, O’Connor G, McDonagh T, DiStefano PS, Curtis R (2004) The AMP-activated protein kinase AAK-2 links energy levels and insulin-like signals to lifespan in C. elegans. Genes Dev 18(24):3004–3009. doi: 10.1101/gad.1255404 CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Greer EL, Dowlatshahi D, Banko MR, Villen J, Hoang K, Blanchard D, Gygi SP, Brunet A (2007) An AMPK-FOXO pathway mediates longevity induced by a novel method of dietary restriction in C. elegans. Curr Biol 17(19):1646–1656. doi: 10.1016/j.cub.2007.08.047 CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Schulz TJ, Zarse K, Voigt A, Urban N, Birringer M, Ristow M (2007) Glucose restriction extends Caenorhabditis elegans life span by inducing mitochondrial respiration and increasing oxidative stress. Cell Metab 6(4):280–293. doi: 10.1016/j.cmet.2007.08.011 CrossRefPubMedGoogle Scholar
  48. 48.
    Yun J, Finkel T (2014) Mitohormesis. Cell Metab 19(5):757–766. doi: 10.1016/j.cmet.2014.01.011 CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Choi SS (2011) High glucose diets shorten lifespan of Caenorhabditis elegans via ectopic apoptosis induction. Nutr Res Pract 5(3):214–218. doi: 10.4162/nrp.2011.5.3.214 CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Kitaoka S, Morielli AD, Zhao FQ (2013) FGT-1 is a mammalian GLUT2-like facilitative glucose transporter in Caenorhabditis elegans whose malfunction induces fat accumulation in intestinal cells. PLoS One 8(6):e68475. doi: 10.1371/journal.pone.0068475 CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Feng Y, Williams BG, Koumanov F, Wolstenholme AJ, Holman GD (2013) FGT-1 is the major glucose transporter in C. elegans and is central to aging pathways. Biochem J 456(2):219–229. doi: 10.1042/BJ20131101 CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Svensk E, Devkota R, Stahlman M, Ranji P, Rauthan M, Magnusson F, Hammarsten S, Johansson M, Boren J, Pilon M (2016) Caenorhabditis elegans PAQR-2 and IGLR-2 protect against glucose toxicity by modulating membrane lipid composition. PLoS Genet 12(4):e1005982. doi: 10.1371/journal.pgen.1005982 CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Tauffenberger A, Vaccaro A, Parker JA (2016) Fragile lifespan expansion by dietary mitohormesis in C. elegans. Aging (Albany, NY) 8(1):50–61. doi: 10.18632/aging.100863 CrossRefGoogle Scholar
  54. 54.
    Svensk E, Stahlman M, Andersson CH, Johansson M, Boren J, Pilon M (2013) PAQR-2 regulates fatty acid desaturation during cold adaptation in C. elegans. PLoS Genet 9(9):e1003801. doi: 10.1371/journal.pgen.1003801 CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Iwabu M, Okada-Iwabu M, Yamauchi T, Kadowaki T (2015) Adiponectin/adiponectin receptor in disease and aging. NPJ Aging Mech Dis 1:15013. doi: 10.1038/npjamd.2015.13 CrossRefGoogle Scholar
  56. 56.
    Jensen MB, Jasper H (2014) Mitochondrial proteostasis in the control of aging and longevity. Cell Metab 20(2):214–225. doi: 10.1016/j.cmet.2014.05.006 CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Tauffenberger A, Vaccaro A, Aulas A, Vande Velde C, Parker JA (2012) Glucose delays age-dependent proteotoxicity. Aging Cell 11(5):856–866. doi: 10.1111/j.1474-9726.2012.00855.x CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    De Virgilio C, Hottiger T, Dominguez J, Boller T, Wiemken A (1994) The role of trehalose synthesis for the acquisition of thermotolerance in yeast. I. Genetic evidence that trehalose is a thermoprotectant. Eur J Biochem 219(1–2):179–186CrossRefPubMedGoogle Scholar
  59. 59.
    Watanabe M, Kikawada T, Minagawa N, Yukuhiro F, Okuda T (2002) Mechanism allowing an insect to survive complete dehydration and extreme temperatures. J Exp Biol 205(Pt 18):2799–2802PubMedGoogle Scholar
  60. 60.
    Sakurai M, Furuki T, Akao K, Tanaka D, Nakahara Y, Kikawada T, Watanabe M, Okuda T (2008) Vitrification is essential for anhydrobiosis in an African chironomid, Polypedilum vanderplanki. Proc Natl Acad Sci USA 105(13):5093–5098. doi: 10.1073/pnas.0706197105 CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    Elbein AD, Pan YT, Pastuszak I, Carroll D (2003) New insights on trehalose: a multifunctional molecule. Glycobiology 13(4):17R–27R. doi: 10.1093/glycob/cwg047 CrossRefPubMedGoogle Scholar
  62. 62.
    Honda Y, Tanaka M, Honda S (2010) Trehalose extends longevity in the nematode Caenorhabditis elegans. Aging Cell 9(4):558–569. doi: 10.1111/j.1474-9726.2010.00582.x CrossRefPubMedGoogle Scholar
  63. 63.
    Mouchiroud L, Molin L, Kasturi P, Triba MN, Dumas ME, Wilson MC, Halestrap AP, Roussel D, Masse I, Dalliere N, Segalat L, Billaud M, Solari F (2011) Pyruvate imbalance mediates metabolic reprogramming and mimics lifespan extension by dietary restriction in Caenorhabditis elegans. Aging Cell 10(1):39–54. doi: 10.1111/j.1474-9726.2010.00640.x CrossRefPubMedGoogle Scholar
  64. 64.
    Cho SC, Park MC, Keam B, Choi JM, Cho Y, Hyun S, Park SC, Lee J (2010) DDS, 4,4′-diaminodiphenylsulfone, extends organismic lifespan. Proc Natl Acad Sci USA 107(45):19326–19331. doi: 10.1073/pnas.1005078107 CrossRefPubMedPubMedCentralGoogle Scholar
  65. 65.
    Edwards CB, Copes N, Brito AG, Canfield J, Bradshaw PC (2013) Malate and fumarate extend lifespan in Caenorhabditis elegans. PLoS One 8(3):e58345. doi: 10.1371/journal.pone.0058345 CrossRefPubMedPubMedCentralGoogle Scholar
  66. 66.
    Chin RM, Fu X, Pai MY, Vergnes L, Hwang H, Deng G, Diep S, Lomenick B, Meli VS, Monsalve GC, Hu E, Whelan SA, Wang JX, Jung G, Solis GM, Fazlollahi F, Kaweeteerawat C, Quach A, Nili M, Krall AS, Godwin HA, Chang HR, Faull KF, Guo F, Jiang M, Trauger SA, Saghatelian A, Braas D, Christofk HR, Clarke CF, Teitell MA, Petrascheck M, Reue K, Jung ME, Frand AR, Huang J (2014) The metabolite alpha-ketoglutarate extends lifespan by inhibiting ATP synthase and TOR. Nature 510(7505):397–401. doi: 10.1038/nature13264 PubMedPubMedCentralGoogle Scholar
  67. 67.
    Denzel MS, Storm NJ, Gutschmidt A, Baddi R, Hinze Y, Jarosch E, Sommer T, Hoppe T, Antebi A (2014) Hexosamine pathway metabolites enhance protein quality control and prolong life. Cell 156(6):1167–1178. doi: 10.1016/j.cell.2014.01.061 CrossRefPubMedGoogle Scholar
  68. 68.
    Roux AE, Leroux A, Alaamery MA, Hoffman CS, Chartrand P, Ferbeyre G, Rokeach LA (2009) Pro-aging effects of glucose signaling through a G protein-coupled glucose receptor in fission yeast. PLoS Genet 5(3):e1000408. doi: 10.1371/journal.pgen.1000408 CrossRefPubMedPubMedCentralGoogle Scholar
  69. 69.
    Weinberger M, Mesquita A, Caroll T, Marks L, Yang H, Zhang Z, Ludovico P, Burhans WC (2010) Growth signaling promotes chronological aging in budding yeast by inducing superoxide anions that inhibit quiescence. Aging (Albany NY) 2(10):709–726. doi: 10.18632/aging.100215 CrossRefGoogle Scholar
  70. 70.
    Semchyshyn HM, Lozinska LM, Miedzobrodzki J, Lushchak VI (2011) Fructose and glucose differentially affect aging and carbonyl/oxidative stress parameters in Saccharomyces cerevisiae cells. Carbohydr Res 346(7):933–938. doi: 10.1016/j.carres.2011.03.005 CrossRefPubMedGoogle Scholar
  71. 71.
    Suarez G, Rajaram R, Oronsky AL, Gawinowicz MA (1989) Nonenzymatic glycation of bovine serum albumin by fructose (fructation). Comparison with the Maillard reaction initiated by glucose. J Biol Chem 264(7):3674–3679PubMedGoogle Scholar
  72. 72.
    Mortuza R, Chen S, Feng B, Sen S, Chakrabarti S (2013) High glucose induced alteration of SIRTs in endothelial cells causes rapid aging in a p300 and FOXO regulated pathway. PLoS One 8(1):e54514. doi: 10.1371/journal.pone.0054514 CrossRefPubMedPubMedCentralGoogle Scholar
  73. 73.
    Zhang B, Cui S, Bai X, Zhuo L, Sun X, Hong Q, Fu B, Wang J, Chen X, Cai G (2013) SIRT3 overexpression antagonizes high glucose accelerated cellular senescence in human diploid fibroblasts via the SIRT3-FOXO1 signaling pathway. Age (Dordr) 35(6):2237–2253. doi: 10.1007/s11357-013-9520-4 CrossRefGoogle Scholar
  74. 74.
    Imai S, Guarente L (2014) NAD+ and sirtuins in aging and disease. Trends Cell Biol 24(8):464–471. doi: 10.1016/j.tcb.2014.04.002 CrossRefPubMedPubMedCentralGoogle Scholar
  75. 75.
    Kuki S, Imanishi T, Kobayashi K, Matsuo Y, Obana M, Akasaka T (2006) Hyperglycemia accelerated endothelial progenitor cell senescence via the activation of p38 mitogen-activated protein kinase. Circ J 70(8):1076–1081CrossRefPubMedGoogle Scholar
  76. 76.
    Samaha FF, Iqbal N, Seshadri P, Chicano KL, Daily DA, McGrory J, Williams T, Williams M, Gracely EJ, Stern L (2003) A low-carbohydrate as compared with a low-fat diet in severe obesity. N Engl J Med 348(21):2074–2081. doi: 10.1056/NEJMoa022637 CrossRefPubMedGoogle Scholar
  77. 77.
    Foster GD, Wyatt HR, Hill JO, McGuckin BG, Brill C, Mohammed BS, Szapary PO, Rader DJ, Edman JS, Klein S (2003) A randomized trial of a low-carbohydrate diet for obesity. N Engl J Med 348(21):2082–2090. doi: 10.1056/NEJMoa022207 CrossRefPubMedGoogle Scholar
  78. 78.
    Rosedale R, Westman EC, Konhilas JP (2009) Clinical experience of a diet designed to reduce aging. J Appl Res 9(4):159–165PubMedPubMedCentralGoogle Scholar
  79. 79.
    Le Couteur DG, Solon-Biet S, Cogger VC, Mitchell SJ, Senior A, de Cabo R, Raubenheimer D, Simpson SJ (2016) The impact of low-protein high-carbohydrate diets on aging and lifespan. Cell Mol Life Sci 73(6):1237–1252. doi: 10.1007/s00018-015-2120-y CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing 2016

Authors and Affiliations

  • Dongyeop Lee
    • 1
  • Heehwa G. Son
    • 1
  • Yoonji Jung
    • 1
  • Seung-Jae V. Lee
    • 1
    • 2
  1. 1.Department of Life SciencesPohang University of Science and TechnologyPohangSouth Korea
  2. 2.School of Interdisciplinary Bioscience and BioengineeringPohang University of Science and TechnologyPohangSouth Korea

Personalised recommendations