Cellular and Molecular Life Sciences

, Volume 74, Issue 5, pp 921–936 | Cite as

Mechanosensor polycystin-1 potentiates differentiation of human osteoblastic cells by upregulating Runx2 expression via induction of JAK2/STAT3 signaling axis

  • Georgia Dalagiorgou
  • Christina Piperi
  • Christos Adamopoulos
  • Urania Georgopoulou
  • Antonios N. Gargalionis
  • Anastasia Spyropoulou
  • Ilianna Zoi
  • Marjan Nokhbehsaim
  • Anna Damanaki
  • James Deschner
  • Efthimia K. Basdra
  • Athanasios G. Papavassiliou
Original Article


Polycystin-1 (PC1) has been proposed as a chief mechanosensing molecule implicated in skeletogenesis and bone remodeling. Mechanotransduction via PC1 involves proteolytic cleavage of its cytoplasmic tail (CT) and interaction with intracellular pathways and transcription factors to regulate cell function. Here we demonstrate the interaction of PC1-CT with JAK2/STAT3 signaling axis in mechanically stimulated human osteoblastic cells, leading to transcriptional induction of Runx2 gene, a master regulator of osteoblastic differentiation. Primary osteoblast-like PC1-expressing cells subjected to mechanical-stretching exhibited a PC1-dependent increase of the phosphorylated(p)/active form of JAK2. Specific interaction of PC1-CT with pJAK2 was observed after stretching while pre-treatment of cells with PC1 (anti-IgPKD1) and JAK2 inhibitors abolished JAK2 activation. Consistently, mechanostimulation triggered PC1-mediated phosphorylation and nuclear translocation of STAT3. The nuclear phosphorylated(p)/DNA-binding competent pSTAT3 levels were augmented after stretching followed by elevated DNA-binding activity. Pre-treatment with a STAT3 inhibitor either alone or in combination with anti-IgPKD1 abrogated this effect. Moreover, PC1-mediated mechanostimulation induced elevation of Runx2 mRNA levels. ChIP assays revealed direct regulation of Runx2 promoter activity by STAT3/Runx2 after mechanical-stretching that was PC1-dependent. Our findings show that mechanical load upregulates expression of Runx2 gene via potentiation of PC1–JAK2/STAT3 signaling axis, culminating to possibly control osteoblastic differentiation and ultimately bone formation.


Polycystin-1 Mechanosensor JAK/STAT pathway Mechanotransduction Runx2 Gene regulation Osteoblastic differentiation 



We thank Dr. O. Ibraghimov-Beskrovnaya and H. Husson (Genzyme Co., MA, USA) for their generous gift of the anti-IgPKD1 inhibitory antibody. “Studies utilized resources provided by the NIDDK sponsored Baltimore Polycystic Kidney Disease Research and Clinical Core Center, P30 DK090868”.

Compliance with ethical standards

Conflict of interest

The authors declare that there are no conflicts of interest with any financial organization regarding the material discussed in the manuscript.


  1. 1.
    Rosa N, Simoes R, Magalhaes FD, Marques AT (2015) From mechanical stimulus to bone formation: a review. Med Eng Phys 37:719–728CrossRefPubMedGoogle Scholar
  2. 2.
    Raggatt LJ, Partridge NC (2010) Cellular and molecular mechanisms of bone remodeling. J Biol Chem 285:25103–25108CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Basdra EK, Komposch G (1997) Osteoblast-like properties of human periodontal ligament cells: an in vitro analysis. Eur J Orthod 19:615–621CrossRefPubMedGoogle Scholar
  4. 4.
    Basdra EK, Papavassiliou AG, Huber LA (1995) Rab and rho GTPases are involved in specific response of periodontal ligament fibroblasts to mechanical stretching. Biochim Biophys Acta 1268:209–213CrossRefPubMedGoogle Scholar
  5. 5.
    Kletsas D, Basdra EK, Papavassiliou AG (1998) Mechanical stress induces DNA synthesis in PDL fibroblasts by a mechanism unrelated to autocrine growth factor action. FEBS Lett 430:358–362CrossRefPubMedGoogle Scholar
  6. 6.
    Peverali FA, Basdra EK, Papavassiliou AG (2001) Stretch-mediated activation of selective MAPK subtypes and potentiation of AP-1 binding in human osteoblastic cells. Mol Med 7:68–78PubMedPubMedCentralGoogle Scholar
  7. 7.
    Ziros PG, Gil AP, Georgakopoulos T, Habeos I, Kletsas D, Basdra EK, Papavassiliou AG (2002) The bone-specific transcriptional regulator Cbfa1 is a target of mechanical signals in osteoblastic cells. J Biol Chem 277:23934–23941CrossRefPubMedGoogle Scholar
  8. 8.
    Papachristou DJ, Papachroni KK, Basdra EK, Papavassiliou AG (2009) Signaling networks and transcription factors regulating mechanotransduction in bone. BioEssays 31:794–804CrossRefPubMedGoogle Scholar
  9. 9.
    Papachroni KK, Karatzas DN, Papavassiliou KA, Basdra EK, Papavassiliou AG (2009) Mechanotransduction in osteoblast regulation and bone disease. Trends Mol Med 15:208–216CrossRefPubMedGoogle Scholar
  10. 10.
    Dalagiorgou G, Basdra EK, Papavassiliou AG (2010) Polycystin-1: function as a mechanosensor. Int J Biochem Cell Biol 42:1610–1613CrossRefPubMedGoogle Scholar
  11. 11.
    Hanaoka K (2000) Co-assembly of polycystin-1 and -2 produces unique cation-permeable currents. Nature 408:990–994CrossRefPubMedGoogle Scholar
  12. 12.
    Newby LJ, Streets AJ, Zhao Y, Harris PC, Ward CJ, Ong AC (2002) Identification, characterization, and localization of a novel kidney polycystin-1-polycystin-2 complex. J Biol Chem 277:20763–20773CrossRefPubMedGoogle Scholar
  13. 13.
    Qian F, Germino FJ, Cai Y, Zhang X, Somlo S, Germino GG (1997) PKD1 interacts with PKD2 through a probable coiled-coil domain. Nat Genet 16:179–183CrossRefPubMedGoogle Scholar
  14. 14.
    Tsiokas L, Kim E, Arnould T, Sukhatme VP, Walz G (1997) Homo- and heterodimeric interactions between the gene products of PKD1 and PKD2. Proc Natl Acad Sci USA 94:6965–6970CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Xiao Z, Dallas M, Qiu N, Nicolella D, Cao L, Johnson M, Bonewald L, Quarles LD (2011) Conditional deletion of Pkd1 in osteocytes disrupts skeletal mechanosensing in mice. FASEB J 25:2418–2432CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Xiao Z, Zhang S, Mahlios J, Zhou G, Magenheimer BS, Guo D, Dallas SL, Maser R, Calvet JP, Bonewald L, Quarles LD (2006) Cilia-like structures and polycystin-1 in osteoblasts/osteocytes and associated abnormalities in skeletogenesis and Runx2 expression. J Biol Chem 281:30884–30895CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Xiao Z, Zhang S, Cao L, Qiu N, David V, Quarles LD (2010) Conditional disruption of Pkd1 in osteoblasts results in osteopenia due to direct impairment of bone formation. J Biol Chem 285:1177–1187CrossRefPubMedGoogle Scholar
  18. 18.
    Bertuccio CA, Caplan MJ (2013) Polycystin-1C terminus cleavage and its relation with polycystin-2, two proteins involved in polycystic kidney disease. Medicina (B Aires) 73:155–162Google Scholar
  19. 19.
    Merrick D, Bertuccio CA, Chapin HC, Lal M, Chauvet V, Caplan MJ (2014) Polycystin-1 cleavage and the regulation of transcriptional pathways. Pediatr Nephrol 29:505–511CrossRefPubMedGoogle Scholar
  20. 20.
    Wang H, Sun W, Ma J, Pan Y, Wang L, Zhang W (2014) Polycystin-1 mediates mechanical strain-induced osteoblastic mechanoresponses via potentiation of intracellular calcium and Akt/beta-catenin pathway. PLoS One 9:e91730CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Dalagiorgou G, Piperi C, Georgopoulou U, Adamopoulos C, Basdra EK, Papavassiliou AG (2013) Mechanical stimulation of polycystin-1 induces human osteoblastic gene expression via potentiation of the calcineurin/NFAT signaling axis. Cell Mol Life Sci 70:167–180CrossRefPubMedGoogle Scholar
  22. 22.
    Talbot JJ, Shillingford JM, Vasanth S, Doerr N, Mukherjee S, Kinter MT, Watnick T, Weimbs T (2011) Polycystin-1 regulates STAT activity by a dual mechanism. Proc Natl Acad Sci USA 108:7985–7990CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Weimbs T, Olsan EE, Talbot JJ (2013) Regulation of STATs by polycystin-1 and their role in polycystic kidney disease. JAKSTAT 2:e23650PubMedPubMedCentralGoogle Scholar
  24. 24.
    Li Y, Backesjo CM, Haldosen LA, Lindgren U (2008) IL-6 receptor expression and IL-6 effects change during osteoblast differentiation. Cytokine 43:165–173CrossRefPubMedGoogle Scholar
  25. 25.
    Li J (2013) JAK-STAT and bone metabolism. JAKSTAT 2:e23930PubMedPubMedCentralGoogle Scholar
  26. 26.
    Ziros PG, Georgakopoulos T, Habeos I, Basdra EK, Papavassiliou AG (2004) Growth hormone attenuates the transcriptional activity of Runx2 by facilitating its physical association with Stat3beta. J Bone Miner Res 19:1892–1904CrossRefPubMedGoogle Scholar
  27. 27.
    Ziros PG, Basdra EK, Papavassiliou AG (2008) Runx2: of bone and stretch. Int J Biochem Cell Biol 40:1659–1663CrossRefPubMedGoogle Scholar
  28. 28.
    Jackson RA, Murali S, van Wijnen AJ, Stein GS, Nurcombe V, Cool SM (2007) Heparan sulfate regulates the anabolic activity of MC3T3-E1 preosteoblast cells by induction of Runx2. J Cell Physiol 210:38–50CrossRefPubMedGoogle Scholar
  29. 29.
    Qian F, Boletta A, Bhunia AK, Xu H, Liu L, Ahrabi AK, Watnick TJ, Zhou F, Germino GG (2002) Cleavage of polycystin-1 requires the receptor for egg jelly domain and is disrupted by human autosomal-dominant polycystic kidney disease 1-associated mutations. Proc Natl Acad Sci USA 99:16981–16986CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Ibraghimov-Beskrovnaya O, Bukanov NO, Donohue LC, Dackowski WR, Klinger KW, Landes GM (2000) Strong homophilic interactions of the Ig-like domains of polycystin-1, the protein product of an autosomal dominant polycystic kidney disease gene, PKD1. Hum Mol Genet 9:1641–1649CrossRefPubMedGoogle Scholar
  31. 31.
    Streets AJ, Wagner BE, Harris PC, Ward CJ, Ong AC (2009) Homophilic and heterophilic polycystin 1 interactions regulate E-cadherin recruitment and junction assembly in MDCK cells. J Cell Sci 122:1410–1417CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Naruse K, Sokabe M (1993) Involvement of stretch-activated ion channels in Ca2+ mobilization to mechanical stretch in endothelial cells. Am J Physiol 264:C1037–C1044PubMedGoogle Scholar
  33. 33.
    Yousefian JZNP, Miller B, Shanfeld J, Davidovitch Z (1992) Effect of different types of stress on human periodontal ligament cells in vitro. In: Davidovitch Z (ed) Biological mechanisms of tooth movement and craniofacial adaptation. The Ohio State University, College of Dentistry, Columbus, pp 319–329Google Scholar
  34. 34.
    Fujii S, Maeda H, Wada N, Kano Y, Akamine A (2006) Establishing and characterizing human periodontal ligament fibroblasts immortalized by SV40T-antigen and hTERT gene transfer. Cell Tissue Res 324:117–125CrossRefPubMedGoogle Scholar
  35. 35.
    Marais R, Wynne J, Treisman R (1993) The SRF accessory protein Elk-1 contains a growth factor-regulated transcriptional activation domain. Cell 73:381–393CrossRefPubMedGoogle Scholar
  36. 36.
    Schreiber E, Matthias P, Muller MM, Schaffner W (1989) Rapid detection of octamer binding proteins with ‘mini-extracts’, prepared from a small number of cells. Nucleic Acids Res 17:6419CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Karamouzis MV, Dalagiorgou G, Georgopoulou U, Nonni A, Kontos M, Papavassiliou AG (2016) HER-3 targeting alters the dimerization pattern of ErbB protein family members in breast carcinomas. Oncotarget 7:5576–5597PubMedGoogle Scholar
  38. 38.
    Farmaki E, Mkrtchian S, Papazian I, Papavassiliou AG, Kiaris H (2011) ERp29 regulates response to doxorubicin by a PERK-mediated mechanism. Biochim Biophys Acta 1813:1165–1171CrossRefPubMedGoogle Scholar
  39. 39.
    Nokhbehsaim M, Keser S, Nogueira AV, Cirelli JA, Jepsen S, Jäger A, Eick S, Deschner J (2014) Beneficial effects of adiponectin on periodontal ligament cells under normal and regenerative conditions. J Diabetes Res 2014:796565CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Nokhbehsaim M, Keser S, Nogueira AV, Jäger A, Jepsen S, Cirelli JA, Bourauel C, Eick S, Deschner J (2014) Leptin effects on the regenerative capacity of human periodontal cells. Int J Endocrinol 2014:180304CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Jerman S, Ward HH, Lee R, Lopes CA, Fry AM, MacDougall M, Wandinger-Ness A (2014) OFD1 and flotillins are integral components of a ciliary signaling protein complex organized by polycystins in renal epithelia and odontoblasts. PLoS One 9:e106330CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Xu J, Cole DC, Chang CP, Ayyad R, Asselin M, Hao W, Gibbons J, Jelinsky SA, Saraf KA, Park K (2008) Inhibition of the signal transducer and activator of transcription-3 (STAT3) signaling pathway by 4-oxo-1-phenyl-1,4-dihydroquinoline-3-carboxylic acid esters. J Med Chem 51:4115–4121CrossRefPubMedGoogle Scholar
  43. 43.
    Bhunia AK, Piontek K, Boletta A, Liu L, Qian F, Xu PN, Germino FJ, Germino GG (2002) PKD1 induces p21(waf1) and regulation of the cell cycle via direct activation of the JAK-STAT signaling pathway in a process requiring PKD2. Cell 109:157–168CrossRefPubMedGoogle Scholar
  44. 44.
    Kim H, Kang AY, Ko AR, Park HC, So I, Park JH, Cheong HI, Hwang YH, Ahn C (2014) Calpain-mediated proteolysis of polycystin-1 C-terminus induces JAK2 and ERK signal alterations. Exp Cell Res 320:62–68CrossRefPubMedGoogle Scholar
  45. 45.
    Parganas E, Wang D, Stravopodis D, Topham DJ, Marine JC, Teglund S, Vanin EF, Bodner S, Colamonici OR, van Deursen JM, Grosveld G, Ihle JN (1998) Jak2 is essential for signaling through a variety of cytokine receptors. Cell 93:385–395CrossRefPubMedGoogle Scholar
  46. 46.
    Neubauer H, Cumano A, Müller M, Wu H, Huffstadt U, Pfeffer K (1998) Jak2 deficiency defines an essential developmental checkpoint in definitive hematopoiesis. Cell 93:397–409CrossRefPubMedGoogle Scholar
  47. 47.
    Hu JT, Li Y, Yu B, Gao GJ, Zhou T, Li S (2015) Girdin/GIV is upregulated by cyclic tension, propagates mechanical signal transduction, and is required for the cellular proliferation and migration of MG-63 cells. Biochem Biophys Res Commun 464:493–499CrossRefPubMedGoogle Scholar
  48. 48.
    Zhou H, Newnum AB, Martin JR, Li P, Nelson MT, Moh A, Fu XY, Yokota H, Li J (2011) Osteoblast/osteocyte-specific inactivation of Stat3 decreases load-driven bone formation and accumulates reactive oxygen species. Bone 49:404–411CrossRefPubMedGoogle Scholar
  49. 49.
    Bromberg J (2002) Stat proteins and oncogenesis. J Clin Invest 109:1139–1142CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Nadiminty N, Lou W, Lee SO, Lin X, Trump DL, Gao AC (2006) Stat3 activation of NF-{kappa}B p100 processing involves CBP/p300-mediated acetylation. Proc Natl Acad Sci USA 103:7264–7269CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Hou B, Kolpakova-Hart E, Fukai N, Wu K, Olsen BR (2009) The polycystic kidney disease 1 (Pkd1) gene is required for the responses of osteochondroprogenitor cells to midpalatal suture expansion in mice. Bone 44:1121–1133CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Qiu N, Cao L, David V, Quarles LD, Xiao Z (2010) Kif3a deficiency reverses the skeletal abnormalities in Pkd1 deficient mice by restoring the balance between osteogenesis and adipogenesis. PLoS One 5:e15240CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Xiao Z, Zhang S, Magenheimer BS, Luo J, Quarles LD (2008) Polycystin-1 regulates skeletogenesis through stimulation of the osteoblast-specific transcription factor RUNX2-II. J Biol Chem 283:12624–12634CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing 2016

Authors and Affiliations

  • Georgia Dalagiorgou
    • 1
  • Christina Piperi
    • 1
  • Christos Adamopoulos
    • 1
  • Urania Georgopoulou
    • 2
  • Antonios N. Gargalionis
    • 1
  • Anastasia Spyropoulou
    • 1
  • Ilianna Zoi
    • 1
  • Marjan Nokhbehsaim
    • 3
  • Anna Damanaki
    • 3
  • James Deschner
    • 3
  • Efthimia K. Basdra
    • 1
  • Athanasios G. Papavassiliou
    • 1
  1. 1.Department of Biological Chemistry, Medical SchoolNational and Kapodistrian University of AthensAthensGreece
  2. 2.Molecular Virology LaboratoryHellenic Pasteur InstituteAthensGreece
  3. 3.Section of Experimental Dento-Maxillo-Facial Medicine, Center of Dento-Maxillo-Facial MedicineUniversity of BonnBonnGermany

Personalised recommendations