Advertisement

Cellular and Molecular Life Sciences

, Volume 74, Issue 6, pp 1019–1034 | Cite as

Understanding cardiomyocyte proliferation: an insight into cell cycle activity

  • Murugavel Ponnusamy
  • Pei-Feng Li
  • Kun Wang
Review

Abstract

Cardiomyocyte proliferation and regeneration are key to the functional recovery of myocardial tissue from injury. In the recent years, studies on cardiomyocyte proliferation overturned the traditional belief that adult cardiomyocytes permanently withdraw from the cell cycle activity. Hence, targeting cardiomyocyte proliferation is one of the potential therapeutic strategies for myocardial regeneration and repair. To achieve this, a deep understanding of the fundamental mechanisms involved in cardiomyocyte cell cycle as well as differences between neonatal and adult cardiomyocytes’ cell cycle activity is required. This review focuses on the recent progress in understanding of cardiomyocyte cell cycle activity at different life stages viz., gestation, birth, and adulthood. The temporal expression/activities of major cell cycle activators (cyclins and CDKs), inhibitors (p21, p27, p57, p16, and p18), and cell-cycle-associated proteins (Rb, p107, and p130) in cardiomyocytes during gestation and postnatal life are described in this review. The influence of different transcription factors and microRNAs on the expression of cell cycle proteins is demonstrated. This review also deals major pathways (PI3K/AKT, Wnt/β-catenin, and Hippo-YAP) associated with cardiomyocyte cell cycle progression. Furthermore, the postnatal alterations in structure and cellular events responsible for the loss of cell cycle activity are also illustrated.

Keywords

Cardiomyocytes Cell cycle Cyclins Signaling pathways MicroRNAs Transcription factors 

Notes

Acknowledgments

This work was supported by the National Natural Science Foundation of China (81522005, 81270160, and 81470522).

References

  1. 1.
    Bergmann O, Bhardwaj RD, Bernard S, Zdunek S, Barnabe-Heider F, Walsh S, Zupicich J, Alkass K, Buchholz BA, Druid H, Jovinge S, Frisen J (2009) Evidence for cardiomyocyte renewal in humans. Science 324:98–102. doi: 10.1126/science.1164680 PubMedPubMedCentralCrossRefGoogle Scholar
  2. 2.
    Mollova M, Bersell K, Walsh S, Savla J, Das LT, Park SY, Silberstein LE, Dos Remedios CG, Graham D, Colan S, Kuhn B (2013) Cardiomyocyte proliferation contributes to heart growth in young humans. Proc Natl Acad Sci USA 110:1446–1451. doi: 10.1073/pnas.1214608110 PubMedPubMedCentralCrossRefGoogle Scholar
  3. 3.
    Porrello ER, Mahmoud AI, Simpson E, Hill JA, Richardson JA, Olson EN, Sadek HA (2011) Transient regenerative potential of the neonatal mouse heart. Science 331:1078–1080. doi: 10.1126/science.1200708 PubMedPubMedCentralCrossRefGoogle Scholar
  4. 4.
    Herget GW, Neuburger M, Plagwitz R, Adler CP (1997) DNA content, ploidy level and number of nuclei in the human heart after myocardial infarction. Cardiovasc Res 36:45–51PubMedCrossRefGoogle Scholar
  5. 5.
    Erokhina IL, Selivanova GV, Vlasova TD, Emel’ianova OI (1997) Correlation between the level of polyploidy and hypertrophy and degree of human atrial cardiomyocyte damage in certain congenital and acquired heart pathologies. Tsitologiia 39:889–899PubMedGoogle Scholar
  6. 6.
    Senyo SE, Steinhauser ML, Pizzimenti CL, Yang VK, Cai L, Wang M, Wu TD, Guerquin-Kern JL, Lechene CP, Lee RT (2013) Mammalian heart renewal by pre-existing cardiomyocytes. Nature 493:433–436. doi: 10.1038/nature11682 PubMedCrossRefGoogle Scholar
  7. 7.
    Kajstura J, Urbanek K, Perl S, Hosoda T, Zheng H, Ogorek B, Ferreira-Martins J, Goichberg P, Rondon-Clavo C, Sanada F, D’Amario D, Rota M, Del Monte F, Orlic D, Tisdale J, Leri A, Anversa P (2010) Cardiomyogenesis in the adult human heart. Circ Res 107:305–315. doi: 10.1161/CIRCRESAHA.110.223024 PubMedPubMedCentralCrossRefGoogle Scholar
  8. 8.
    Beltrami AP, Urbanek K, Kajstura J, Yan SM, Finato N, Bussani R, Nadal-Ginard B, Silvestri F, Leri A, Beltrami CA, Anversa P (2001) Evidence that human cardiac myocytes divide after myocardial infarction. N Engl J Med 344:1750–1757. doi: 10.1056/NEJM200106073442303 PubMedCrossRefGoogle Scholar
  9. 9.
    Malliaras K, Zhang Y, Seinfeld J, Galang G, Tseliou E, Cheng K, Sun B, Aminzadeh M, Marban E (2013) Cardiomyocyte proliferation and progenitor cell recruitment underlie therapeutic regeneration after myocardial infarction in the adult mouse heart. EMBO Mol Med 5:191–209. doi: 10.1002/emmm.201201737 PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    Kajstura J, Gurusamy N, Ogorek B, Goichberg P, Clavo-Rondon C, Hosoda T, D’Amario D, Bardelli S, Beltrami AP, Cesselli D, Bussani R, del Monte F, Quaini F, Rota M, Beltrami CA, Buchholz BA, Leri A, Anversa P (2010) Myocyte turnover in the aging human heart. Circ Res 107:1374–1386. doi: 10.1161/CIRCRESAHA.110.231498 PubMedCrossRefGoogle Scholar
  11. 11.
    Jopling C, Sleep E, Raya M, Marti M, Raya A, Izpisua Belmonte JC (2010) Zebrafish heart regeneration occurs by cardiomyocyte dedifferentiation and proliferation. Nature 464:606–609. doi: 10.1038/nature08899 PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    Takeuchi T (2014) Regulation of cardiomyocyte proliferation during development and regeneration. Dev Growth Differ 56:402–409. doi: 10.1111/dgd.12134 PubMedCrossRefGoogle Scholar
  13. 13.
    de Pater E, Clijsters L, Marques SR, Lin YF, Garavito-Aguilar ZV, Yelon D, Bakkers J (2009) Distinct phases of cardiomyocyte differentiation regulate growth of the zebrafish heart. Development 136:1633–1641. doi: 10.1242/dev.030924 PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    Spater D, Hansson EM, Zangi L, Chien KR (2014) How to make a cardiomyocyte. Development 141:4418–4431. doi: 10.1242/dev.091538 PubMedCrossRefGoogle Scholar
  15. 15.
    Sedmera D, Thompson RP (2011) Myocyte proliferation in the developing heart. Dev Dyn 240:1322–1334. doi: 10.1002/dvdy.22650 PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Chen H, Shi S, Acosta L, Li W, Lu J, Bao S, Chen Z, Yang Z, Schneider MD, Chien KR, Conway SJ, Yoder MC, Haneline LS, Franco D, Shou W (2004) BMP10 is essential for maintaining cardiac growth during murine cardiogenesis. Development 131:2219–2231. doi: 10.1242/dev.01094 PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    Christoffels VM, Habets PE, Franco D, Campione M, de Jong F, Lamers WH, Bao ZZ, Palmer S, Biben C, Harvey RP, Moorman AF (2000) Chamber formation and morphogenesis in the developing mammalian heart. Dev Biol 223:266–278. doi: 10.1006/dbio.2000.9753 PubMedCrossRefGoogle Scholar
  18. 18.
    Ikenishi A, Okayama H, Iwamoto N, Yoshitome S, Tane S, Nakamura K, Obayashi T, Hayashi T, Takeuchi T (2012) Cell cycle regulation in mouse heart during embryonic and postnatal stages. Dev Growth Differ 54:731–738. doi: 10.1111/j.1440-169X.2012.01373.x PubMedCrossRefGoogle Scholar
  19. 19.
    Chattergoon NN, Louey S, Stork PJ, Giraud GD, Thornburg KL (2014) Unexpected maturation of PI3K and MAPK-ERK signaling in fetal ovine cardiomyocytes. Am J Physiol Heart Circ Physiol 307:H1216–H1225. doi: 10.1152/ajpheart.00833.2013 PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Tane S, Okayama H, Ikenishi A, Amemiya Y, Nakayama KI, Takeuchi T (2015) Two inhibitory systems and CKIs regulate cell cycle exit of mammalian cardiomyocytes after birth. Biochem Biophys Res Commun 466:147–154. doi: 10.1016/j.bbrc.2015.08.102 PubMedCrossRefGoogle Scholar
  21. 21.
    Tane S, Ikenishi A, Okayama H, Iwamoto N, Nakayama KI, Takeuchi T (2014) CDK inhibitors, p21(Cip1) and p27(Kip1), participate in cell cycle exit of mammalian cardiomyocytes. Biochem Biophys Res Commun 443:1105–1109. doi: 10.1016/j.bbrc.2013.12.109 PubMedCrossRefGoogle Scholar
  22. 22.
    Mahmoud AI, Kocabas F, Muralidhar SA, Kimura W, Koura AS, Thet S, Porrello ER, Sadek HA (2013) Meis1 regulates postnatal cardiomyocyte cell cycle arrest. Nature 497:249–253. doi: 10.1038/nature12054 PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Sdek P, Zhao P, Wang Y, Huang CJ, Ko CY, Butler PC, Weiss JN, Maclellan WR (2011) Rb and p130 control cell cycle gene silencing to maintain the postmitotic phenotype in cardiac myocytes. J Cell Biol 194:407–423. doi: 10.1083/jcb.201012049 PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Tamamori-Adachi M, Goto I, Yamada K, Kitajima S (2008) Differential regulation of cyclin D1 and D2 in protecting against cardiomyocyte proliferation. Cell Cycle 7:3768–3774. doi: 10.4161/cc.7.23.7239 PubMedCrossRefGoogle Scholar
  25. 25.
    Tamamori-Adachi M, Ito H, Sumrejkanchanakij P, Adachi S, Hiroe M, Shimizu M, Kawauchi J, Sunamori M, Marumo F, Kitajima S, Ikeda MA (2003) Critical role of cyclin D1 nuclear import in cardiomyocyte proliferation. Circ Res 92:e12–e19PubMedCrossRefGoogle Scholar
  26. 26.
    Pasumarthi KB, Nakajima H, Nakajima HO, Soonpaa MH, Field LJ (2005) Targeted expression of cyclin D2 results in cardiomyocyte DNA synthesis and infarct regression in transgenic mice. Circ Res 96:110–118. doi: 10.1161/01.res.0000152326.91223.4f PubMedCrossRefGoogle Scholar
  27. 27.
    Kang MJ, Kim JS, Chae SW, Koh KN, Koh GY (1997) Cyclins and cyclin dependent kinases during cardiac development. Mol Cells 7:360–366PubMedGoogle Scholar
  28. 28.
    Kim WH, Joo CU, Ku JH, Ryu CH, Koh KN, Koh GY, Ko JK (1998) Cell cycle regulators during human atrial development. Korean J Intern Med 13:77–82PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Di Stefano V, Giacca M, Capogrossi MC, Crescenzi M, Martelli F (2011) Knockdown of cyclin-dependent kinase inhibitors induces cardiomyocyte re-entry in the cell cycle. J Biol Chem 286:8644–8654. doi: 10.1074/jbc.M110.184549 PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    Engel FB, Hauck L, Boehm M, Nabel EG, Dietz R, von Harsdorf R (2003) p21(CIP1) Controls proliferating cell nuclear antigen level in adult cardiomyocytes. Mol Cell Biol 23:555–565PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Kochilas LK, Li J, Jin F, Buck CA, Epstein JA (1999) p57Kip2 expression is enhanced during mid-cardiac murine development and is restricted to trabecular myocardium. Pediatr Res 45:635–642. doi: 10.1203/00006450-199905010-00004 PubMedCrossRefGoogle Scholar
  32. 32.
    Hauck L, Hansmann G, Dietz R, von Harsdorf R (2002) Inhibition of hypoxia-induced apoptosis by modulation of retinoblastoma protein-dependent signaling in cardiomyocytes. Circ Res 91:782–789PubMedCrossRefGoogle Scholar
  33. 33.
    Haley SA, Zhao T, Zou L, Klysik JE, Padbury JF, Kochilas LK (2008) Forced expression of the cell cycle inhibitor p57Kip2 in cardiomyocytes attenuates ischemia-reperfusion injury in the mouse heart. BMC Physiol 8:4. doi: 10.1186/1472-6793-8-4 PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Park DS, Tompkins RO, Liu F, Zhang J, Phoon CK, Zavadil J, Fishman GI (2013) Pocket proteins critically regulate cell cycle exit of the trabecular myocardium and the ventricular conduction system. Biol Open 2:968–978. doi: 10.1242/bio.20135785 PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    MacLellan WR, Garcia A, Oh H, Frenkel P, Jordan MC, Roos KP, Schneider MD (2005) Overlapping roles of pocket proteins in the myocardium are unmasked by germ line deletion of p130 plus heart-specific deletion of Rb. Mol Cell Biol 25:2486–2497. doi: 10.1128/mcb.25.6.2486-2497.2005 PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    Hille S, Dierck F, Kuhl C, Sosna J, Adam-Klages S, Adam D, Lullmann-Rauch R, Frey N, Kuhn C (2016) Dyrk1a regulates the cardiomyocyte cell cycle via D-cyclin-dependent Rb/E2f-signalling. Cardiovasc Res 110:381–394. doi: 10.1093/cvr/cvw074 PubMedCrossRefGoogle Scholar
  37. 37.
    Ebelt H, Hufnagel N, Neuhaus P, Neuhaus H, Gajawada P, Simm A, Muller-Werdan U, Werdan K, Braun T (2005) Divergent siblings: E2F2 and E2F4 but not E2F1 and E2F3 induce DNA synthesis in cardiomyocytes without activation of apoptosis. Circ Res 96:509–517. doi: 10.1161/01.RES.0000159705.17322.57 PubMedCrossRefGoogle Scholar
  38. 38.
    Ebelt H, Zhang Y, Kampke A, Xu J, Schlitt A, Buerke M, Muller-Werdan U, Werdan K, Braun T (2008) E2F2 expression induces proliferation of terminally differentiated cardiomyocytes in vivo. Cardiovasc Res 80:219–226. doi: 10.1093/cvr/cvn194 PubMedCrossRefGoogle Scholar
  39. 39.
    van Amerongen MJ, Diehl F, Novoyatleva T, Patra C, Engel FB (2010) E2F4 is required for cardiomyocyte proliferation. Cardiovasc Res 86:92–102. doi: 10.1093/cvr/cvp383 PubMedCrossRefGoogle Scholar
  40. 40.
    Dingar D, Konecny F, Zou J, Sun X, von Harsdorf R (2012) Anti-apoptotic function of the E2F transcription factor 4 (E2F4)/p130, a member of retinoblastoma gene family in cardiac myocytes. J Mol Cell Cardiol 53:820–828. doi: 10.1016/j.yjmcc.2012.09.004 PubMedCrossRefGoogle Scholar
  41. 41.
    Flink IL, Oana S, Maitra N, Bahl JJ, Morkin E (1998) Changes in E2F complexes containing retinoblastoma protein family members and increased cyclin-dependent kinase inhibitor activities during terminal differentiation of cardiomyocytes. J Mol Cell Cardiol 30:563–578. doi: 10.1006/jmcc.1997.0620 PubMedCrossRefGoogle Scholar
  42. 42.
    Chakraborty S, Yutzey KE (2012) Tbx20 regulation of cardiac cell proliferation and lineage specialization during embryonic and fetal development in vivo. Dev Biol 363:234–246. doi: 10.1016/j.ydbio.2011.12.034 PubMedCrossRefGoogle Scholar
  43. 43.
    Chakraborty S, Sengupta A, Yutzey KE (2013) Tbx20 promotes cardiomyocyte proliferation and persistence of fetal characteristics in adult mouse hearts. J Mol Cell Cardiol 62:203–213. doi: 10.1016/j.yjmcc.2013.05.018 PubMedCrossRefGoogle Scholar
  44. 44.
    Xiang FL, Guo M, Yutzey KE (2016) Overexpression of Tbx20 in adult cardiomyocytes promotes proliferation and improves cardiac function after myocardial infarction. Circulation 133:1081–1092. doi: 10.1161/circulationaha.115.019357 PubMedCrossRefGoogle Scholar
  45. 45.
    Dorr KM, Amin NM, Kuchenbrod LM, Labiner H, Charpentier MS, Pevny LH, Wessels A, Conlon FL (2015) Casz1 is required for cardiomyocyte G1-to-S phase progression during mammalian cardiac development. Development 142:2037–2047. doi: 10.1242/dev.119107 PubMedPubMedCentralCrossRefGoogle Scholar
  46. 46.
    Rojas A, Kong SW, Agarwal P, Gilliss B, Pu WT, Black BL (2008) GATA4 is a direct transcriptional activator of cyclin D2 and Cdk4 and is required for cardiomyocyte proliferation in anterior heart field-derived myocardium. Mol Cell Biol 28:5420–5431. doi: 10.1128/mcb.00717-08 PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    Yamak A, Latinkic BV, Dali R, Temsah R, Nemer M (2014) Cyclin D2 is a GATA4 cofactor in cardiogenesis. Proc Natl Acad Sci USA 111:1415–1420. doi: 10.1073/pnas.1312993111 PubMedPubMedCentralCrossRefGoogle Scholar
  48. 48.
    Estrella NL, Clark AL, Desjardins CA, Nocco SE, Naya FJ (2015) MEF2D deficiency in neonatal cardiomyocytes triggers cell cycle re-entry and programmed cell death in vitro. J Biol Chem 290:24367–24380. doi: 10.1074/jbc.M115.666461 PubMedPubMedCentralCrossRefGoogle Scholar
  49. 49.
    Sengupta A, Kalinichenko VV, Yutzey KE (2013) FoxO1 and FoxM1 transcription factors have antagonistic functions in neonatal cardiomyocyte cell-cycle withdrawal and IGF1 gene regulation. Circ Res 112:267–277. doi: 10.1161/circresaha.112.277442 PubMedCrossRefGoogle Scholar
  50. 50.
    Rochais F, Sturny R, Chao CM, Mesbah K, Bennett M, Mohun TJ, Bellusci S, Kelly RG (2014) FGF10 promotes regional foetal cardiomyocyte proliferation and adult cardiomyocyte cell-cycle re-entry. Cardiovasc Res 104:432–442. doi: 10.1093/cvr/cvu232 PubMedCrossRefGoogle Scholar
  51. 51.
    Bersell K, Arab S, Haring B, Kuhn B (2009) Neuregulin1/ErbB4 signaling induces cardiomyocyte proliferation and repair of heart injury. Cell 138:257–270. doi: 10.1016/j.cell.2009.04.060 PubMedCrossRefGoogle Scholar
  52. 52.
    Evans-Anderson HJ, Alfieri CM, Yutzey KE (2008) Regulation of cardiomyocyte proliferation and myocardial growth during development by FOXO transcription factors. Circ Res 102:686–694. doi: 10.1161/circresaha.107.163428 PubMedCrossRefGoogle Scholar
  53. 53.
    Novoyatleva T, Diehl F, van Amerongen MJ, Patra C, Ferrazzi F, Bellazzi R, Engel FB (2010) TWEAK is a positive regulator of cardiomyocyte proliferation. Cardiovasc Res 85:681–690. doi: 10.1093/cvr/cvp360 PubMedCrossRefGoogle Scholar
  54. 54.
    Novoyatleva T, Sajjad A, Pogoryelov D, Patra C, Schermuly RT, Engel FB (2014) FGF1-mediated cardiomyocyte cell cycle reentry depends on the interaction of FGFR-1 and Fn14. FASEB J 28:2492–2503. doi: 10.1096/fj.13-243576 PubMedCrossRefGoogle Scholar
  55. 55.
    Buikema JW, Mady AS, Mittal NV, Atmanli A, Caron L, Doevendans PA, Sluijter JP, Domian IJ (2013) Wnt/beta-catenin signaling directs the regional expansion of first and second heart field-derived ventricular cardiomyocytes. Development 140:4165–4176. doi: 10.1242/dev.099325 PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    Lin Z, Zhou P, von Gise A, Gu F, Ma Q, Chen J, Guo H, van Gorp PR, Wang DZ, Pu WT (2015) Pi3kcb links Hippo-YAP and PI3K-AKT signaling pathways to promote cardiomyocyte proliferation and survival. Circ Res 116:35–45. doi: 10.1161/circresaha.115.304457 PubMedCrossRefGoogle Scholar
  57. 57.
    von Gise A, Lin Z, Schlegelmilch K, Honor LB, Pan GM, Buck JN, Ma Q, Ishiwata T, Zhou B, Camargo FD, Pu WT (2012) YAP1, the nuclear target of Hippo signaling, stimulates heart growth through cardiomyocyte proliferation but not hypertrophy. Proc Natl Acad Sci USA 109:2394–2399. doi: 10.1073/pnas.1116136109 CrossRefGoogle Scholar
  58. 58.
    Sudol M (2014) Neuregulin 1-activated ERBB4 as a “dedicated” receptor for the Hippo-YAP pathway. Sci Signal 7:pe29. doi: 10.1126/scisignal.aaa2710 PubMedCrossRefGoogle Scholar
  59. 59.
    D’Uva G, Aharonov A, Lauriola M, Kain D, Yahalom-Ronen Y, Carvalho S, Weisinger K, Bassat E, Rajchman D, Yifa O, Lysenko M, Konfino T, Hegesh J, Brenner O, Neeman M, Yarden Y, Leor J, Sarig R, Harvey RP, Tzahor E (2015) ERBB2 triggers mammalian heart regeneration by promoting cardiomyocyte dedifferentiation and proliferation. Nat Cell Biol 17:627–638. doi: 10.1038/ncb3149 PubMedCrossRefGoogle Scholar
  60. 60.
    Wadugu B, Kuhn B (2012) The role of neuregulin/ErbB2/ErbB4 signaling in the heart with special focus on effects on cardiomyocyte proliferation. Am J Physiol Heart Circ Physiol 302:H2139–H2147. doi: 10.1152/ajpheart.00063.2012 PubMedPubMedCentralCrossRefGoogle Scholar
  61. 61.
    Fan R, Kim NG, Gumbiner BM (2013) Regulation of Hippo pathway by mitogenic growth factors via phosphoinositide 3-kinase and phosphoinositide-dependent kinase-1. Proc Natl Acad Sci USA 110:2569–2574. doi: 10.1073/pnas.1216462110 PubMedPubMedCentralCrossRefGoogle Scholar
  62. 62.
    Campa VM, Gutierrez-Lanza R, Cerignoli F, Diaz-Trelles R, Nelson B, Tsuji T, Barcova M, Jiang W, Mercola M (2008) Notch activates cell cycle reentry and progression in quiescent cardiomyocytes. J Cell Biol 183:129–141. doi: 10.1083/jcb.200806104 PubMedPubMedCentralCrossRefGoogle Scholar
  63. 63.
    Felician G, Collesi C, Lusic M, Martinelli V, Ferro MD, Zentilin L, Zacchigna S, Giacca M (2014) Epigenetic modification at Notch responsive promoters blunts efficacy of inducing notch pathway reactivation after myocardial infarction. Circ Res 115:636–649. doi: 10.1161/circresaha.115.304517 PubMedCrossRefGoogle Scholar
  64. 64.
    Engel FB, Schebesta M, Duong MT, Lu G, Ren S, Madwed JB, Jiang H, Wang Y, Keating MT (2005) p38 MAP kinase inhibition enables proliferation of adult mammalian cardiomyocytes. Genes Dev 19:1175–1187. doi: 10.1101/gad.1306705 PubMedPubMedCentralCrossRefGoogle Scholar
  65. 65.
    Wei BR, Martin PL, Hoover SB, Spehalski E, Kumar M, Hoenerhoff MJ, Rozenberg J, Vinson C, Simpson RM (2011) Capacity for resolution of Ras-MAPK-initiated early pathogenic myocardial hypertrophy modeled in mice. Comp Med 61:109–118PubMedPubMedCentralGoogle Scholar
  66. 66.
    Gao R, Zhang J, Cheng L, Wu X, Dong W, Yang X, Li T, Liu X, Xu Y, Li X, Zhou M (2010) A Phase II, randomized, double-blind, multicenter, based on standard therapy, placebo-controlled study of the efficacy and safety of recombinant human neuregulin-1 in patients with chronic heart failure. J Am Coll Cardiol 55:1907–1914. doi: 10.1016/j.jacc.2009.12.044 PubMedCrossRefGoogle Scholar
  67. 67.
    Jabbour A, Hayward CS, Keogh AM, Kotlyar E, McCrohon JA, England JF, Amor R, Liu X, Li XY, Zhou MD, Graham RM, Macdonald PS (2011) Parenteral administration of recombinant human neuregulin-1 to patients with stable chronic heart failure produces favourable acute and chronic haemodynamic responses. Eur J Heart Fail 13:83–92. doi: 10.1093/eurjhf/hfq152 PubMedCrossRefGoogle Scholar
  68. 68.
    Polizzotti BD, Ganapathy B, Walsh S, Choudhury S, Ammanamanchi N, Bennett DG, dos Remedios CG, Haubner BJ, Penninger JM, Kuhn B (2015) Neuregulin stimulation of cardiomyocyte regeneration in mice and human myocardium reveals a therapeutic window. Sci Transl Med 7:281ra245. doi: 10.1126/scitranslmed.aaa5171 CrossRefGoogle Scholar
  69. 69.
    Eulalio A, Mano M, Dal Ferro M, Zentilin L, Sinagra G, Zacchigna S, Giacca M (2012) Functional screening identifies miRNAs inducing cardiac regeneration. Nature 492:376–381. doi: 10.1038/nature11739 PubMedCrossRefGoogle Scholar
  70. 70.
    Chen J, Huang ZP, Seok HY, Ding J, Kataoka M, Zhang Z, Hu X, Wang G, Lin Z, Wang S, Pu WT, Liao R, Wang DZ (2013) mir-17-92 cluster is required for and sufficient to induce cardiomyocyte proliferation in postnatal and adult hearts. Circ Res 112:1557–1566. doi: 10.1161/circresaha.112.300658 PubMedPubMedCentralCrossRefGoogle Scholar
  71. 71.
    Tian Y, Liu Y, Wang T, Zhou N, Kong J, Chen L, Snitow M, Morley M, Li D, Petrenko N, Zhou S, Lu M, Gao E, Koch WJ, Stewart KM, Morrisey EE (2015) A microRNA-Hippo pathway that promotes cardiomyocyte proliferation and cardiac regeneration in mice. Sci Transl Med 7:279ra238. doi: 10.1126/scitranslmed.3010841 CrossRefGoogle Scholar
  72. 72.
    Li X, Wang J, Jia Z, Cui Q, Zhang C, Wang W, Chen P, Ma K, Zhou C (2013) MiR-499 regulates cell proliferation and apoptosis during late-stage cardiac differentiation via Sox6 and cyclin D1. PLoS One 8:e74504. doi: 10.1371/journal.pone.0074504 PubMedPubMedCentralCrossRefGoogle Scholar
  73. 73.
    Liang D, Li J, Wu Y, Zhen L, Li C, Qi M, Wang L, Deng F, Huang J, Lv F, Liu Y, Ma X, Yu Z, Zhang Y, Chen YH (2015) miRNA-204 drives cardiomyocyte proliferation via targeting Jarid2. Int J Cardiol 201:38–48. doi: 10.1016/j.ijcard.2015.06.163 PubMedCrossRefGoogle Scholar
  74. 74.
    Mysliwiec MR, Carlson CD, Tietjen J, Hung H, Ansari AZ, Lee Y (2012) Jarid2 (Jumonji, AT rich interactive domain 2) regulates NOTCH1 expression via histone modification in the developing heart. J Biol Chem 287:1235–1241. doi: 10.1074/jbc.M111.315945 PubMedCrossRefGoogle Scholar
  75. 75.
    Clark AL, Naya FJ (2015) MicroRNAs in the Myocyte Enhancer Factor 2 (MEF2)-regulated Gtl2-Dio3 noncoding RNA locus promote cardiomyocyte proliferation by targeting the transcriptional coactivator cited2. J Biol Chem 290:23162–23172. doi: 10.1074/jbc.M115.672659 PubMedPubMedCentralCrossRefGoogle Scholar
  76. 76.
    Porrello ER, Johnson BA, Aurora AB, Simpson E, Nam YJ, Matkovich SJ, Dorn GW 2nd, van Rooij E, Olson EN (2011) MiR-15 family regulates postnatal mitotic arrest of cardiomyocytes. Circ Res 109:670–679. doi: 10.1161/circresaha.111.248880 PubMedPubMedCentralCrossRefGoogle Scholar
  77. 77.
    Huang S, Zou X, Zhu JN, Fu YH, Lin QX, Liang YY, Deng CY, Kuang SJ, Zhang MZ, Liao YL, Zheng XL, Yu XY, Shan ZX (2015) Attenuation of microRNA-16 derepresses the cyclins D1, D2 and E1 to provoke cardiomyocyte hypertrophy. J Cell Mol Med 19:608–619. doi: 10.1111/jcmm.12445 PubMedPubMedCentralCrossRefGoogle Scholar
  78. 78.
    Cao X, Wang J, Wang Z, Du J, Yuan X, Huang W, Meng J, Gu H, Nie Y, Ji B, Hu S, Zheng Z (2013) MicroRNA profiling during rat ventricular maturation: a role for miR-29a in regulating cardiomyocyte cell cycle re-entry. FEBS Lett 587:1548–1555. doi: 10.1016/j.febslet.2013.01.075 PubMedCrossRefGoogle Scholar
  79. 79.
    Zhang Y, Matsushita N, Eigler T, Marban E (2013) Targeted microRNA interference promotes postnatal cardiac cell cycle re-entry. J Regen Med 2:2. doi: 10.4172/2325-9620.1000108 PubMedPubMedCentralGoogle Scholar
  80. 80.
    Crippa S, Nemir M, Ounzain S, Ibberson M, Berthonneche C, Sarre A, Boisset G, Maison D, Harshman K, Xenarios I, Diviani D, Schorderet D, Pedrazzini T (2016) Comparative transcriptome profiling of the injured zebrafish and mouse hearts identifies miRNA-dependent repair pathways. Cardiovasc Res 110:73–84. doi: 10.1093/cvr/cvw031 PubMedPubMedCentralCrossRefGoogle Scholar
  81. 81.
    Liu N, Bezprozvannaya S, Williams AH, Qi X, Richardson JA, Bassel-Duby R, Olson EN (2008) microRNA-133a regulates cardiomyocyte proliferation and suppresses smooth muscle gene expression in the heart. Genes Dev 22:3242–3254. doi: 10.1101/gad.1738708 PubMedPubMedCentralCrossRefGoogle Scholar
  82. 82.
    Yang Y, Cheng HW, Qiu Y, Dupee D, Noonan M, Lin YD, Fisch S, Unno K, Sereti KI, Liao R (2015) MicroRNA-34a plays a key role in cardiac repair and regeneration following myocardial infarction. Circ Res 117:450–459. doi: 10.1161/circresaha.117.305962 PubMedPubMedCentralCrossRefGoogle Scholar
  83. 83.
    Hinrichsen R, Hansen AH, Haunso S, Busk PK (2008) Phosphorylation of pRb by cyclin D kinase is necessary for development of cardiac hypertrophy. Cell Prolif 41:813–829. doi: 10.1111/j.1365-2184.2008.00549.x PubMedCrossRefGoogle Scholar
  84. 84.
    Busk PK, Bartkova J, Strom CC, Wulf-Andersen L, Hinrichsen R, Christoffersen TE, Latella L, Bartek J, Haunso S, Sheikh SP (2002) Involvement of cyclin D activity in left ventricle hypertrophy in vivo and in vitro. Cardiovasc Res 56:64–75PubMedCrossRefGoogle Scholar
  85. 85.
    Tevzadze N, Rukhadze R, Dzidziguri D (2005) The age related changes in cell cycle of mice cardiomyocytes. Georgian Med News 128:87–90Google Scholar
  86. 86.
    Stephen MJ, Poindexter BJ, Moolman JA, Sheikh-Hamad D, Bick RJ (2009) Do binucleate cardiomyocytes have a role in myocardial repair? Insights using isolated rodent myocytes and cell culture. Open Cardiovasc Med J 3:1–7. doi: 10.2174/1874192400903010001 PubMedPubMedCentralCrossRefGoogle Scholar
  87. 87.
    Kikuchi K, Holdway JE, Werdich AA, Anderson RM, Fang Y, Egnaczyk GF, Evans T, Macrae CA, Stainier DY, Poss KD (2010) Primary contribution to zebrafish heart regeneration by gata4(+) cardiomyocytes. Nature 464:601–605. doi: 10.1038/nature08804 PubMedPubMedCentralCrossRefGoogle Scholar
  88. 88.
    Zebrowski DC, Vergarajauregui S, Wu CC, Piatkowski T, Becker R, Leone M, Hirth S, Ricciardi F, Falk N, Giessl A, Just S, Braun T, Weidinger G, Engel FB (2015) Developmental alterations in centrosome integrity contribute to the post-mitotic state of mammalian cardiomyocytes. Elife. doi: 10.7554/eLife.05563 PubMedPubMedCentralGoogle Scholar
  89. 89.
    Aix E, Gutierrez-Gutierrez O, Sanchez-Ferrer C, Aguado T, Flores I (2016) Postnatal telomere dysfunction induces cardiomyocyte cell-cycle arrest through p21 activation. J Cell Biol 213:571–583. doi: 10.1083/jcb.201510091 PubMedPubMedCentralCrossRefGoogle Scholar
  90. 90.
    Knoll R (2012) Myosin binding protein C: implications for signal-transduction. J Muscle Res Cell Motil 33:31–42. doi: 10.1007/s10974-011-9281-6 PubMedCrossRefGoogle Scholar
  91. 91.
    Jiang J, Burgon PG, Wakimoto H, Onoue K, Gorham JM, O’Meara CC, Fomovsky G, McConnell BK, Lee RT, Seidman JG, Seidman CE (2015) Cardiac myosin binding protein C regulates postnatal myocyte cytokinesis. Proc Natl Acad Sci USA 112:9046–9051. doi: 10.1073/pnas.1511004112 PubMedPubMedCentralCrossRefGoogle Scholar
  92. 92.
    Engel FB, Schebesta M, Keating MT (2006) Anillin localization defect in cardiomyocyte binucleation. J Mol Cell Cardiol 41:601–612. doi: 10.1016/j.yjmcc.2006.06.012 PubMedCrossRefGoogle Scholar
  93. 93.
    Ahuja P, Perriard E, Trimble W, Perriard JC, Ehler E (2006) Probing the role of septins in cardiomyocytes. Exp Cell Res 312:1598–1609PubMedCrossRefGoogle Scholar
  94. 94.
    Gornikiewicz B, Ronowicz A, Krzeminski M, Sachadyn P (2016) Changes in gene methylation patterns in neonatal murine hearts: implications for the regenerative potential. BMC Genom 17:231. doi: 10.1186/s12864-016-2545-1 CrossRefGoogle Scholar
  95. 95.
    Sim CB, Ziemann M, Kaspi A, Harikrishnan KN, Ooi J, Khurana I, Chang L, Hudson JE, El-Osta A, Porrello ER (2015) Dynamic changes in the cardiac methylome during postnatal development. FASEB J 29:1329–1343. doi: 10.1096/fj.14-264093 PubMedCrossRefGoogle Scholar
  96. 96.
    Shapiro SD, Ranjan AK, Kawase Y, Cheng RK, Kara RJ, Bhattacharya R, Guzman-Martinez G, Sanz J, Garcia MJ, Chaudhry HW (2014) Cyclin A2 induces cardiac regeneration after myocardial infarction through cytokinesis of adult cardiomyocytes. Sci Transl Med 6:224ra227. doi: 10.1126/scitranslmed.3007668 Google Scholar
  97. 97.
    Bicknell KA, Coxon CH, Brooks G (2004) Forced expression of the cyclin B1-CDC2 complex induces proliferation in adult rat cardiomyocytes. Biochem J 382:411–416. doi: 10.1042/bj20031481 PubMedPubMedCentralCrossRefGoogle Scholar
  98. 98.
    Kimura W, Xiao F, Canseco DC, Muralidhar S, Thet S, Zhang HM, Abderrahman Y, Chen R, Garcia JA, Shelton JM, Richardson JA, Ashour AM, Asaithamby A, Liang H, Xing C, Lu Z, Zhang CC, Sadek HA (2015) Hypoxia fate mapping identifies cycling cardiomyocytes in the adult heart. Nature 523:226–230. doi: 10.1038/nature14582 PubMedCrossRefGoogle Scholar
  99. 99.
    Bettencourt-Dias M, Mittnacht S, Brockes JP (2003) Heterogeneous proliferative potential in regenerative adult newt cardiomyocytes. J Cell Sci 116:4001–4009. doi: 10.1242/jcs.00698 PubMedCrossRefGoogle Scholar
  100. 100.
    Chaudhry HW, Dashoush NH, Tang H, Zhang L, Wang X, Wu EX, Wolgemuth DJ (2004) Cyclin A2 mediates cardiomyocyte mitosis in the postmitotic myocardium. J Biol Chem 279:35858–35866. doi: 10.1074/jbc.M404975200 PubMedCrossRefGoogle Scholar
  101. 101.
    Cheng RK, Asai T, Tang H, Dashoush NH, Kara RJ, Costa KD, Naka Y, Wu EX, Wolgemuth DJ, Chaudhry HW (2007) Cyclin A2 induces cardiac regeneration after myocardial infarction and prevents heart failure. Circ Res 100:1741–1748. doi: 10.1161/circresaha.107.153544 PubMedCrossRefGoogle Scholar
  102. 102.
    Hassink RJ, Pasumarthi KB, Nakajima H, Rubart M, Soonpaa MH, de la Riviere AB, Doevendans PA, Field LJ (2008) Cardiomyocyte cell cycle activation improves cardiac function after myocardial infarction. Cardiovasc Res 78:18–25. doi: 10.1093/cvr/cvm101 PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing 2016

Authors and Affiliations

  1. 1.Center for Developmental Cardiology, Institute of Translational Medicine, College of MedicineQingdao UniversityQingdaoChina

Personalised recommendations