Advertisement

Cellular and Molecular Life Sciences

, Volume 74, Issue 5, pp 869–880 | Cite as

Next-generation molecular diagnosis: single-cell sequencing from bench to bedside

  • Wanjun Zhu
  • Xiao-Yan Zhang
  • Sadie L. Marjani
  • Jialing Zhang
  • Wengeng Zhang
  • Shixiu WuEmail author
  • Xinghua PanEmail author
Review

Abstract

Single-cell sequencing (SCS) is a fast-growing, exciting field in genomic medicine. It enables the high-resolution study of cellular heterogeneity, and reveals the molecular basis of complicated systems, which facilitates the identification of new biomarkers for diagnosis and for targeting therapies. It also directly promotes the next generation of genomic medicine because of its ultra-high resolution and sensitivity that allows for the non-invasive and early detection of abnormalities, such as aneuploidy, chromosomal translocation, and single-gene disorders. This review provides an overview of the current progress and prospects for the diagnostic applications of SCS, specifically in pre-implantation genetic diagnosis/screening, non-invasive prenatal diagnosis, and analysis of circulating tumor cells. These analyses will accelerate the early and precise control of germline- or somatic-mutation-based diseases, particularly single-gene disorders, chromosome abnormalities, and cancers.

Keywords

Single-cell analysis (SCA) Single-cell sequencing (SCS) Pre-implantation genetic diagnosis (PGD) Pre-implantation genetic screening (PGS) Non-invasive prenatal diagnosis (NIPD) Precision medicine Circulating tumor cells (CTCs) Liquid biopsies 

Notes

Acknowledgments

The authors thank Drs. Sherman Weissman and Charles Wang for their valuable comments and suggestions. This work was supported by the Southern Medical University (C1033267), the National Natural Science Foundation of China (No. 81402529), Zhejiang Provincial Foundation for Natural Sciences (No. LZ15H220001), Zhejiang Science and Technology Planning Project of Health & Medicine (No. 2015PYA009) and Hangzhou Science and Technology Development Program (No. 20150733Q63), and the US National Institutes of Health Grants, 1P01GM099130-01 and R01DK100858. The authors declare no conflict of interest.

References

  1. 1.
    Novick A, Weiner M (1957) Enzyme induction as an all-or-none phenomenon. Proc Natl Acad Sci USA 43(7):553–566PubMedPubMedCentralCrossRefGoogle Scholar
  2. 2.
    Marinov GK, Williams BA, McCue K, Schroth GP, Gertz J, Myers RM, Wold BJ (2014) From single-cell to cell-pool transcriptomes: stochasticity in gene expression and RNA splicing. Genome Res 24(3):496–510. doi: 10.1101/gr.161034.113 PubMedPubMedCentralCrossRefGoogle Scholar
  3. 3.
    Wilson NK, Kent DG, Buettner F, Shehata M, Macaulay IC, Calero-Nieto FJ, Sanchez Castillo M, Oedekoven CA, Diamanti E, Schulte R, Ponting CP, Voet T, Caldas C, Stingl J, Green AR, Theis FJ, Gottgens B (2015) Combined single-cell functional and gene expression analysis resolves heterogeneity within stem cell populations. Cell Stem Cell 16(6):712–724. doi: 10.1016/j.stem.2015.04.004 PubMedPubMedCentralCrossRefGoogle Scholar
  4. 4.
    Coskun AF, Eser U, Islam S (2016) Cellular identity at the single-cell level. Mol BioSyst. doi: 10.1039/c6mb00388e PubMedGoogle Scholar
  5. 5.
    Speicher MR (2013) Single-cell analysis: toward the clinic. Genome Med 5(8):74. doi: 10.1186/gm478 PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    Zhang X, Marjani SL, Hu Z, Weissman SM, Pan X, Wu S (2016) Single-cell sequencing for precise cancer research: progress and prospects. Cancer Res 76(6):1305–1312. doi: 10.1158/0008-5472.can-15-1907 PubMedCrossRefGoogle Scholar
  7. 7.
    Van Loo P, Voet T (2014) Single cell analysis of cancer genomes. Curr Opin Genet Dev 24:82–91. doi: 10.1016/j.gde.2013.12.004 PubMedCrossRefGoogle Scholar
  8. 8.
    Lu Y, Peng H, Jin Z, Cheng J, Wang S, Ma M, Lu Y, Han D, Yao Y, Li Y, Yuan H (2013) Preimplantation genetic diagnosis for a Chinese family with autosomal recessive Meckel–Gruber syndrome type 3 (MKS3). PLoS One 8(9):e73245. doi: 10.1371/journal.pone.0073245 PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    Di Naro E, Ghezzi F, Vitucci A, Tannoia N, Campanale D, D’Addario V, Holzgreve W, Hahn S (2000) Prenatal diagnosis of beta-thalassaemia using fetal erythroblasts enriched from maternal blood by a novel gradient. Mol Hum Reprod 6(6):571–574PubMedCrossRefGoogle Scholar
  10. 10.
    Polzer B, Medoro G, Pasch S, Fontana F, Zorzino L, Pestka A, Andergassen U, Meier-Stiegen F, Czyz ZT, Alberter B, Treitschke S, Schamberger T, Sergio M, Bregola G, Doffini A, Gianni S, Calanca A, Signorini G, Bolognesi C, Hartmann A, Fasching PA, Sandri MT, Rack B, Fehm T, Giorgini G, Manaresi N, Klein CA (2014) Molecular profiling of single circulating tumor cells with diagnostic intention. EMBO Mol Med 6(11):1371–1386. doi: 10.15252/emmm.201404033 PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    Miyamoto DT, Zheng Y, Wittner BS, Lee RJ, Zhu H, Broderick KT, Desai R, Fox DB, Brannigan BW, Trautwein J, Arora KS, Desai N, Dahl DM, Sequist LV, Smith MR, Kapur R, Wu CL, Shioda T, Ramaswamy S, Ting DT, Toner M, Maheswaran S, Haber DA (2015) RNA-Seq of single prostate CTCs implicates noncanonical Wnt signaling in antiandrogen resistance. Science (New York, NY) 349(6254):1351–1356. doi: 10.1126/science.aab0917 CrossRefGoogle Scholar
  12. 12.
    Inhorn MC, Patrizio P (2015) Infertility around the globe: new thinking on gender, reproductive technologies and global movements in the 21st century. Hum Reprod Update 21(4):411–426. doi: 10.1093/humupd/dmv016 PubMedCrossRefGoogle Scholar
  13. 13.
    Chandra A, Copen CE, Stephen EH (2013) Infertility and impaired fecundity in the United States, 1982–2010: data from the National Survey of Family Growth. Natl Health Stat Rep (67):1–18 (11 p following 19) Google Scholar
  14. 14.
    Hart RJ (2016) Physiological aspects of female fertility: role of the environment, modern lifestyle, and genetics. Physiol Rev 96(3):873–909. doi: 10.1152/physrev.00023.2015 PubMedCrossRefGoogle Scholar
  15. 15.
    Wilkinson D, Schaefer GO, Tremellen K, Savulescu J (2015) Double trouble: should double embryo transfer be banned? Theor Med Bioeth 36(2):121–139. doi: 10.1007/s11017-015-9324-x PubMedCrossRefGoogle Scholar
  16. 16.
    Ning L, Li Z, Wang G, Hu W, Hou Q, Tong Y, Zhang M, Chen Y, Qin L, Chen X, Man HY, Liu P, He J (2015) Quantitative assessment of single-cell whole genome amplification methods for detecting copy number variation using hippocampal neurons. Sci Rep 5:11415. doi: 10.1038/srep11415 PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    Kumar A, Ryan A, Kitzman JO, Wemmer N, Snyder MW, Sigurjonsson S, Lee C, Banjevic M, Zarutskie PW, Lewis AP, Shendure J, Rabinowitz M (2015) Whole genome prediction for preimplantation genetic diagnosis. Genome Med 7(1):35. doi: 10.1186/s13073-015-0160-4 PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    Palini S, Galluzzi L, De Stefani S, Bianchi M, Wells D, Magnani M, Bulletti C (2013) Genomic DNA in human blastocoele fluid. Reprod Biomed Online 26(6):603–610. doi: 10.1016/j.rbmo.2013.02.012 PubMedCrossRefGoogle Scholar
  19. 19.
    Cohen J, Grudzinskas G, Johnson MH (2013) Embryonic DNA sampling without biopsy: the beginnings of non-invasive PGD? Reprod Biomed Online 26(6):520–521. doi: 10.1016/j.rbmo.2013.03.001 PubMedCrossRefGoogle Scholar
  20. 20.
    Gianaroli L, Magli MC, Pomante A, Crivello AM, Cafueri G, Valerio M, Ferraretti AP (2014) Blastocentesis: a source of DNA for preimplantation genetic testing. Results from a pilot study. Fertil Steril 102(6):1692–1699.e1696. doi: 10.1016/j.fertnstert.2014.08.021
  21. 21.
    Yang Z, Liu J, Collins GS, Salem SA, Liu X, Lyle SS, Peck AC, Sills ES, Salem RD (2012) Selection of single blastocysts for fresh transfer via standard morphology assessment alone and with array CGH for good prognosis IVF patients: results from a randomized pilot study. Mol Cytogenet 5(1):24. doi: 10.1186/1755-8166-5-24 PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Yang Z, Salem SA, Liu X, Kuang Y, Salem RD, Liu J (2013) Selection of euploid blastocysts for cryopreservation with array comparative genomic hybridization (aCGH) results in increased implantation rates in subsequent frozen and thawed embryo transfer cycles. Mol Cytogenet 6(1):32. doi: 10.1186/1755-8166-6-32 PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Ginsburg ES, Baker VL, Racowsky C, Wantman E, Goldfarb J, Stern JE (2011) Use of preimplantation genetic diagnosis and preimplantation genetic screening in the United States: a Society for Assisted Reproductive Technology Writing Group paper. Fertil Steril 96(4):865–868. doi: 10.1016/j.fertnstert.2011.07.1139 PubMedCrossRefGoogle Scholar
  24. 24.
    Capalbo A, Ubaldi FM, Cimadomo D, Maggiulli R, Patassini C, Dusi L, Sanges F, Buffo L, Venturella R, Rienzi L (2016) Consistent and reproducible outcomes of blastocyst biopsy and aneuploidy screening across different biopsy practitioners: a multicentre study involving 2586 embryo biopsies. Hum Reprod (Oxford, England) 31(1):199–208. doi: 10.1093/humrep/dev294 CrossRefGoogle Scholar
  25. 25.
    Treff NR, Fedick A, Tao X, Devkota B, Taylor D, Scott RT, Jr. (2013) Evaluation of targeted next-generation sequencing-based preimplantation genetic diagnosis of monogenic disease. Fertil Steril 99(5):1377–1384.e1376. doi: 10.1016/j.fertnstert.2012.12.018
  26. 26.
    Yin X, Tan K, Vajta G, Jiang H, Tan Y, Zhang C, Chen F, Chen S, Zhang C, Pan X, Gong C, Li X, Lin C, Gao Y, Liang Y, Yi X, Mu F, Zhao L, Peng H, Xiong B, Zhang S, Cheng D, Lu G, Zhang X, Lin G, Wang W (2013) Massively parallel sequencing for chromosomal abnormality testing in trophectoderm cells of human blastocysts. Biol Reprod 88(3):69. doi: 10.1095/biolreprod.112.106211 PubMedCrossRefGoogle Scholar
  27. 27.
    Findlay I, Ray P, Quirke P, Rutherford A, Lilford R (1995) Allelic drop-out and preferential amplification in single cells and human blastomeres: implications for preimplantation diagnosis of sex and cystic fibrosis. Hum Reprod (Oxford, England) 10(6):1609–1618CrossRefGoogle Scholar
  28. 28.
    Van der Aa N, Zamani Esteki M, Vermeesch JR, Voet T (2013) Preimplantation genetic diagnosis guided by single-cell genomics. Genome Med 5(8):71. doi: 10.1186/gm475 PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Gardner DK, Meseguer M, Rubio C, Treff NR (2015) Diagnosis of human preimplantation embryo viability. Hum Reprod Update 21(6):727–747. doi: 10.1093/humupd/dmu064 PubMedCrossRefGoogle Scholar
  30. 30.
    Brezina PR, Kutteh WH (2015) Clinical applications of preimplantation genetic testing. BMJ (clinical research ed) 350:g7611. doi: 10.1136/bmj.g7611 Google Scholar
  31. 31.
    Wong KM, Repping S, Mastenbroek S (2014) Limitations of embryo selection methods. Semin Reprod Med 32(2):127–133. doi: 10.1055/s-0033-1363554 PubMedCrossRefGoogle Scholar
  32. 32.
    Velilla E, Escudero T, Munne S (2002) Blastomere fixation techniques and risk of misdiagnosis for preimplantation genetic diagnosis of aneuploidy. Reprod Biomed Online 4(3):210–217PubMedCrossRefGoogle Scholar
  33. 33.
    Treff NR, Tao X, Ferry KM, Su J, Taylor D, Scott RT Jr (2012) Development and validation of an accurate quantitative real-time polymerase chain reaction-based assay for human blastocyst comprehensive chromosomal aneuploidy screening. Fertil Steril 97(4):819–824. doi: 10.1016/j.fertnstert.2012.01.115 PubMedCrossRefGoogle Scholar
  34. 34.
    Huang J, Zhao N, Wang X, Qiao J, Liu P (2015) Chromosomal characteristics at cleavage and blastocyst stages from the same embryos. J Assist Reprod Genet 32(5):781–787. doi: 10.1007/s10815-015-0450-1 PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Fiorentino F, Biricik A, Bono S, Spizzichino L, Cotroneo E, Cottone G, Kokocinski F, Michel CE (2014) Development and validation of a next-generation sequencing-based protocol for 24-chromosome aneuploidy screening of embryos. Fertil Steril 101(5):1375–1382. doi: 10.1016/j.fertnstert.2014.01.051 PubMedCrossRefGoogle Scholar
  36. 36.
    Hellani A, Abu-Amero K, Azouri J, Al-Sharif H, Barblet H, El-Akoum S (2009) Pregnancy after preimplantation genetic diagnosis for brachydactyly type B. Reprod Biomed Online 18(1):127–131PubMedCrossRefGoogle Scholar
  37. 37.
    Hellani A, Coskun S, Tbakhi A, Al-Hassan S (2005) Clinical application of multiple displacement amplification in preimplantation genetic diagnosis. Reprod Biomed Online 10(3):376–380PubMedCrossRefGoogle Scholar
  38. 38.
    Wang L, Cram DS, Shen J, Wang X, Zhang J, Song Z, Xu G, Li N, Fan J, Wang S, Luo Y, Wang J, Yu L, Liu J, Yao Y (2014) Validation of copy number variation sequencing for detecting chromosome imbalances in human preimplantation embryos. Biol Reprod 91(2):37. doi: 10.1095/biolreprod.114.120576 PubMedCrossRefGoogle Scholar
  39. 39.
    Wells D, Kaur K, Grifo J, Glassner M, Taylor JC, Fragouli E, Munne S (2014) Clinical utilisation of a rapid low-pass whole genome sequencing technique for the diagnosis of aneuploidy in human embryos prior to implantation. J Med Genet 51(8):553–562. doi: 10.1136/jmedgenet-2014-102497 PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    Li N, Wang L, Wang H, Ma M, Wang X, Li Y, Zhang W, Zhang J, Cram DS, Yao Y (2015) The performance of whole genome amplification methods and next-generation sequencing for pre-implantation genetic diagnosis of chromosomal abnormalities. J Genet Genom (Yi Chuan Xue Bao) 42(4):151–159. doi: 10.1016/j.jgg.2015.03.001 CrossRefGoogle Scholar
  41. 41.
    Hou Y, Fan W, Yan L, Li R, Lian Y, Huang J, Li J, Xu L, Tang F, Xie XS, Qiao J (2013) Genome analyses of single human oocytes. Cell 155(7):1492–1506. doi: 10.1016/j.cell.2013.11.040 PubMedCrossRefGoogle Scholar
  42. 42.
    Lu S, Zong C, Fan W, Yang M, Li J, Chapman AR, Zhu P, Hu X, Xu L, Yan L, Bai F, Qiao J, Tang F, Li R, Xie XS (2012) Probing meiotic recombination and aneuploidy of single sperm cells by whole-genome sequencing. Science (New York, NY) 338(6114):1627–1630. doi: 10.1126/science.1229112 CrossRefGoogle Scholar
  43. 43.
    Huang J, Yan L, Fan W, Zhao N, Zhang Y, Tang F, Xie XS, Qiao J (2014) Validation of multiple annealing and looping-based amplification cycle sequencing for 24-chromosome aneuploidy screening of cleavage-stage embryos. Fertil Steril 102(6):1685–1691. doi: 10.1016/j.fertnstert.2014.08.015 PubMedCrossRefGoogle Scholar
  44. 44.
    Yan L, Huang L, Xu L, Huang J, Ma F, Zhu X, Tang Y, Liu M, Lian Y, Liu P, Li R, Lu S, Tang F, Qiao J, Xie XS (2015) Live births after simultaneous avoidance of monogenic diseases and chromosome abnormality by next-generation sequencing with linkage analyses. Proc Natl Acad Sci USA 112(52):15964–15969. doi: 10.1073/pnas.1523297113 PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Binder V, Bartenhagen C, Okpanyi V, Gombert M, Moehlendick B, Behrens B, Klein HU, Rieder H, Ida Krell PF, Dugas M, Stoecklein NH, Borkhardt A (2014) A new workflow for whole-genome sequencing of single human cells. Hum Mutat 35(10):1260–1270. doi: 10.1002/humu.22625 PubMedCrossRefGoogle Scholar
  46. 46.
    Norwitz ER, Levy B (2013) Noninvasive prenatal testing: the future is now. Rev Obstet Gynecol 6(2):48–62PubMedPubMedCentralGoogle Scholar
  47. 47.
    Lun FM, Chiu RW, Sun K, Leung TY, Jiang P, Chan KC, Sun H, Lo YM (2013) Noninvasive prenatal methylomic analysis by genomewide bisulfite sequencing of maternal plasma DNA. Clin Chem 59(11):1583–1594. doi: 10.1373/clinchem.2013.212274 PubMedCrossRefGoogle Scholar
  48. 48.
    Chiu RW, Akolekar R, Zheng YW, Leung TY, Sun H, Chan KC, Lun FM, Go AT, Lau ET, To WW, Leung WC, Tang RY, Au-Yeung SK, Lam H, Kung YY, Zhang X, van Vugt JM, Minekawa R, Tang MH, Wang J, Oudejans CB, Lau TK, Nicolaides KH, Lo YM (2011) Non-invasive prenatal assessment of trisomy 21 by multiplexed maternal plasma DNA sequencing: large scale validity study. BMJ (clinical research ed) 342:c7401. doi: 10.1136/bmj.c7401 CrossRefGoogle Scholar
  49. 49.
    Lau TK, Chen F, Pan X, Pooh RK, Jiang F, Li Y, Jiang H, Li X, Chen S, Zhang X (2012) Noninvasive prenatal diagnosis of common fetal chromosomal aneuploidies by maternal plasma DNA sequencing. J Matern Fetal Neonatal Med 25(8):1370–1374. doi: 10.3109/14767058.2011.635730 PubMedCrossRefGoogle Scholar
  50. 50.
    Dan S, Wang W, Ren J, Li Y, Hu H, Xu Z, Lau TK, Xie J, Zhao W, Huang H, Xie J, Sun L, Zhang X, Wang W, Liao S, Qiang R, Cao J, Zhang Q, Zhou Y, Zhu H, Zhong M, Guo Y, Lin L, Gao Z, Yao H, Zhang H, Zhao L, Jiang F, Chen F, Jiang H, Li S, Li Y, Wang J, Wang J, Duan T, Su Y, Zhang X (2012) Clinical application of massively parallel sequencing-based prenatal noninvasive fetal trisomy test for trisomies 21 and 18 in 11,105 pregnancies with mixed risk factors. Prenat Diagn 32(13):1225–1232. doi: 10.1002/pd.4002 PubMedCrossRefGoogle Scholar
  51. 51.
    Devaney SA, Palomaki GE, Scott JA, Bianchi DW (2011) Noninvasive fetal sex determination using cell-free fetal DNA: a systematic review and meta-analysis. JAMA 306(6):627–636. doi: 10.1001/jama.2011.1114 PubMedPubMedCentralCrossRefGoogle Scholar
  52. 52.
    Alfirevic Z, Sundberg K, Brigham S (2003) Amniocentesis and chorionic villus sampling for prenatal diagnosis. Cochrane Database Syst Rev (3):Cd003252. doi: 10.1002/14651858.cd003252
  53. 53.
    Ge Q, Li H, Yang Q, Lu J, Tu J, Bai Y, Lu Z (2011) Sequencing circulating miRNA in maternal plasma with modified library preparation. Clin Chim Acta Int J Clin Chem 412(21–22):1989–1994. doi: 10.1016/j.cca.2011.07.010
  54. 54.
    Bianchi DW, Simpson JL, Jackson LG, Elias S, Holzgreve W, Evans MI, Dukes KA, Sullivan LM, Klinger KW, Bischoff FZ, Hahn S, Johnson KL, Lewis D, Wapner RJ, de la Cruz F (2002) Fetal gender and aneuploidy detection using fetal cells in maternal blood: analysis of NIFTY I data. National Institute of Child Health and Development Fetal Cell Isolation Study. Prenat Diagn 22(7):609–615. doi: 10.1002/pd.347 PubMedCrossRefGoogle Scholar
  55. 55.
    Lo YM, Tein MS, Lau TK, Haines CJ, Leung TN, Poon PM, Wainscoat JS, Johnson PJ, Chang AM, Hjelm NM (1998) Quantitative analysis of fetal DNA in maternal plasma and serum: implications for noninvasive prenatal diagnosis. Am J Hum Genet 62(4):768–775. doi: 10.1086/301800 PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    Daley R, Hill M, Chitty LS (2014) Non-invasive prenatal diagnosis: progress and potential. Arch Dis Child Fetal Neonatal Ed 99(5):F426–F430. doi: 10.1136/archdischild-2013-304828 PubMedCrossRefGoogle Scholar
  57. 57.
    Choolani M, Mahyuddin AP, Hahn S (2012) The promise of fetal cells in maternal blood. Best Pract Res Clin Obstet Gynaecol 26(5):655–667. doi: 10.1016/j.bpobgyn.2012.06.008 PubMedCrossRefGoogle Scholar
  58. 58.
    Grabar VV (2013) Prediction of complications of I trimester of pregnancy in women with distressed reproductive history by detection of transcervical trophoblastic cells. Georgian Med News 225:27–31Google Scholar
  59. 59.
    Mouawia H, Saker A, Jais JP, Benachi A, Bussieres L, Lacour B, Bonnefont JP, Frydman R, Simpson JL, Paterlini-Brechot P (2012) Circulating trophoblastic cells provide genetic diagnosis in 63 fetuses at risk for cystic fibrosis or spinal muscular atrophy. Reprod Biomed Online 25(5):508–520. doi: 10.1016/j.rbmo.2012.08.002 PubMedCrossRefGoogle Scholar
  60. 60.
    Paterlini Brechot P, Mouawia H, Saker A (2011) Non-invasive prenatal diagnosis of cystic fibrosis. Arch Pediatr 18(1):111–118. doi: 10.1016/j.arcped.2010.10.028 PubMedCrossRefGoogle Scholar
  61. 61.
    Zhang C, Zhang C, Chen S, Yin X, Pan X, Lin G, Tan Y, Tan K, Xu Z, Hu P, Li X, Chen F, Xu X, Li Y, Zhang X, Jiang H, Wang W (2013) A single cell level based method for copy number variation analysis by low coverage massively parallel sequencing. PLoS One 8(1):e54236. doi: 10.1371/journal.pone.0054236 PubMedPubMedCentralCrossRefGoogle Scholar
  62. 62.
    Hua R, Barrett AN, Tan TZ, Huang Z, Mahyuddin AP, Ponnusamy S, Sandhu JS, Ho SS, Chan JK, Chong S, Quan S, Choolani M (2015) Detection of aneuploidy from single fetal nucleated red blood cells using whole genome sequencing. Prenat Diagn 35(7):637–644. doi: 10.1002/pd.4491 PubMedCrossRefGoogle Scholar
  63. 63.
    Gregg AR, Gross SJ, Best RG, Monaghan KG, Bajaj K, Skotko BG, Thompson BH, Watson MS (2013) ACMG statement on noninvasive prenatal screening for fetal aneuploidy. Genet Med 15(5):395–398. doi: 10.1038/gim.2013.29 PubMedCrossRefGoogle Scholar
  64. 64.
    Samango-Sprouse C, Banjevic M, Ryan A, Sigurjonsson S, Zimmermann B, Hill M, Hall MP, Westemeyer M, Saucier J, Demko Z, Rabinowitz M (2013) SNP-based non-invasive prenatal testing detects sex chromosome aneuploidies with high accuracy. Prenat Diagn 33(7):643–649. doi: 10.1002/pd.4159 PubMedPubMedCentralCrossRefGoogle Scholar
  65. 65.
    Cardo L, Garcia BP, Alvarez FV (2010) Non-invasive fetal RHD genotyping in the first trimester of pregnancy. Clin Chem Lab Med 48(8):1121–1126. doi: 10.1515/cclm.2010.234 PubMedCrossRefGoogle Scholar
  66. 66.
    Jensen TJ, Kim SK, Zhu Z, Chin C, Gebhard C, Lu T, Deciu C, van den Boom D, Ehrich M (2015) Whole genome bisulfite sequencing of cell-free DNA and its cellular contributors uncovers placenta hypomethylated domains. Genome Biol 16:78. doi: 10.1186/s13059-015-0645-x PubMedPubMedCentralCrossRefGoogle Scholar
  67. 67.
    Chan KC, Ding C, Gerovassili A, Yeung SW, Chiu RW, Leung TN, Lau TK, Chim SS, Chung GT, Nicolaides KH, Lo YM (2006) Hypermethylated RASSF1A in maternal plasma: a universal fetal DNA marker that improves the reliability of noninvasive prenatal diagnosis. Clin Chem 52(12):2211–2218. doi: 10.1373/clinchem.2006.074997 PubMedCrossRefGoogle Scholar
  68. 68.
    Della Ragione F, Mastrovito P, Campanile C, Conti A, Papageorgiou EA, Hulten MA, Patsalis PC, Carter NP, D’Esposito M (2010) Differential DNA methylation as a tool for noninvasive prenatal diagnosis (NIPD) of X chromosome aneuploidies. J Mol Diagn 12(6):797–807. doi: 10.2353/jmoldx.2010.090199 PubMedPubMedCentralCrossRefGoogle Scholar
  69. 69.
    Vrba L, Jensen TJ, Garbe JC, Heimark RL, Cress AE, Dickinson S, Stampfer MR, Futscher BW (2010) Role for DNA methylation in the regulation of miR-200c and miR-141 expression in normal and cancer cells. PLoS One 5(1):e8697. doi: 10.1371/journal.pone.0008697 PubMedPubMedCentralCrossRefGoogle Scholar
  70. 70.
    Cedar H, Bergman Y (2009) Linking DNA methylation and histone modification: patterns and paradigms. Nat Rev Genet 10(5):295–304. doi: 10.1038/nrg2540 PubMedCrossRefGoogle Scholar
  71. 71.
    Wright CF, Burton H (2009) The use of cell-free fetal nucleic acids in maternal blood for non-invasive prenatal diagnosis. Hum Reprod Update 15(1):139–151. doi: 10.1093/humupd/dmn047 PubMedCrossRefGoogle Scholar
  72. 72.
    Lo YM, Zhang J, Leung TN, Lau TK, Chang AM, Hjelm NM (1999) Rapid clearance of fetal DNA from maternal plasma. Am J Hum Genet 64(1):218–224. doi: 10.1086/302205 PubMedPubMedCentralCrossRefGoogle Scholar
  73. 73.
    Pfeifer I, Benachi A, Saker A, Bonnefont JP, Mouawia H, Broncy L, Frydman R, Brival ML, Lacour B, Dachez R, Paterlini-Brechot P (2016) Cervical trophoblasts for non-invasive single-cell genotyping and prenatal diagnosis. Placenta 37:56–60. doi: 10.1016/j.placenta.2015.11.002 PubMedCrossRefGoogle Scholar
  74. 74.
    Boveri T (2008) Concerning the origin of malignant tumours by Theodor Boveri. Translated and annotated by Henry Harris. J Cell Sci 121 Suppl 1:1–84. doi: 10.1242/jcs.025742
  75. 75.
    Garraway LA, Lander ES (2013) Lessons from the cancer genome. Cell 153(1):17–37. doi: 10.1016/j.cell.2013.03.002 PubMedCrossRefGoogle Scholar
  76. 76.
    Stratton MR (2011) Exploring the genomes of cancer cells: progress and promise. Science (New York, NY) 331(6024):1553–1558. doi: 10.1126/science.1204040 CrossRefGoogle Scholar
  77. 77.
    Stratton MR, Campbell PJ, Futreal PA (2009) The cancer genome. Nature 458(7239):719–724. doi: 10.1038/nature07943 PubMedPubMedCentralCrossRefGoogle Scholar
  78. 78.
    Saunders NA, Simpson F, Thompson EW, Hill MM, Endo-Munoz L, Leggatt G, Minchin RF, Guminski A (2012) Role of intratumoural heterogeneity in cancer drug resistance: molecular and clinical perspectives. EMBO Mol Med 4(8):675–684. doi: 10.1002/emmm.201101131 PubMedPubMedCentralCrossRefGoogle Scholar
  79. 79.
    Diaz LA Jr, Williams RT, Wu J, Kinde I, Hecht JR, Berlin J, Allen B, Bozic I, Reiter JG, Nowak MA, Kinzler KW, Oliner KS, Vogelstein B (2012) The molecular evolution of acquired resistance to targeted EGFR blockade in colorectal cancers. Nature 486(7404):537–540. doi: 10.1038/nature11219 PubMedPubMedCentralGoogle Scholar
  80. 80.
    Misale S, Yaeger R, Hobor S, Scala E, Janakiraman M, Liska D, Valtorta E, Schiavo R, Buscarino M, Siravegna G, Bencardino K, Cercek A, Chen CT, Veronese S, Zanon C, Sartore-Bianchi A, Gambacorta M, Gallicchio M, Vakiani E, Boscaro V, Medico E, Weiser M, Siena S, Di Nicolantonio F, Solit D, Bardelli A (2012) Emergence of KRAS mutations and acquired resistance to anti-EGFR therapy in colorectal cancer. Nature 486(7404):532–536. doi: 10.1038/nature11156 PubMedPubMedCentralGoogle Scholar
  81. 81.
    Wheeler DA, Wang L (2013) From human genome to cancer genome: the first decade. Genome Res 23(7):1054–1062. doi: 10.1101/gr.157602.113 PubMedPubMedCentralCrossRefGoogle Scholar
  82. 82.
    Navin NE (2015) Delineating cancer evolution with single-cell sequencing. Science Transl Med 7(296):296fs229. doi: 10.1126/scitranslmed.aac8319
  83. 83.
    Dalerba P, Kalisky T, Sahoo D, Rajendran PS, Rothenberg ME, Leyrat AA, Sim S, Okamoto J, Johnston DM, Qian D, Zabala M, Bueno J, Neff NF, Wang J, Shelton AA, Visser B, Hisamori S, Shimono Y, van de Wetering M, Clevers H, Clarke MF, Quake SR (2011) Single-cell dissection of transcriptional heterogeneity in human colon tumors. Nat Biotechnol 29(12):1120–1127. doi: 10.1038/nbt.2038 PubMedPubMedCentralCrossRefGoogle Scholar
  84. 84.
    Jahan A, Yusuf MA, Loya A (2015) Fine-needle aspiration cytology in the diagnosis of pancreatic neuroendocrine tumors: a single-center experience of 25 cases. Acta Cytol 59(2):163–168. doi: 10.1159/000381173 PubMedCrossRefGoogle Scholar
  85. 85.
    Roh MH (2015) The utilization of cytologic fine-needle aspirates of lung cancer for molecular diagnostic testing. J Pathol Transl Med 49(4):300–309. doi: 10.4132/jptm.2015.06.16 PubMedPubMedCentralCrossRefGoogle Scholar
  86. 86.
    Li Y, Xu X, Song L, Hou Y, Li Z, Tsang S, Li F, Im KM, Wu K, Wu H, Ye X, Li G, Wang L, Zhang B, Liang J, Xie W, Wu R, Jiang H, Liu X, Yu C, Zheng H, Jian M, Nie L, Wan L, Shi M, Sun X, Tang A, Guo G, Gui Y, Cai Z, Li J, Wang W, Lu Z, Zhang X, Bolund L, Kristiansen K, Wang J, Yang H, Dean M, Wang J (2012) Single-cell sequencing analysis characterizes common and cell-lineage-specific mutations in a muscle-invasive bladder cancer. GigaScience 1(1):12. doi: 10.1186/2047-217x-1-12 PubMedPubMedCentralCrossRefGoogle Scholar
  87. 87.
    Giorgadze TA, Scognamiglio T, Yang GC (2015) Fine-needle aspiration cytology of the solid variant of papillary thyroid carcinoma: a study of 13 cases with clinical, histologic, and ultrasound correlations. Cancer Cytopathol 123(2):71–81. doi: 10.1002/cncy.21504 PubMedCrossRefGoogle Scholar
  88. 88.
    Lohr JG, Adalsteinsson VA, Cibulskis K, Choudhury AD, Rosenberg M, Cruz-Gordillo P, Francis JM, Zhang CZ, Shalek AK, Satija R, Trombetta JJ, Lu D, Tallapragada N, Tahirova N, Kim S, Blumenstiel B, Sougnez C, Lowe A, Wong B, Auclair D, Van Allen EM, Nakabayashi M, Lis RT, Lee GS, Li T, Chabot MS, Ly A, Taplin ME, Clancy TE, Loda M, Regev A, Meyerson M, Hahn WC, Kantoff PW, Golub TR, Getz G, Boehm JS (2014) Whole-exome sequencing of circulating tumor cells provides a window into metastatic prostate cancer. Nat Biotechnol 32(5):479–484. doi: 10.1038/nbt.2892 PubMedPubMedCentralCrossRefGoogle Scholar
  89. 89.
    Alix-Panabieres C, Pantel K (2014) Challenges in circulating tumour cell research. Nat Rev Cancer 14(9):623–631. doi: 10.1038/nrc3820 PubMedCrossRefGoogle Scholar
  90. 90.
    Rhim AD, Thege FI, Santana SM, Lannin TB, Saha TN, Tsai S, Maggs LR, Kochman ML, Ginsberg GG, Lieb JG, Chandrasekhara V, Drebin JA, Ahmad N, Yang YX, Kirby BJ, Stanger BZ (2014) Detection of circulating pancreas epithelial cells in patients with pancreatic cystic lesions. Gastroenterology 146(3):647–651. doi: 10.1053/j.gastro.2013.12.007 PubMedCrossRefGoogle Scholar
  91. 91.
    Chen CL, Mahalingam D, Osmulski P, Jadhav RR, Wang CM, Leach RJ, Chang TC, Weitman SD, Kumar AP, Sun L, Gaczynska ME, Thompson IM, Huang TH (2013) Single-cell analysis of circulating tumor cells identifies cumulative expression patterns of EMT-related genes in metastatic prostate cancer. Prostate 73(8):813–826. doi: 10.1002/pros.22625 PubMedCrossRefGoogle Scholar
  92. 92.
    Navin N, Hicks J (2011) Future medical applications of single-cell sequencing in cancer. Genome Med 3(5):31. doi: 10.1186/gm247 PubMedPubMedCentralCrossRefGoogle Scholar
  93. 93.
    Brinkmann F, Hirtz M, Haller A, Gorges TM, Vellekoop MJ, Riethdorf S, Muller V, Pantel K, Fuchs H (2015) A versatile microarray platform for capturing rare cells. Sci Rep 5:15342. doi: 10.1038/srep15342 PubMedPubMedCentralCrossRefGoogle Scholar
  94. 94.
    Zhou J, Ren F, Wu W, Zhang S, Xiao X, Xu J, Jiang C (2012) Controllable synthesis and catalysis application of hierarchical PS/Au core-shell nanocomposites. J Colloid Interface Sci 387(1):47–55. doi: 10.1016/j.jcis.2012.07.093 PubMedCrossRefGoogle Scholar
  95. 95.
    Ren SC, Qu M, Sun YH (2013) Investigating intratumour heterogeneity by single-cell sequencing. Asian J Androl 15(6):729–734. doi: 10.1038/aja.2013.106 PubMedPubMedCentralCrossRefGoogle Scholar
  96. 96.
    Adalsteinsson VA, Love JC (2014) Towards engineered processes for sequencing-based analysis of single circulating tumor cells. Curr Opinion Chem Eng 4:97–104. doi: 10.1016/j.coche.2014.01.011 CrossRefGoogle Scholar
  97. 97.
    Moller EK, Kumar P, Voet T, Peterson A, Van Loo P, Mathiesen RR, Fjelldal R, Grundstad J, Borgen E, Baumbusch LO, Naume B, Borresen-Dale AL, White KP, Nord S, Kristensen VN (2013) Next-generation sequencing of disseminated tumor cells. Front Oncol 3:320. doi: 10.3389/fonc.2013.00320 PubMedPubMedCentralCrossRefGoogle Scholar
  98. 98.
    Navin NE (2014) Cancer genomics: one cell at a time. Genome Biol 15(8):452. doi: 10.1186/s13059-014-0452-9 PubMedPubMedCentralCrossRefGoogle Scholar
  99. 99.
    Yu C, Yu J, Yao X, Wu WK, Lu Y, Tang S, Li X, Bao L, Li X, Hou Y, Wu R, Jian M, Chen R, Zhang F, Xu L, Fan F, He J, Liang Q, Wang H, Hu X, He M, Zhang X, Zheng H, Li Q, Wu H, Chen Y, Yang X, Zhu S, Xu X, Yang H, Wang J, Zhang X, Sung JJ, Li Y, Wang J (2014) Discovery of biclonal origin and a novel oncogene SLC12A5 in colon cancer by single-cell sequencing. Cell Res 24(6):701–712. doi: 10.1038/cr.2014.43 PubMedPubMedCentralCrossRefGoogle Scholar
  100. 100.
    Hou Y, Song L, Zhu P, Zhang B, Tao Y, Xu X, Li F, Wu K, Liang J, Shao D, Wu H, Ye X, Ye C, Wu R, Jian M, Chen Y, Xie W, Zhang R, Chen L, Liu X, Yao X, Zheng H, Yu C, Li Q, Gong Z, Mao M, Yang X, Yang L, Li J, Wang W, Lu Z, Gu N, Laurie G, Bolund L, Kristiansen K, Wang J, Yang H, Li Y, Zhang X, Wang J (2012) Single-cell exome sequencing and monoclonal evolution of a JAK2-negative myeloproliferative neoplasm. Cell 148(5):873–885. doi: 10.1016/j.cell.2012.02.028 PubMedCrossRefGoogle Scholar
  101. 101.
    Ni X, Zhuo M, Su Z, Duan J, Gao Y, Wang Z, Zong C, Bai H, Chapman AR, Zhao J, Xu L, An T, Ma Q, Wang Y, Wu M, Sun Y, Wang S, Li Z, Yang X, Yong J, Su XD, Lu Y, Bai F, Xie XS, Wang J (2013) Reproducible copy number variation patterns among single circulating tumor cells of lung cancer patients. Proc Natl Acad Sci USA 110(52):21083–21088. doi: 10.1073/pnas.1320659110 PubMedPubMedCentralCrossRefGoogle Scholar
  102. 102.
    Dago AE, Stepansky A, Carlsson A, Luttgen M, Kendall J, Baslan T, Kolatkar A, Wigler M, Bethel K, Gross ME, Hicks J, Kuhn P (2014) Rapid phenotypic and genomic change in response to therapeutic pressure in prostate cancer inferred by high content analysis of single circulating tumor cells. PLoS One 9(8):e101777. doi: 10.1371/journal.pone.0101777 PubMedPubMedCentralCrossRefGoogle Scholar
  103. 103.
    Navin N, Kendall J, Troge J, Andrews P, Rodgers L, McIndoo J, Cook K, Stepansky A, Levy D, Esposito D, Muthuswamy L, Krasnitz A, McCombie WR, Hicks J, Wigler M (2011) Tumour evolution inferred by single-cell sequencing. Nature 472(7341):90–94. doi: 10.1038/nature09807 PubMedPubMedCentralCrossRefGoogle Scholar
  104. 104.
    Suzuki A, Matsushima K, Makinoshima H, Sugano S, Kohno T, Tsuchihara K, Suzuki Y (2015) Single-cell analysis of lung adenocarcinoma cell lines reveals diverse expression patterns of individual cells invoked by a molecular target drug treatment. Genome Biol 16:66. doi: 10.1186/s13059-015-0636-y PubMedPubMedCentralCrossRefGoogle Scholar
  105. 105.
    Roukos DH (2010) Novel clinico-genome network modeling for revolutionizing genotype-phenotype-based personalized cancer care. Expert Rev Mol Diagn 10(1):33–48. doi: 10.1586/erm.09.69 PubMedCrossRefGoogle Scholar
  106. 106.
    Yan L, Yang M, Guo H, Yang L, Wu J, Li R, Liu P, Lian Y, Zheng X, Yan J, Huang J, Li M, Wu X, Wen L, Lao K, Li R, Qiao J, Tang F (2013) Single-cell RNA-Seq profiling of human preimplantation embryos and embryonic stem cells. Nat Struct Mol Biol 20(9):1131–1139. doi: 10.1038/nsmb.2660 PubMedCrossRefGoogle Scholar
  107. 107.
    Zhu Z, Wang DC, Popescu LM, Wang X (2014) Single-cell transcriptome in the identification of disease biomarkers: opportunities and challenges. J Transl Med 12:212. doi: 10.1186/s12967-014-0212-3 PubMedPubMedCentralCrossRefGoogle Scholar
  108. 108.
    Kantlehner M, Kirchner R, Hartmann P, Ellwart JW, Alunni-Fabbroni M, Schumacher A (2011) A high-throughput DNA methylation analysis of a single cell. Nucleic Acids Res 39(7):e44. doi: 10.1093/nar/gkq1357 PubMedPubMedCentralCrossRefGoogle Scholar
  109. 109.
    Soden SE, Farrow EG, Saunders CJ, Lantos JD (2012) Genomic medicine: evolving science, evolving ethics. Pers Med 9(5):523–528. doi: 10.2217/pme.12.56 CrossRefGoogle Scholar
  110. 110.
    Eun JR, Jung YJ, Zhang Y, Zhang Y, Tschudy-Seney B, Ramsamooj R, Wan YJ, Theise ND, Zern MA, Duan Y (2014) Hepatoma SK Hep-1 cells exhibit characteristics of oncogenic mesenchymal stem cells with highly metastatic capacity. PLoS One 9(10):e110744. doi: 10.1371/journal.pone.0110744 PubMedPubMedCentralCrossRefGoogle Scholar
  111. 111.
    Tang F, Barbacioru C, Wang Y, Nordman E, Lee C, Xu N, Wang X, Bodeau J, Tuch BB, Siddiqui A, Lao K, Surani MA (2009) mRNA-Seq whole-transcriptome analysis of a single cell. Nat Methods 6(5):377–382. doi: 10.1038/nmeth.1315 PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing 2016

Authors and Affiliations

  • Wanjun Zhu
    • 2
    • 6
  • Xiao-Yan Zhang
    • 3
  • Sadie L. Marjani
    • 4
  • Jialing Zhang
    • 2
  • Wengeng Zhang
    • 5
  • Shixiu Wu
    • 3
    Email author
  • Xinghua Pan
    • 1
    • 2
    Email author
  1. 1.Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Guangdong Province Key Laboratory of Biochip TechnologySouthern Medical UniversityGuangzhouPeople’s Republic of China
  2. 2.Department of Genetics, School of MedicineYale UniversityNew HavenUSA
  3. 3.Hangzhou Cancer InstitutionHangzhou Cancer HospitalHangzhouPeople’s Republic of China
  4. 4.Department of BiologyCentral Connecticut State UniversityNew BritainUSA
  5. 5.Precision Medicine Center, West China HospitalSichuan UniversityChengduChina
  6. 6.College of Veterinary MedicineUniversity of MinnesotaSaint PaulUSA

Personalised recommendations