Cellular and Molecular Life Sciences

, Volume 74, Issue 5, pp 849–867 | Cite as

Determination of the connectivity of newborn neurons in mammalian olfactory circuits

Review

Abstract

The mammalian olfactory bulb is a forebrain structure just one synapse downstream from the olfactory sensory neurons and performs the complex computations of sensory inputs. The formation of this sensory circuit is shaped through activity-dependent and cell-intrinsic mechanisms. Recent studies have revealed that cell-type specific connectivity and the organization of synapses in dendritic compartments are determined through cell-intrinsic programs already preset in progenitor cells. These progenitor programs give rise to subpopulations within a neuron type that have distinct synaptic organizations. The intrinsically determined formation of distinct synaptic organizations requires factors from contacting cells that match the cell-intrinsic programs. While certain genes control wiring within the newly generated neurons, other regulatory genes provide intercellular signals and are only expressed in neurons that will form contacts with the newly generated cells. Here, the olfactory system has provided a useful model circuit to reveal the factors regulating assembly of the highly structured connectivity in mammals.

Keywords

Development Synaptogenesis Cell fate Transcription factor Mouse 

Abbreviations

AON

Anterior olfactory cortex

EPL

External plexiform layer

ETC

External tufted cells

GC

Granule cell

GCL

Granule cell layer

MC

Mitral cell

MCL

Mitral cell layer

MTC

Middle tufted cells

OSN

Olfactory sensory neurons

References

  1. 1.
    Adesnik H, Li G, During MJ, Pleasure SJ, Nicoll RA (2008) NMDA receptors inhibit synapse unsilencing during brain development. Proc Natl Acad Sci USA 105:5597–5602PubMedPubMedCentralCrossRefGoogle Scholar
  2. 2.
    Akerblom M, Petri R, Sachdeva R, Klussendorf T, Mattsson B, Gentner B, Jakobsson J (2014) microRNA-125 distinguishes developmentally generated and adult-born olfactory bulb interneurons. Development 141:1580–1588PubMedCrossRefGoogle Scholar
  3. 3.
    Allen ZJ, Waclaw RR, Colbert MC, Campbell K (2007) Molecular identity of olfactory bulb interneurons: transcriptional codes of periglomerular neuron subtypes. J Mol Histol 38:517–525PubMedCrossRefGoogle Scholar
  4. 4.
    Alonso M, Viollet, Gabellec MM, Meas-Yedid, Olivo-Marin JC, Lledo PM (2006) Olfactory discrimination learning increases the survival of adult-born neurons in the olfactory bulb. J Neurosci 26:10508–10513PubMedCrossRefGoogle Scholar
  5. 5.
    Anderson SA, Qiu M, Bulfone A, Eisenstat DD, Meneses J, Pedersen R, Rubenstein JL (1997) Mutations of the homeobox genes Dlx-1 and Dlx-2 disrupt the striatal subventricular zone and differentiation of late born striatal neurons. Neuron 19:27–37PubMedCrossRefGoogle Scholar
  6. 6.
    Arnold SJ, Huang G-J, Cheung AFP, Era T, Nishikawa S-I, Bikoff EK, Molnár Z, Robertson EJ, Groszer M (2008) The T-box transcription factor Eomes/Tbr2 regulates neurogenesis in the cortical subventricular zone. Genes Dev 22:2479–2484PubMedPubMedCentralCrossRefGoogle Scholar
  7. 7.
    Bailey MS, Puche AC, Shipley MT (1999) Development of the olfactory bulb: evidence for glia-neuron interactions in glomerular formation. J Comp Neurol 415:423–448PubMedCrossRefGoogle Scholar
  8. 8.
    Balu R, Pressler RT, Strowbridge BW (2007) Multiple modes of synaptic excitation of olfactory bulb granule cells. J Neurosci 27:5621–5632PubMedCrossRefGoogle Scholar
  9. 9.
    Barbado MV, Briñón JG, Weruaga E, Porteros A, Arévalo R, Aijón J, Alonso JR (2001) Volumetric changes in the anterior olfactory nucleus of the rat after neonatal olfactory deprivation. Exp Neurol 171:379–390PubMedCrossRefGoogle Scholar
  10. 10.
    Barbado MV, Briñón JG, Weruaga E, Porteros A, Arévalo R, Aijón J, Alonso JR (2002) Changes in immunoreactivity to calcium-binding proteins in the anterior olfactory nucleus of the rat after neonatal olfactory deprivation. Exp Neurol 177:133–150PubMedCrossRefGoogle Scholar
  11. 11.
    Bardy C, Alonso M, Bouthour W, Lledo P-M (2010) How, when, and where new inhibitory neurons release neurotransmitters in the adult olfactory bulb. J Neurosci 30:17023–17034PubMedCrossRefGoogle Scholar
  12. 12.
    Batista-Brito R, Close J, Machold R, Fishell G (2008) The distinct temporal origins of olfactory bulb interneuron subtypes. J Neurosci 28:3966–3975PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    Bayer SA (1983) 3H-thymidine-radiographic studies of neurogenesis in the rat olfactory bulb. Exp Brain Res 50:329–340PubMedGoogle Scholar
  14. 14.
    Bayer SA (1986) Neurogenesis in the anterior olfactory nucleus and its associated transition areas in the rat brain. Int J Dev Neurosci 4:225–249PubMedCrossRefGoogle Scholar
  15. 15.
    Belluscio L, Lodovichi C, Feinstein P, Mombaerts P, Katz LC (2002) Odorant receptors instruct functional circuitry in the mouse olfactory bulb. Nature 419:296–300PubMedCrossRefGoogle Scholar
  16. 16.
    Benson TE, Ryugo DK, Hinds JW (1984) Effects of sensory deprivation on the developing mouse olfactory system: a light and electron microscopic, morphometric analysis. J Neurosci 4:638–653PubMedGoogle Scholar
  17. 17.
    Blanchart A, De Carlos JA, López-Mascaraque L (2006) Time frame of mitral cell development in the mice olfactory bulb. J Comp Neurol 496:529–543PubMedCrossRefGoogle Scholar
  18. 18.
    Boyd AM, Kato HK, Komiyama T, Isaacson JS (2015) Broadcasting of cortical activity to the olfactory bulb. Cell reports 10:1032–1039PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    Boyd AM, Sturgill JF, Poo C, Isaacson JS (2012) Cortical feedback control of olfactory bulb circuits. Neuron 76:1161–1174PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Brill MS, Snapyan M, Wohlfrom H, Ninkovic J, Jawerka M, Mastick GS, Ashery-Padan R, Saghatelyan A, Berninger B, Götz M (2008) A dlx2- and pax6-dependent transcriptional code for periglomerular neuron specification in the adult olfactory bulb. J Neurosci 28:6439–6452PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Brown JL, Brunjes PC (1990) Development of the anterior olfactory nucleus in normal and unilaterally odor deprived rats. J Comp Neurol 301:15–22PubMedCrossRefGoogle Scholar
  22. 22.
    Brunjes PC (1994) Unilateral naris closure and olfactory system development. Brain Res Brain Res Rev 19:146–160PubMedCrossRefGoogle Scholar
  23. 23.
    Brunjes PC, Collins LN, Osterberg SK, Phillips AM (2014) The mouse olfactory peduncle. 3. Development of neurons, glia, and centrifugal afferents. Front Neuroanat 8:44PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Brunjes PC, Illig KR, Meyer EA (2005) A field guide to the anterior olfactory nucleus (cortex). Brain Res Brain Res Rev 50:305–335PubMedCrossRefGoogle Scholar
  25. 25.
    Bulfone A, Wang F, Hevner R, Anderson S, Cutforth T, Chen S, Meneses J, Pedersen R, Axel R, Rubenstein JL (1998) An olfactory sensory map develops in the absence of normal projection neurons or GABAergic interneurons. Neuron 21:1273–1282PubMedCrossRefGoogle Scholar
  26. 26.
    Carleton A, Petreanu LT, Lansford R, Alvarez-Buylla A, Lledo P-M (2003) Becoming a new neuron in the adult olfactory bulb. Nat Neurosci 6:507–518PubMedGoogle Scholar
  27. 27.
    Carney RSE, Cocas LA, Hirata T, Mansfield K, Corbin JG (2009) Differential regulation of telencephalic pallial–subpallial boundary patterning by Pax6 and Gsh2. Cereb Cortex 19:745–759PubMedCrossRefGoogle Scholar
  28. 28.
    Cheng T-W, Gong Q (2009) Secreted TARSH regulates olfactory mitral cell dendritic complexity. Eur J Neurosci 29:1083–1095PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Chesler AT, Zou D-J, Le Pichon CE, Peterlin ZA, Matthews GA, Pei X, Miller MC, Firestein S (2007) A G protein/cAMP signal cascade is required for axonal convergence into olfactory glomeruli. Proc Natl Acad Sci USA 104:1039–1044PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    Cocas LA, Georgala PA, Mangin J-M, Clegg JM, Kessaris N, Haydar TF, Gallo V, Price DJ, Corbin JG (2011) Pax6 is required at the telencephalic pallial–subpallial boundary for the generation of neuronal diversity in the postnatal limbic system. J Neurosci 31:5313–5324PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Couper Leo JM, Brunjes PC (2003) Neonatal focal denervation of the rat olfactory bulb alters cell structure and survival: a Golgi, Nissl and confocal study. Brain Res Dev Brain Res 140:277–286PubMedCrossRefGoogle Scholar
  32. 32.
    Creps ES (1974) Time of neuron origin in the anterior olfactory nucleus and nucleus of the lateral olfactory tract of the mouse: an autoradiographic study. J Comp Neurol 157:139–159PubMedCrossRefGoogle Scholar
  33. 33.
    David LS, Schachner M, Saghatelyan A (2013) The extracellular matrix glycoprotein tenascin-R affects adult but not developmental neurogenesis in the olfactory bulb. J Neurosci 33:10324–10339PubMedCrossRefGoogle Scholar
  34. 34.
    Davis BJ, Macrides F (1981) The organization of centrifugal projections from the anterior olfactory nucleus, ventral hippocampal rudiment, and piriform cortex to the main olfactory bulb in the hamster: an autoradiographic study. J Comp Neurol 203:475–493PubMedCrossRefGoogle Scholar
  35. 35.
    Davis BJ, Macrides F, Youngs WM, Schneider SP, Rosene DL (1978) Efferents and centrifugal afferents of the main and accessory olfactory bulbs in the hamster. Brain Res Bull 3:59–72PubMedCrossRefGoogle Scholar
  36. 36.
    de Chevigny A, Coré N, Follert P, Gaudin M, Barbry P, Béclin C, Cremer H (2012) miR-7a regulation of Pax6 controls spatial origin of forebrain dopaminergic neurons. Nat Neurosci 15:1120–1126PubMedCrossRefGoogle Scholar
  37. 37.
    Dellovade TL, Pfaff DW, Schwanzel-Fukuda M (1998) Olfactory bulb development is altered in small-eye (Sey) mice. J Comp Neurol 402:402–418PubMedCrossRefGoogle Scholar
  38. 38.
    Devore S, Linster C (2012) Noradrenergic and cholinergic modulation of olfactory bulb sensory processing. Front Behav Neurosci 6:52PubMedPubMedCentralGoogle Scholar
  39. 39.
    Díaz-Guerra E, Pignatelli J, Nieto-Estévez V, Vicario-Abejón C (2013) Transcriptional regulation of olfactory bulb neurogenesis. Anat Rec 296:1364–1382CrossRefGoogle Scholar
  40. 40.
    Dwyer ND, Manning DK, Moran JL, Mudbhary R, Fleming MS, Favero CB, Vock VM, O’Leary DDM, Walsh CA, Beier DR (2011) A forward genetic screen with a thalamocortical axon reporter mouse yields novel neurodevelopment mutants and a distinct emx2 mutant phenotype. Neural Dev 6:3PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Eisenstat DD, Liu JK, Mione M, Zhong W, Yu G, Anderson SA, Ghattas I, Puelles L, Rubenstein JL (1999) DLX-1, DLX-2, and DLX-5 expression define distinct stages of basal forebrain differentiation. J Comp Neurol 414:217–237PubMedCrossRefGoogle Scholar
  42. 42.
    Eyre MD, Antal M, Nusser Z (2008) Distinct deep short-axon cell subtypes of the main olfactory bulb provide novel intrabulbar and extrabulbar GABAergic connections. J Neurosci 28:8217–8229PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Frazier LL, Brunjes PC (1988) Unilateral odor deprivation: early postnatal changes in olfactory bulb cell density and number. J Comp Neurol 269:355–370PubMedCrossRefGoogle Scholar
  44. 44.
    Fuentealba LC, Rompani SB, Parraguez JI, Obernier K, Romero R, Cepko CL, Alvarez-Buylla A (2015) Embryonic origin of postnatal neural stem cells. Cell 161:1644–1655PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Fukunaga I, Berning M, Kollo M, Schmaltz A, Schaefer AT (2012) Two distinct channels of olfactory bulb output. Neuron 75:320–329PubMedCrossRefGoogle Scholar
  46. 46.
    Ghosh S, Larson SD, Hefzi H, Marnoy Z, Cutforth T, Dokka K, Baldwin KK (2011) Sensory maps in the olfactory cortex defined by long-range viral tracing of single neurons. Nature 472:217–220PubMedCrossRefGoogle Scholar
  47. 47.
    Gire DH, Franks KM, Zak JD, Tanaka KF, Whitesell JD, Mulligan AA, Hen R, Schoppa NE (2012) Mitral cells in the olfactory bulb are mainly excited through a multistep signaling path. J Neurosci 32:2964–2975PubMedPubMedCentralCrossRefGoogle Scholar
  48. 48.
    Gussing F, Bohm S (2004) NQO1 activity in the main and the accessory olfactory systems correlates with the zonal topography of projection maps. Eur J Neurosci 19:2511–2518PubMedCrossRefGoogle Scholar
  49. 49.
    Guthrie KM, Wilson DA, Leon M (1990) Early unilateral deprivation modifies olfactory bulb function. J Neurosci 10:3402–3412PubMedGoogle Scholar
  50. 50.
    Hack MA, Saghatelyan A, de Chevigny A, Pfeifer A, Ashery-Padan R, Lledo P-M, Götz M (2005) Neuronal fate determinants of adult olfactory bulb neurogenesis. Nat Neurosci 8:865–872PubMedCrossRefGoogle Scholar
  51. 51.
    Harrison SJ, Nishinakamura R, Monaghan AP (2008) Sall1 regulates mitral cell development and olfactory nerve extension in the developing olfactory bulb. Cereb Cortex 18:1604–1617PubMedCrossRefGoogle Scholar
  52. 52.
    Harrison SJ, Parrish M, Monaghan AP (2008) Sall3 is required for the terminal maturation of olfactory glomerular interneurons. J Comp Neurol 507:1780–1794PubMedPubMedCentralCrossRefGoogle Scholar
  53. 53.
    Hayar A, Karnup S, Ennis M, Shipley MT (2004) External tufted cells: a major excitatory element that coordinates glomerular activity. J Neurosci 24:6676–6685PubMedCrossRefGoogle Scholar
  54. 54.
    Heng X, Breer H, Zhang X, Tang Y, Li J, Zhang S, Le W (2012) Sall3 correlates with the expression of TH in mouse olfactory bulb. J Mol Neurosci 46:293–302PubMedCrossRefGoogle Scholar
  55. 55.
    Hinds JW (1968) Autoradiographic study of histogenesis in the mouse olfactory bulb. II. Cell proliferation and migration. J Comp Neurol 134:305–322PubMedCrossRefGoogle Scholar
  56. 56.
    Hinds JW (1968) Autoradiographic study of histogenesis in the mouse olfactory bulb. I. Time of origin of neurons and neuroglia. J Comp Neurol 134:287–304PubMedCrossRefGoogle Scholar
  57. 57.
    Hinds JW (1972) Early neuron differentiation in the mouse olfactory bulb. II. Electron microscopy. J Comp Neurol 146:253–276PubMedCrossRefGoogle Scholar
  58. 58.
    Hinds JW (1972) Early neuron differentiation in the mouse of olfactory bulb. I. Light microscopy. J Comp Neurol 146:233–252PubMedCrossRefGoogle Scholar
  59. 59.
    Hirata T, Nakazawa M, Yoshihara S, Miyachi H, Kitamura K, Yoshihara Y, Hibi M (2006) Zinc-finger gene Fez in the olfactory sensory neurons regulates development of the olfactory bulb non-cell-autonomously. Development 133:1433–1443PubMedCrossRefGoogle Scholar
  60. 60.
    Igarashi KM, Ieki N, An M, Yamaguchi Y, Nagayama S, Kobayakawa K, Kobayakawa R, Tanifuji M, Sakano H, Chen WR, Mori K (2012) Parallel mitral and tufted cell pathways route distinct odor information to different targets in the olfactory cortex. J Neurosci 32:7970–7985PubMedPubMedCentralCrossRefGoogle Scholar
  61. 61.
    Ihrie RA, Shah JK, Harwell CC, Levine JH, Guinto CD, Lezameta M, Kriegstein AR, Alvarez-Buylla A (2011) Persistent sonic hedgehog signaling in adult brain determines neural stem cell positional identity. Neuron 71:250–262PubMedPubMedCentralCrossRefGoogle Scholar
  62. 62.
    Imai T, Sakano H (2007) Roles of odorant receptors in projecting axons in the mouse olfactory system. Curr Opin Neurobiol 17:507–515PubMedCrossRefGoogle Scholar
  63. 63.
    Imai T, Suzuki M, Sakano H (2006) Odorant receptor-derived cAMP signals direct axonal targeting. Science 314:657–661PubMedCrossRefGoogle Scholar
  64. 64.
    Imamura F, Ayoub AE, Rakic P, Greer CA (2011) Timing of neurogenesis is a determinant of olfactory circuitry. Nat Neurosci 14:331–337PubMedPubMedCentralCrossRefGoogle Scholar
  65. 65.
    Imamura F, Greer CA (2009) Dendritic branching of olfactory bulb mitral and tufted cells: regulation by TrkB. PLoS One 4:e6729PubMedPubMedCentralCrossRefGoogle Scholar
  66. 66.
    Imamura F, Greer CA (2015) Segregated labeling of olfactory bulb projection neurons based on their birthdates. Eur J Neurosci 41:147–156PubMedCrossRefGoogle Scholar
  67. 67.
    Imamura F, Nagao H, Naritsuka H, Murata Y, Taniguchi H, Mori K (2006) A leucine-rich repeat membrane protein, 5T4, is expressed by a subtype of granule cells with dendritic arbors in specific strata of the mouse olfactory bulb. J Comp Neurol 495:754–768PubMedCrossRefGoogle Scholar
  68. 68.
    Imayoshi I, Sakamoto M, Ohtsuka T, Takao K, Miyakawa T, Yamaguchi M, Mori K, Ikeda T, Itohara S, Kageyama R (2008) Roles of continuous neurogenesis in the structural and functional integrity of the adult forebrain. Nat Neurosci 11:1153–1161PubMedCrossRefGoogle Scholar
  69. 69.
    Inaki K, Nishimura S, Nakashiba T, Itohara S, Yoshihara Y (2004) Laminar organization of the developing lateral olfactory tract revealed by differential expression of cell recognition molecules. J Comp Neurol 479:243–256PubMedCrossRefGoogle Scholar
  70. 70.
    Kelsch W, Li Z, Eliava M, Goengrich C, Monyer H (2012) GluN2B-containing NMDA receptors promote wiring of adult-born neurons into olfactory bulb circuits. J Neurosci 32:12603–12611PubMedCrossRefGoogle Scholar
  71. 71.
    Kelsch W, Li Z, Wieland S, Senkov O, Herb A, Göngrich C, Monyer H (2014) GluN2B-containing NMDA receptors promote glutamate synapse development in hippocampal interneurons. J Neurosci 34:16022–16030PubMedCrossRefGoogle Scholar
  72. 72.
    Kelsch W, Lin C-W, Lois C (2008) Sequential development of synapses in dendritic domains during adult neurogenesis. Proc Natl Acad Sci USA 105:16803–16808PubMedPubMedCentralCrossRefGoogle Scholar
  73. 73.
    Kelsch W, Lin C-W, Mosley CP, Lois C (2009) A critical period for activity-dependent synaptic development during olfactory bulb adult neurogenesis. J Neurosci 29:11852–11858PubMedPubMedCentralCrossRefGoogle Scholar
  74. 74.
    Kelsch W, Mosley CP, Lin C-W, Lois C (2007) Distinct mammalian precursors are committed to generate neurons with defined dendritic projection patterns. PLoS Biol 5:e300PubMedPubMedCentralCrossRefGoogle Scholar
  75. 75.
    Kelsch W, Sim S, Lois C (2012) Increasing heterogeneity in the organization of synaptic inputs of mature olfactory bulb neurons generated in newborn rats. J Comp Neurol 520:1327–1338PubMedCrossRefGoogle Scholar
  76. 76.
    Kerr DI, Hagbarth KE (1955) An investigation of olfactory centrifugal fiber system. J Neurophysiol 18:362–374PubMedGoogle Scholar
  77. 77.
    Kitamura K et al (2002) Mutation of ARX causes abnormal development of forebrain and testes in mice and X-linked lissencephaly with abnormal genitalia in humans. Nat Genet 32:359–369PubMedCrossRefGoogle Scholar
  78. 78.
    Kobayakawa K, Kobayakawa R, Matsumoto H, Oka Y, Imai T, Ikawa M, Okabe M, Ikeda T, Itohara S, Kikusui T, Mori K, Sakano H (2007) Innate versus learned odour processing in the mouse olfactory bulb. Nature 450:503–508PubMedCrossRefGoogle Scholar
  79. 79.
    Kohwi M, Osumi N, Rubenstein JLR, Alvarez-Buylla A (2005) Pax6 is required for making specific subpopulations of granule and periglomerular neurons in the olfactory bulb. J Neurosci 25:6997–7003PubMedCrossRefGoogle Scholar
  80. 80.
    Kohwi M, Petryniak MA, Long JE, Ekker M, Obata K, Yanagawa Y, Rubenstein JLR, Alvarez-Buylla A (2007) A subpopulation of olfactory bulb GABAergic interneurons is derived from Emx1- and Dlx5/6-expressing progenitors. J Neurosci 27:6878–6891PubMedPubMedCentralCrossRefGoogle Scholar
  81. 81.
    Komano-Inoue S, Manabe H, Ota M, Kusumoto-Yoshida I, Yokoyama TK, Mori K, Yamaguchi M (2014) Top-down inputs from the olfactory cortex in the postprandial period promote elimination of granule cells in the olfactory bulb. Eur J Neurosci 40:2724–2733PubMedCrossRefGoogle Scholar
  82. 82.
    Korol DL, Brunjes PC (1990) Rapid changes in 2-deoxyglucose uptake and amino acid incorporation following unilateral odor deprivation: a laminar analysis. Brain Res Dev Brain Res 52:75–84PubMedCrossRefGoogle Scholar
  83. 83.
    Kosaka K, Kosaka T (2007) Chemical properties of type 1 and type 2 periglomerular cells in the mouse olfactory bulb are different from those in the rat olfactory bulb. Brain Res 1167:42–55PubMedCrossRefGoogle Scholar
  84. 84.
    Kosaka T, Kosaka K (2011) “Interneurons” in the olfactory bulb revisited. Neurosci Res 69:93–99PubMedCrossRefGoogle Scholar
  85. 85.
    Kriegstein A, Alvarez-Buylla A (2009) The glial nature of embryonic and adult neural stem cells. Annu Rev Neurosci 32:149–184PubMedPubMedCentralCrossRefGoogle Scholar
  86. 86.
    Kucharski D, Arnold HM, Hall WG (1995) Unilateral conditioning of an odor aversion in 6-day-old rat pups. Behav Neurosci 109:563–566PubMedCrossRefGoogle Scholar
  87. 87.
    Kucharski D, Burka N, Hall WG (1990) The anterior limb of the anterior commissure is an access route to contralateral stored olfactory preference memories. Psychobiology 18:195–204Google Scholar
  88. 88.
    Kucharski D, Hall WG (1987) New routes to early memories. Science 238:786–788PubMedCrossRefGoogle Scholar
  89. 89.
    Kucharski D, Hall WG (1988) Developmental change in the access to olfactory memories. Behav Neurosci 102:340–348PubMedCrossRefGoogle Scholar
  90. 90.
    Lemasson M, Saghatelyan A, Olivo-Marin J-C, Lledo P-M (2005) Neonatal and adult neurogenesis provide two distinct populations of newborn neurons to the mouse olfactory bulb. J Neurosci 25:6816–6825PubMedCrossRefGoogle Scholar
  91. 91.
    Lepousez G, Nissant A, Bryant AK, Gheusi G, Greer CA, Lledo P-M (2014) Olfactory learning promotes input-specific synaptic plasticity in adult-born neurons. Proc Natl Acad Sci USA 111:13984–13989PubMedPubMedCentralCrossRefGoogle Scholar
  92. 92.
    Levi G, Puche AC, Mantero S, Barbieri O, Trombino S, Paleari L, Egeo A, Merlo GR (2003) The Dlx5 homeodomain gene is essential for olfactory development and connectivity in the mouse. Mol Cell Neurosci 22:530–543PubMedCrossRefGoogle Scholar
  93. 93.
    Li X, Sun C, Lin C, Ma T, Madhavan MC, Campbell K, Yang Z (2011) The transcription factor Sp8 is required for the production of parvalbumin-expressing interneurons in the olfactory bulb. J Neurosci 31:8450–8455PubMedPubMedCentralCrossRefGoogle Scholar
  94. 94.
    Lin C-W, Sim S, Ainsworth A, Okada M, Kelsch W, Lois C (2010) Genetically increased cell-intrinsic excitability enhances neuronal integration into adult brain circuits. Neuron 65:32–39PubMedPubMedCentralCrossRefGoogle Scholar
  95. 95.
    Lin Y, Bloodgood BL, Hauser JL, Lapan AD, Koon AC, Kim T-K, Hu LS, Malik AN, Greenberg ME (2008) Activity-dependent regulation of inhibitory synapse development by Npas4. Nature 455:1198–1204PubMedPubMedCentralCrossRefGoogle Scholar
  96. 96.
    Lodovichi C, Belluscio L, Katz LC (2003) Functional topography of connections linking mirror-symmetric maps in the mouse olfactory bulb. Neuron 38:265–276PubMedCrossRefGoogle Scholar
  97. 97.
    Lois C, Alvarez-Buylla A (1993) Proliferating subventricular zone cells in the adult mammalian forebrain can differentiate into neurons and glia. Proc Natl Acad Sci USA 90:2074–2077PubMedPubMedCentralCrossRefGoogle Scholar
  98. 98.
    Lois C, Alvarez-Buylla A (1994) Long-distance neuronal migration in the adult mammalian brain. Science 264:1145–1148PubMedCrossRefGoogle Scholar
  99. 99.
    Long JE, Garel S, Alvarez-Dolado M, Yoshikawa K, Osumi N, Alvarez-Buylla A, Rubenstein JLR (2007) Dlx-dependent and -independent regulation of olfactory bulb interneuron differentiation. J Neurosci 27:3230–3243PubMedPubMedCentralCrossRefGoogle Scholar
  100. 100.
    Long JE, Garel S, Depew MJ, Tobet S, Rubenstein JLR (2003) DLX5 regulates development of peripheral and central components of the olfactory system. J Neurosci 23:568–578PubMedGoogle Scholar
  101. 101.
    Long JE, Swan C, Liang WS, Cobos I, Potter GB, Rubenstein JLR (2009) Dlx1&2 and Mash1 transcription factors control striatal patterning and differentiation through parallel and overlapping pathways. J Comp Neurol 512:556–572PubMedPubMedCentralCrossRefGoogle Scholar
  102. 102.
    López-Mascaraque L, De Carlos JA, Valverde F (1996) Early onset of the rat olfactory bulb projections. Neuroscience 70:255–266PubMedCrossRefGoogle Scholar
  103. 103.
    Luskin MB (1993) Restricted proliferation and migration of postnatally generated neurons derived from the forebrain subventricular zone. Neuron 11:173–189PubMedCrossRefGoogle Scholar
  104. 104.
    Luskin MB, Price JL (1983) The topographic organization of associational fibers of the olfactory system in the rat, including centrifugal fibers to the olfactory bulb. J Comp Neurol 216:264–291PubMedCrossRefGoogle Scholar
  105. 105.
    Mallamaci A, Iannone R, Briata P, Pintonello L, Mercurio S, Boncinelli E, Corte G (1998) EMX2 protein in the developing mouse brain and olfactory area. Mech Dev 77:165–172PubMedCrossRefGoogle Scholar
  106. 106.
    Malun D, Brunjes PC (1996) Development of olfactory glomeruli: temporal and spatial interactions between olfactory receptor axons and mitral cells in opossums and rats. J Comp Neurol 368:1–16PubMedCrossRefGoogle Scholar
  107. 107.
    Margrie TW, Sakmann B, Urban NN (2001) Action potential propagation in mitral cell lateral dendrites is decremental and controls recurrent and lateral inhibition in the mammalian olfactory bulb. Proc Natl Acad Sci USA 98:319–324PubMedCrossRefGoogle Scholar
  108. 108.
    Math F, Davrainville JL (1980) Electrophysiological study on the postnatal development of mitral cell activity in the rat olfactory bulb. Brain Res 190:243–247PubMedCrossRefGoogle Scholar
  109. 109.
    Matsutani S, Yamamoto N (2000) Differentiation of mitral cell dendrites in the developing main olfactory bulbs of normal and naris-occluded rats. J Comp Neurol 418:402–410PubMedCrossRefGoogle Scholar
  110. 110.
    Matsutani S, Yamamoto N (2008) Centrifugal innervation of the mammalian olfactory bulb. Anat Sci Int 83:218–227PubMedCrossRefGoogle Scholar
  111. 111.
    Mechavar N, Saghatelyan A, Grailhe R, Scoriels L, Gheusi G, Gabellec MM, Lledo PM, Changeux JP (2004) Nicotinergic receptors regulate the survival of newborn neurons in the adult olfactory bulb. Proc Natl Adac Sci USA 101:9822–9826CrossRefGoogle Scholar
  112. 112.
    Meisami E, Noushinfar E (1986) Early olfactory deprivation and the mitral cells of the olfactory bulb: a Golgi study. Int J Dev Neurosci 4:431–444PubMedCrossRefGoogle Scholar
  113. 113.
    Meisami E, Safari L (1981) A quantitative study of the effects of early unilateral olfactory deprivation on the number and distribution of mitral and tufted cells and of glomeruli in the rat olfactory bulb. Brain Res 221:81–107PubMedCrossRefGoogle Scholar
  114. 114.
    Méndez-Gómez HR, Vergaño-Vera E, Abad JL, Bulfone A, Moratalla R, de Pablo F, Vicario-Abejón C (2011) The T-box brain 1 (Tbr1) transcription factor inhibits astrocyte formation in the olfactory bulb and regulates neural stem cell fate. Mol Cell Neurosci 46:108–121PubMedCrossRefGoogle Scholar
  115. 115.
    Méndez-Gómez HR, Vicario-Abejón C (2012) The homeobox gene Gsx2 regulates the self-renewal and differentiation of neural stem cells and the cell fate of postnatal progenitors. PLoS One 7:e29799PubMedPubMedCentralCrossRefGoogle Scholar
  116. 116.
    Merkle FT, Mirzadeh Z, Alvarez-Buylla A (2007) Mosaic organization of neural stem cells in the adult brain. Science 317:381–384PubMedCrossRefGoogle Scholar
  117. 117.
    Miyamichi K, Amat F, Moussavi F, Wang C, Wickersham I, Wall NR, Taniguchi H, Tasic B, Huang ZJ, He Z, Callaway EM, Horowitz MA, Luo L (2011) Cortical representations of olfactory input by trans-synaptic tracing. Nature 472:191–196PubMedCrossRefGoogle Scholar
  118. 118.
    Miyamichi K, Serizawa S, Kimura HM, Sakano H (2005) Continuous and overlapping expression domains of odorant receptor genes in the olfactory epithelium determine the dorsal/ventral positioning of glomeruli in the olfactory bulb. J Neurosci 25:3586–3592PubMedCrossRefGoogle Scholar
  119. 119.
    Mizrahi A (2007) Dendritic development and plasticity of adult-born neurons in the mouse olfactory bulb. Nat Neurosci 10:444–452PubMedGoogle Scholar
  120. 120.
    Mizrahi A, Katz LC (2003) Dendritic stability in the adult olfactory bulb. Nat Neurosci 6:1201–1207PubMedCrossRefGoogle Scholar
  121. 121.
    Mizuguchi R, Naritsuka H, Mori K, Mao C-A, Klein WH, Yoshihara Y (2012) Tbr2 deficiency in mitral and tufted cells disrupts excitatory-inhibitory balance of neural circuitry in the mouse olfactory bulb. J Neurosci 32:8831–8844PubMedPubMedCentralCrossRefGoogle Scholar
  122. 122.
    Mombaerts P (2006) Axonal wiring in the mouse olfactory system. Annu Rev Cell Dev Biol 22:713–737PubMedCrossRefGoogle Scholar
  123. 123.
    Mombaerts P, Wang F, Dulac C, Chao SK, Nemes A, Mendelsohn M, Edmondson J, Axel R (1996) Visualizing an olfactory sensory map. Cell 87:675–686PubMedCrossRefGoogle Scholar
  124. 124.
    Mori K (1987) Membrane and synaptic properties of identified neurons in the olfactory bulb. Prog Neurobiol 29:275–320PubMedCrossRefGoogle Scholar
  125. 125.
    Mori K, Kishi K, Ojima H (1983) Distribution of dendrites of mitral, displaced mitral, tufted, and granule cells in the rabbit olfactory bulb. J Comp Neurol 219:339–355PubMedCrossRefGoogle Scholar
  126. 126.
    Mori K, Sakano H (2011) How is the olfactory map formed and interpreted in the mammalian brain? Annu Rev Neurosci 34:467–499PubMedCrossRefGoogle Scholar
  127. 127.
    Murphy GJ, Darcy DP, Isaacson JS (2005) Intraglomerular inhibition: signaling mechanisms of an olfactory microcircuit. Nat Neurosci 8:354–364PubMedCrossRefGoogle Scholar
  128. 128.
    Nagayama S, Enerva A, Fletcher ML, Masurkar AV, Igarashi KM, Mori K, Chen WR (2010) Differential axonal projection of mitral and tufted cells in the mouse main olfactory system. Front Neural Circuits 4:120Google Scholar
  129. 129.
    Nagayama S, Homma R, Imamura F (2014) Neuronal organization of olfactory bulb circuits. Front Neural Circuits 8:98PubMedPubMedCentralCrossRefGoogle Scholar
  130. 130.
    Najac M, De Saint Jan D, Reguero L, Grandes P, Charpak S (2011) Monosynaptic and polysynaptic feed-forward inputs to mitral cells from olfactory sensory neurons. J Neurosci 31:8722–8729PubMedCrossRefGoogle Scholar
  131. 131.
    Nédélec S, Foucher I, Brunet I, Bouillot C, Prochiantz A, Trembleau A (2004) Emx2 homeodomain transcription factor interacts with eukaryotic translation initiation factor 4E (eIF4E) in the axons of olfactory sensory neurons. Proc Natl Acad Sci USA 101:10815–10820PubMedPubMedCentralCrossRefGoogle Scholar
  132. 132.
    Nguyen-Ba-Charvet KT, Di Meglio T, Fouquet C, Chédotal A (2008) Robos and slits control the pathfinding and targeting of mouse olfactory sensory axons. J Neurosci 28:4244–4249PubMedCrossRefGoogle Scholar
  133. 133.
    Nishinakamura R, Matsumoto Y, Nakao K, Nakamura K, Sato A, Copeland NG, Gilbert DJ, Jenkins NA, Scully S, Lacey DL, Katsuki M, Asashima M, Yokota T (2001) Murine homolog of SALL1 is essential for ureteric bud invasion in kidney development. Development 128:3105–3115PubMedGoogle Scholar
  134. 134.
    Nissant A, Bardy C, Katagiri H, Murray K, Lledo P-M (2009) Adult neurogenesis promotes synaptic plasticity in the olfactory bulb. Nat Neurosci 12:728–730PubMedCrossRefGoogle Scholar
  135. 135.
    Norlin EM, Alenius M, Gussing F, Hägglund M, Vedin V, Bohm S (2001) Evidence for gradients of gene expression correlating with zonal topography of the olfactory sensory map. Mol Cell Neurosci 18:283–295PubMedCrossRefGoogle Scholar
  136. 136.
    Oettl L-L, Ravi N, Schneider M, Scheller MF, Schneider P, Mitre M, da Silva Gouveia M, Froemke RC, Chao MV, Young WS, Meyer-Lindenberg A, Grinevich V, Shusterman R, Kelsch W (2016) Oxytocin enhances social recognition by modulating cortical control of early olfactory processing. Neuron 90:609–621PubMedCrossRefGoogle Scholar
  137. 137.
    Oka Y, Kobayakawa K, Nishizumi H, Miyamichi K, Hirose S, Tsuboi A, Sakano H (2003) O-MACS, a novel member of the medium-chain acyl-CoA synthetase family, specifically expressed in the olfactory epithelium in a zone-specific manner. Eur J Biochem 270:1995–2004PubMedCrossRefGoogle Scholar
  138. 138.
    Otazu GH, Chae H, Davis MB, Albeanu DF (2015) Cortical feedback decorrelates olfactory bulb output in awake mice. Neuron 86:1461–1477PubMedCrossRefGoogle Scholar
  139. 139.
    Ott T, Kaestner KH, Monaghan AP, Schütz G (1996) The mouse homolog of the region specific homeotic gene spalt of Drosophila is expressed in the developing nervous system and in mesoderm-derived structures. Mech Dev 56:117–128PubMedCrossRefGoogle Scholar
  140. 140.
    Ott T, Parrish M, Bond K, Schwaeger-Nickolenko A, Monaghan AP (2001) A new member of the spalt like zinc finger protein family, Msal-3, is expressed in the CNS and sites of epithelial/mesenchymal interaction. Mech Dev 101:203–207PubMedCrossRefGoogle Scholar
  141. 141.
    Pager J, Giachetti I, Holley A, Le Magnen J (1972) A selective control of olfactory bulb electrical activity in relation to food deprivation and satiety in rats. Physiol Behav 9:573–579PubMedCrossRefGoogle Scholar
  142. 142.
    Palmer AM, Degano AL, Park MJ, Ramamurthy S, Ronnett GV (2012) Normal mitral cell dendritic development in the setting of Mecp2 mutation. Neuroscience 202:108–116PubMedCrossRefGoogle Scholar
  143. 143.
    Panganiban G, Rubenstein JLR (2002) Developmental functions of the Distal-less/Dlx homeobox genes. Development 129:4371–4386PubMedGoogle Scholar
  144. 144.
    Panzanelli P, Bardy C, Nissant A, Pallotto M, Sassoè-Pognetto M, Lledo P-M, Fritschy J-M (2009) Early synapse formation in developing interneurons of the adult olfactory bulb. J Neurosci 29:15039–15052PubMedCrossRefGoogle Scholar
  145. 145.
    Parrish-Aungst S, Shipley MT, Erdelyi F, Szabo G, Puche AC (2007) Quantitative analysis of neuronal diversity in the mouse olfactory bulb. J Comp Neurol 501:825–836PubMedCrossRefGoogle Scholar
  146. 146.
    Pathania M, Torres-Reveron J, Yan L, Kimura T, Lin TV, Gordon V, Teng Z-Q, Zhao X, Fulga TA, Van Vactor D, Bordey A (2012) miR-132 enhances dendritic morphogenesis, spine density, synaptic integration, and survival of newborn olfactory bulb neurons. PLoS One 7:e38174PubMedPubMedCentralCrossRefGoogle Scholar
  147. 147.
    Pei Z, Wang B, Chen G, Nagao M, Nakafuku M, Campbell K (2011) Homeobox genes Gsx1 and Gsx2 differentially regulate telencephalic progenitor maturation. Proc Natl Acad Sci USA 108:1675–1680PubMedPubMedCentralCrossRefGoogle Scholar
  148. 148.
    Petersen CCH (2007) The functional organization of the barrel cortex. Neuron 56:339–355PubMedCrossRefGoogle Scholar
  149. 149.
    Petreanu L, Alvarez-Buylla A (2002) Maturation and death of adult-born olfactory bulb granule neurons: role of olfaction. J Neurosci 22:6106–6113PubMedGoogle Scholar
  150. 150.
    Pinching AJ, Powell TP (1971) The neuron types of the glomerular layer of the olfactory bulb. J Cell Sci 9:305–345PubMedGoogle Scholar
  151. 151.
    Platel J-C, Dave KA, Gordon V, Lacar B, Rubio ME, Bordey A (2010) NMDA receptors activated by subventricular zone astrocytic glutamate are critical for neuroblast survival prior to entering a synaptic network. Neuron 65:859–872PubMedPubMedCentralCrossRefGoogle Scholar
  152. 152.
    Platel J-C, Kelsch W (2013) Role of NMDA receptors in adult neurogenesis: an ontogenetic (re)view on activity-dependent development. Cell Mol Life Sci 70:3591–3601PubMedCrossRefGoogle Scholar
  153. 153.
    Pressler RT, InoueT, Strowbridge BW (2007) Muscarinergic receptor activation modulates granule cell excitability and potentiates inhibition onto mitral cells in the rat olfactory bulb. J Neurosci 27:10969–10981PubMedCrossRefGoogle Scholar
  154. 154.
    Puche AC, Shipley MT (2001) Radial glia development in the mouse olfactory bulb. J Comp Neurol 434:1–12PubMedCrossRefGoogle Scholar
  155. 155.
    Qiu M, Bulfone A, Martinez S, Meneses JJ, Shimamura K, Pedersen RA, Rubenstein JL (1995) Null mutation of Dlx-2 results in abnormal morphogenesis of proximal first and second branchial arch derivatives and abnormal differentiation in the forebrain. Genes Dev 9:2523–2538PubMedCrossRefGoogle Scholar
  156. 156.
    Rakic P, Ayoub AE, Breunig JJ, Dominguez MH (2009) Decision by division: making cortical maps. Trends Neurosci 32:291–301PubMedPubMedCentralCrossRefGoogle Scholar
  157. 157.
    Rakic P, Ayoub AE, Breunig JJ, Dominguez MH (2009) Decision by division: making cortical maps. Trends Neurosci 32:291–301PubMedPubMedCentralCrossRefGoogle Scholar
  158. 158.
    Ravi N, Li Z, Oettl L-L, Bartsch D, Schönig K, Kelsch W (2015) Postnatal subventricular zone progenitors switch their fate to generate neurons with distinct synaptic input patterns. Development 142:303–313PubMedCrossRefGoogle Scholar
  159. 159.
    Ressler KJ, Sullivan SL, Buck LB (1994) Information coding in the olfactory system: evidence for a stereotyped and highly organized epitope map in the olfactory bulb. Cell 79:1245–1255PubMedCrossRefGoogle Scholar
  160. 160.
    Rothermel M, Wachowiak M (2014) Functional imaging of cortical feedback projections to the olfactory bulb. Front Neural Circuits 8:73PubMedPubMedCentralCrossRefGoogle Scholar
  161. 161.
    Royet JP, Jourdan F, Ploye H, Souchier C (1989) Morphometric modifications associated with early sensory experience in the rat olfactory bulb: II. Stereological study of the population of olfactory glomeruli. J Comp Neurol 289:594–609PubMedCrossRefGoogle Scholar
  162. 162.
    Saghatelyan A, Roux P, Migliore M, Rochefort C, Desmaisons D, Charneau P, Shepherd GM, Lledo P-M (2005) Activity-dependent adjustments of the inhibitory network in the olfactory bulb following early postnatal deprivation. Neuron 46:103–116PubMedCrossRefGoogle Scholar
  163. 163.
    Schoppa NE, Urban NN (2003) Dendritic processing within olfactory bulb circuits. Trends Neurosci 26:501–506PubMedCrossRefGoogle Scholar
  164. 164.
    Schreiner CE, Winer JA (2007) Auditory cortex mapmaking: principles, projections, and plasticity. Neuron 56:356–365PubMedPubMedCentralCrossRefGoogle Scholar
  165. 165.
    Schwob JE, Price JL (1984) The development of axonal connections in the central olfactory system of rats. J Comp Neurol 223:177–202PubMedCrossRefGoogle Scholar
  166. 166.
    Serizawa S, Miyamichi K, Takeuchi H, Yamagishi Y, Suzuki M, Sakano H (2006) A neuronal identity code for the odorant receptor-specific and activity-dependent axon sorting. Cell 127:1057–1069PubMedCrossRefGoogle Scholar
  167. 167.
    Sessa A, Mao C-A, Hadjantonakis A-K, Klein WH, Broccoli V (2008) Tbr2 directs conversion of radial glia into basal precursors and guides neuronal amplification by indirect neurogenesis in the developing neocortex. Neuron 60:56–69PubMedPubMedCentralCrossRefGoogle Scholar
  168. 168.
    Shaker T, Dennis D, Kurrasch DM, Schuurmans C (2012) Neurog1 and Neurog2 coordinately regulate development of the olfactory system. Neural Dev 7:28PubMedPubMedCentralCrossRefGoogle Scholar
  169. 169.
    Shao Z, Puche AC, Liu S, Shipley MT (2012) Intraglomerular inhibition shapes the strength and temporal structure of glomerular output. J Neurophysiol 108:782–793PubMedPubMedCentralCrossRefGoogle Scholar
  170. 170.
    Shepherd GM, Chen WR, Willhite D, Migliore M, Greer CA (2007) The olfactory granule cell: from classical enigma to central role in olfactory processing. Brain Res Rev 55:373–382PubMedCrossRefGoogle Scholar
  171. 171.
    Shimizu T, Hibi M (2009) Formation and patterning of the forebrain and olfactory system by zinc-finger genes Fezf1 and Fezf2. Dev Growth Differ 51:221–231PubMedCrossRefGoogle Scholar
  172. 172.
    Soria-Gomez E, Bellocchio L, Reguero L, Lepousez G, Martin C, Bendahmane M, Ruehle S, Remmers F, Desprez T, Matias I, et al (2014) The endocannabinoid system controls food intake via olfactory processes. Nat Neurosci 17:407–415PubMedCrossRefGoogle Scholar
  173. 173.
    Sosulski DL, Bloom ML, Cutforth T, Axel R, Datta SR (2011) Distinct representations of olfactory information in different cortical centres. Nature 472:213–216PubMedPubMedCentralCrossRefGoogle Scholar
  174. 174.
    Stoykova A, Gruss P (1994) Roles of Pax-genes in developing and adult brain as suggested by expression patterns. J Neurosci 14:1395–1412PubMedGoogle Scholar
  175. 175.
    Sugisaki N, Hirata T, Naruse I, Kawakami A, Kitsukawa T, Fujisawa H (1996) Positional cues that are strictly localized in the telencephalon induce preferential growth of mitral cell axons. J Neurobiol 29:127–137PubMedCrossRefGoogle Scholar
  176. 176.
    Takeuchi H, Inokuchi K, Aoki M, Suto F, Tsuboi A, Matsuda I, Suzuki M, Aiba A, Serizawa S, Yoshihara Y, Fujisawa H, Sakano H (2010) Sequential arrival and graded secretion of Sema3F by olfactory neuron axons specify map topography at the bulb. Cell 141:1056–1067PubMedCrossRefGoogle Scholar
  177. 177.
    Takeuchi H, Sakano H (2014) Neural map formation in the mouse olfactory system. Cell Mol Life Sci 71:3049–3057PubMedPubMedCentralCrossRefGoogle Scholar
  178. 178.
    Tatti R, Bhaukaurally K, Gschwend O, Seal RP, Edwards RH, Rodriguez I, Carleton A (2014) A population of glomerular glutamatergic neurons controls sensory information transfer in the mouse olfactory bulb. Nat Commun 5:3791PubMedPubMedCentralCrossRefGoogle Scholar
  179. 179.
    Toresson H, Potter SS, Campbell K (2000) Genetic control of dorsal-ventral identity in the telencephalon: opposing roles for Pax6 and Gsh2. Development 127:4361–4371PubMedGoogle Scholar
  180. 180.
    Tsutiya A, Nishihara M, Goshima Y, Ohtani-Kaneko R (2015) Mouse pups lacking collapsin response mediator protein 4 manifest impaired olfactory function and hyperactivity in the olfactory bulb. Eur J Neurosci 42:2335–2345PubMedCrossRefGoogle Scholar
  181. 181.
    Tsutiya A, Watanabe H, Nakano Y, Nishihara M, Goshima Y, Ohtani-Kaneko R (2016) Deletion of collapsin response mediator protein 4 results in abnormal layer thickness and elongation of mitral cell apical dendrites in the neonatal olfactory bulb. J Anat 228:792–804PubMedCrossRefGoogle Scholar
  182. 182.
    Vassar R, Chao SK, Sitcheran R, Nuñez JM, Vosshall LB, Axel R (1994) Topographic organization of sensory projections to the olfactory bulb. Cell 79:981–991PubMedCrossRefGoogle Scholar
  183. 183.
    Vicario-Abejón C, Yusta-Boyo MJ, Fernández-Moreno C, de Pablo F (2003) Locally born olfactory bulb stem cells proliferate in response to insulin-related factors and require endogenous insulin-like growth factor-I for differentiation into neurons and glia. J Neurosci 23:895–906PubMedGoogle Scholar
  184. 184.
    von Campenhausen H, Yoshihara Y, Mori K (1997) OCAM reveals segregated mitral/tufted cell pathways in developing accessory olfactory bulb. NeuroReport 8:2607–2612CrossRefGoogle Scholar
  185. 185.
    Wachowiak M, Shipley MT (2006) Coding and synaptic processing of sensory information in the glomerular layer of the olfactory bulb. Semin Cell Dev Biol 17:411–423PubMedCrossRefGoogle Scholar
  186. 186.
    Waclaw RR, Allen ZJ, Bell SM, Erdélyi F, Szabó G, Potter SS, Campbell K (2006) The zinc finger transcription factor Sp8 regulates the generation and diversity of olfactory bulb interneurons. Neuron 49:503–516PubMedCrossRefGoogle Scholar
  187. 187.
    Wallenberg A (1928) Anatomie, physiologie und pathologie des sensiblen systems. Deutsch Zeitsch Nervenh 101:111–155CrossRefGoogle Scholar
  188. 188.
    Walz A, Omura M, Mombaerts P (2006) Development and topography of the lateral olfactory tract in the mouse: imaging by genetically encoded and injected fluorescent markers. J Neurobiol 66:835–846PubMedCrossRefGoogle Scholar
  189. 189.
    Wang F, Nemes A, Mendelsohn M, Axel R (1998) Odorant receptors govern the formation of a precise topographic map. Cell 93:47–60PubMedCrossRefGoogle Scholar
  190. 190.
    Watanabe Y, Inoue K, Okuyama-Yamamoto A, Nakai N, Nakatani J, Nibu K-I, Sato N, Iiboshi Y, Yusa K, Kondoh G, Takeda J, Terashima T, Takumi T (2009) Fezf1 is required for penetration of the basal lamina by olfactory axons to promote olfactory development. J Comp Neurol 515:565–584PubMedCrossRefGoogle Scholar
  191. 191.
    White LE, Fitzpatrick D (2007) Vision and cortical map development. Neuron 56:327–338PubMedCrossRefGoogle Scholar
  192. 192.
    Whitman MC, Greer CA (2007) Synaptic integration of adult-generated olfactory bulb granule cells: basal axodendritic centrifugal input precedes apical dendrodendritic local circuits. J Neurosci 27:9951–9961PubMedCrossRefGoogle Scholar
  193. 193.
    Winner B, Cooper-Kuhn CM, Aigner R, Winkler J, Kuhn HG (2002) Long-term survival and cell death of newly generated neurons in the adult rat olfactory bulb. Eur J Neurosci 16:1681–1689PubMedCrossRefGoogle Scholar
  194. 194.
    Xiong W, Chen WR (2002) Dynamic gating of spike propagation in the mitral cell lateral dendrites. Neuron 34:115–126PubMedCrossRefGoogle Scholar
  195. 195.
    Yamaguchi M, Mori K (2005) Critical period for sensory experience-dependent survival of newly generated granule cells in the adult mouse olfactory bulb. Proc Natl Acad Sci USA 102:9697–9702PubMedPubMedCentralCrossRefGoogle Scholar
  196. 196.
    Yamaguchi M, Manabe H, Murata K, Mori K (2013) Reorganization of neuronal circuits of the central olfactory system during postprandial sleep. Front Neural Circuits 7:132PubMedPubMedCentralCrossRefGoogle Scholar
  197. 197.
    Yan Z, Tan J, Qin C, Lu Y, Ding C, Luo M (2008) Precise circuitry links bilaterally symmetric olfactory maps. Neuron 58:613–624PubMedCrossRefGoogle Scholar
  198. 198.
    Yokoi M, Mori K, Nakanishi S (1995) Refinement of odor molecule tuning by dendrodendritic synaptic inhibition in the olfactory bulb. Proc Natl Acad Sci USA 92:3371–3375PubMedPubMedCentralCrossRefGoogle Scholar
  199. 199.
    Yoshida M, Suda Y, Matsuo I, Miyamoto N, Takeda N, Kuratani S, Aizawa S (1997) Emx1 and Emx2 functions in development of dorsal telencephalon. Development 124:101–111PubMedGoogle Scholar
  200. 200.
    Yoshihara S, Omichi K, Yanazawa M, Kitamura K, Yoshihara Y (2005) Arx homeobox gene is essential for development of mouse olfactory system. Development 132:751–762PubMedCrossRefGoogle Scholar
  201. 201.
    Yoshihara S, Takahashi H, Nishimura N, Naritsuka H, Shirao T, Hirai H, Yoshihara Y, Mori K, Stern PL, Tsuboi A (2012) 5T4 glycoprotein regulates the sensory input-dependent development of a specific subtype of newborn interneurons in the mouse olfactory bulb. J Neurosci 32:2217–2226PubMedCrossRefGoogle Scholar
  202. 202.
    Yoshihara S-I, Takahashi H, Nishimura N, Kinoshita M, Asahina R, Kitsuki M, Tatsumi K, Furukawa-Hibi Y, Hirai H, Nagai T, Yamada K, Tsuboi A (2014) Npas4 regulates Mdm2 and thus Dcx in experience-dependent dendritic spine development of newborn olfactory bulb interneurons. Cell Rep 8:843–857PubMedCrossRefGoogle Scholar
  203. 203.
    Yoshihara Y, Kawasaki M, Tamada A, Fujita H, Hayashi H, Kagamiyama H, Mori K (1997) OCAM: a new member of the neural cell adhesion molecule family related to zone-to-zone projection of olfactory and vomeronasal axons. J Neurosci 17:5830–5842PubMedGoogle Scholar
  204. 204.
    Yoshihara Y, Mori K (1997) Basic principles and molecular mechanisms of olfactory axon pathfinding. Cell Tissue Res 290:457–463PubMedCrossRefGoogle Scholar
  205. 205.
    Yun K, Garel S, Fischman S, Rubenstein JLR (2003) Patterning of the lateral ganglionic eminence by the Gsh1 and Gsh2 homeobox genes regulates striatal and olfactory bulb histogenesis and the growth of axons through the basal ganglia. J Comp Neurol 461:151–165PubMedCrossRefGoogle Scholar
  206. 206.
    Yun K, Potter S, Rubenstein JL (2001) Gsh2 and Pax6 play complementary roles in dorsoventral patterning of the mammalian telencephalon. Development 128:193–205PubMedGoogle Scholar
  207. 207.
    Zhang C, Ng KL, Li J-D, He F, Anderson DJ, Sun YE, Zhou Q-Y (2007) Prokineticin 2 is a target gene of proneural basic helix-loop-helix factors for olfactory bulb neurogenesis. J Biol Chem 282:6917–6921PubMedCrossRefGoogle Scholar
  208. 208.
    Zhou X, Liu F, Tian M, Xu Z, Liang Q, Wang C, Li J, Liu Z, Tang K, He M, Yang Z (2015) Transcription factors COUP-TFI and COUP-TFII are required for the production of granule cells in the mouse olfactory bulb. Development 142:1593–1605PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing 2016

Authors and Affiliations

  1. 1.Central Institute of Mental Health, Medical Faculty MannheimHeidelberg UniversityMannheimGermany
  2. 2.Division of Biology and Biological EngineeringCalifornia Institute of TechnologyPasadenaUSA

Personalised recommendations