Advertisement

Cellular and Molecular Life Sciences

, Volume 74, Issue 4, pp 631–646 | Cite as

Interplay of mitochondrial metabolism and microRNAs

  • Julian Geiger
  • Louise T. Dalgaard
Review

Abstract

Mitochondria are important organelles in cellular metabolism. Several crucial metabolic pathways such as the energy producing electron transport chain or the tricarboxylic acid cycle are hosted inside the mitochondria. The proper function of mitochondria depends on the import of proteins, which are encoded in the nucleus and synthesized in the cytosol. Micro-ribonucleic acids (miRNAs) are short non-coding ribonucleic acid (RNA) molecules with the ability to prevent messenger RNA (mRNA)-translation or to induce the degradation of mRNA-transcripts. Although miRNAs are mainly located in the cytosol or the nucleus, a subset of ~150 different miRNAs, called mitomiRs, has also been found localized to mitochondrial fractions of cells and tissues together with the subunits of the RNA-induced silencing complex (RISC); the protein complex through which miRNAs normally act to prevent translation of their mRNA-targets. The focus of this review is on miRNAs and mitomiRs with influence on mitochondrial metabolism and their possible pathophysiological impact.

Keywords

Mitochondria miRNA Metabolism mitomiR 

Notes

Acknowledgments

J. Geiger and L.T. Dalgaard are supported by a grant from the Danish Independent Research Council | Health Sciences (DFF-FSS) and Roskilde University. The funders had no role in decision to publish or preparation of the manuscript.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflicts of interest.

Supplementary material

18_2016_2342_MOESM1_ESM.docx (13 kb)
Supplementary material 1 (DOCX 13 kb)

References

  1. 1.
    Bienertova-Vasku J, Sana J, Slaby O (2013) The role of microRNAs in mitochondria in cancer. Cancer Lett 336:1–7. doi: 10.1016/j.canlet.2013.05.001 PubMedCrossRefGoogle Scholar
  2. 2.
    Hockenbery DM (2010) Targeting mitochondria for cancer therapy. Environ Mol Mutagen 51:476–489. doi: 10.1002/em.20552 PubMedCrossRefGoogle Scholar
  3. 3.
    Hoeks J, Schrauwen P (2012) Muscle mitochondria and insulin resistance: a human perspective. Trends Endocrinol Metab 23:444–450. doi: 10.1016/j.tem.2012.05.007 PubMedCrossRefGoogle Scholar
  4. 4.
    James AM, Collins Y, Logan A, Murphy MP (2012) Mitochondrial oxidative stress and the metabolic syndrome. Trends Endocrinol Metab 23:429–434. doi: 10.1016/j.tem.2012.06.008 PubMedCrossRefGoogle Scholar
  5. 5.
    Schiavi A, Ventura N (2014) The interplay between mitochondria and autophagy and its role in the aging process. Exp Gerontol 56:147–153. doi: 10.1016/j.exger.2014.02.015 PubMedCrossRefGoogle Scholar
  6. 6.
    Lee RC, Feinbaum RL, Ambros V (1993) The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 75:843–854. doi: 10.1016/0092-8674(93)90529-Y PubMedCrossRefGoogle Scholar
  7. 7.
    Bandiera S, Matégot R, Girard M et al (2013) MitomiRs delineating the intracellular localization of microRNAs at mitochondria. Free Radic Biol Med 64:12–19. doi: 10.1016/j.freeradbiomed.2013.06.013 PubMedCrossRefGoogle Scholar
  8. 8.
    Barrey E, Saint-Auret G, Bonnamy B et al (2011) Pre-microRNA and mature microRNA in human mitochondria. PLoS One 6:e20220. doi: 10.1371/journal.pone.0020220 PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    Bian Z, Li L-M, Tang R et al (2010) Identification of mouse liver mitochondria-associated miRNAs and their potential biological functions. Cell Res 20:1076–1078. doi: 10.1038/cr.2010.119 PubMedCrossRefGoogle Scholar
  10. 10.
    Jagannathan R, Thapa D, Nichols CE et al (2015) Translational regulation of the mitochondrial genome following redistribution of mitochondrial MicroRNA (MitomiR) in the diabetic heart. Circ Cardiovasc Genet. doi: 10.1161/CIRCGENETICS.115.001067 PubMedPubMedCentralGoogle Scholar
  11. 11.
    Sripada L, Tomar D, Prajapati P et al (2012) Systematic analysis of small RNAs associated with human mitochondria by deep sequencing: detailed analysis of mitochondrial associated miRNA. PLoS One 7:e44873. doi: 10.1371/journal.pone.0044873 PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    Kren BT, Wong PY, Sarver A et al (2009) microRNAs identified in highly purified liver-derived mitochondria may play a role in apoptosis. RNA Biol 6(1):65–72. doi: 10.4161/rna.6.1.7534 PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    Mestdagh P, Hartmann N, Baeriswyl L et al (2014) Evaluation of quantitative miRNA expression platforms in the microRNA quality control (miRQC) study. Nat Methods 11:809–815. doi: 10.1038/nmeth.3014 PubMedCrossRefGoogle Scholar
  14. 14.
    Imig J, Brunschweiger A, Brümmer A et al (2015) miR-CLIP capture of a miRNA targetome uncovers a lincRNA H19–miR-106a interaction. Nat Chem Biol. doi: 10.1038/nchembio.1713 PubMedGoogle Scholar
  15. 15.
    Hafner M, Landthaler M, Burger L et al (2010) Transcriptome-wide identification of RNA-binding protein and MicroRNA target sites by PAR-CLIP. Cell 141:129–141. doi: 10.1016/j.cell.2010.03.009 PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Bandiera S, Rüberg S, Girard M et al (2011) Nuclear outsourcing of RNA interference components to human mitochondria. PLoS One 6:e20746. doi: 10.1371/journal.pone.0020746 PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    Svoboda P (2015) A toolbox for miRNA analysis. FEBS Lett 589:1694–1701. doi: 10.1016/j.febslet.2015.04.054 PubMedCrossRefGoogle Scholar
  18. 18.
    Zhang Y, Wang Z, Gemeinhart RA (2013) Progress in microRNA delivery. J Control Release 172:962–974. doi: 10.1016/j.jconrel.2013.09.015 PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    Qiu H, Zhong J, Luo L et al (2015) A PCR-based method to construct lentiviral vector expressing double tough Decoy for miRNA inhibition. PLoS One 10:e0143864. doi: 10.1371/journal.pone.0143864 PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Park CY, Jeker LT, Carver-Moore K et al (2012) A resource for the conditional ablation of microRNAs in the mouse. Cell Rep 1:385–391. doi: 10.1016/j.celrep.2012.02.008.A PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Nicholls DG, Ferguson SJ (2013) Bioenergetics 4. Bioenergetics. doi: 10.1016/B978-0-12-388425-1.00012-9 Google Scholar
  22. 22.
    Pearce S, Nezich CL, Spinazzola A (2013) Mitochondrial diseases: translation matters. Mol Cell Neurosci 55:1–12. doi: 10.1016/j.mcn.2012.08.013 PubMedCrossRefGoogle Scholar
  23. 23.
    Friedman JR, Nunnari J (2014) Mitochondrial form and function. Nature 505:335–343. doi: 10.1038/nature12985 PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Lee C, Zeng J, Drew BG et al (2015) The mitochondrial-derived peptide MOTS-c promotes metabolic homeostasis and reduces obesity and insulin resistance. Cell Metab 21:443–454. doi: 10.1016/j.cmet.2015.02.009 PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Maximov V, Martynenko A, Hunsmann G, Tarantul V (2002) Mitochondrial 16S rRNA gene encodes a functional peptide, a potential drug for Alzheimer’s disease and target for cancer therapy. Med Hypotheses 59:670–673. doi: 10.1016/S0306-9877(02)00223-2 PubMedCrossRefGoogle Scholar
  26. 26.
    Twig G, Graf SA, Wikstrom JD et al (2006) Tagging and tracking individual networks within a complex mitochondrial web with photoactivatable GFP. Am J Physiol Cell Physiol 291:C176–C184. doi: 10.1152/ajpcell.00348.2005 PubMedCrossRefGoogle Scholar
  27. 27.
    Ha M, Kim VN (2014) Regulation of microRNA biogenesis. Nat Rev Mol Cell Biol 15:509–524. doi: 10.1038/nrm3838 PubMedCrossRefGoogle Scholar
  28. 28.
    Libri V, Miesen P, Van Rij RP, Buck AH (2013) Regulation of microRNA biogenesis and turnover by animals and their viruses. Cell Mol Life Sci 70:3525–3544. doi: 10.1007/s00018-012-1257-1 PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Cuellar TL, McManus MT (2005) MicroRNAs and endocrine biology. J Endocrinol 187:327–332. doi: 10.1677/joe.1.06426 PubMedCrossRefGoogle Scholar
  30. 30.
    Vidaurre S, Fitzpatrick C, Burzio VA et al (2014) Down-regulation of the antisense mitochondrial non-coding RNAs (ncRNAs) is a unique vulnerability of cancer cells and a potential target for cancer therapy. J Biol Chem 289:27182–27198. doi: 10.1074/jbc.M114.558841 PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Parrish S, Fleenor J, Xu S et al (2000) Functional anatomy of a dsRNA trigger: differential requirement for the two trigger strands in RNA interference. Mol Cell 6:1077–1087. doi: 10.1016/S1097-2765(00)00106-4 PubMedCrossRefGoogle Scholar
  32. 32.
    Carrer M, Liu N, Grueter CE et al (2012) Control of mitochondrial metabolism and systemic energy homeostasis by microRNAs 378 and 378*. Proc Natl Acad Sci U S A 109:15330–15335. doi: 10.1073/pnas.1207605109 PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Wei Y, Li L, Wang D et al (2014) Importin 8 regulates the transport of mature microRNAs into the cell nucleus. J Biol Chem. doi: 10.1074/jbc.C113.541417 Google Scholar
  34. 34.
    Gajos-Michniewicz A, Duechler M, Czyz M (2014) MiRNA in melanoma-derived exosomes. Cancer Lett 347:29–37. doi: 10.1016/j.canlet.2014.02.004 PubMedCrossRefGoogle Scholar
  35. 35.
    Bushati N, Cohen SM (2007) microRNA functions. Annu Rev Cell Dev Biol 23:175–205. doi: 10.1146/annurev.cellbio.23.090506.123406 PubMedCrossRefGoogle Scholar
  36. 36.
    Mraz M, Malinova K, Mayer J, Pospisilova S (2009) MicroRNA isolation and stability in stored RNA samples. Biochem Biophys Res Commun 390:1–4. doi: 10.1016/j.bbrc.2009.09.061 PubMedCrossRefGoogle Scholar
  37. 37.
    Shinde S, Bhadra U (2015) A complex genome-MicroRNA interplay in human mitochondria. Biomed Res Int 2015:1–13. doi: 10.1155/2015/206382 CrossRefGoogle Scholar
  38. 38.
    King IN, Yartseva V, Salas D et al (2014) The RNA-binding protein TDP-43 selectively disrupts MicroRNA-1/206 incorporation into the RNA-induced silencing complex. J Biol Chem 289:14263–14271. doi: 10.1074/jbc.M114.561902 PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    Loughlin FE, Gebert LFR, Towbin H et al (2011) Structural basis of pre-let-7 miRNA recognition by the zinc knuckles of pluripotency factor Lin28. Nat Struct Mol Biol 19:84–89. doi: 10.1038/nsmb.2202 PubMedCrossRefGoogle Scholar
  40. 40.
    Towbin H, Wenter P, Guennewig B et al (2013) Systematic screens of proteins binding to synthetic microRNA precursors. Nucleic Acids Res. doi: 10.1093/nar/gks1197 PubMedGoogle Scholar
  41. 41.
    La Rocca G, Olejniczak SH, González AJ et al (2015) In vivo, Argonaute-bound microRNAs exist predominantly in a reservoir of low molecular weight complexes not associated with mRNA. Proc Natl Acad Sci U S A 112:767–772. doi: 10.1073/pnas.1424217112 PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    Belter A, Gudanis D, Rolle K et al (2014) Mature MiRNAs Form Secondary Structure, which Suggests Their Function beyond RISC. PLoS ONE 9:e113848. doi: 10.1371/journal.pone.0113848 PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Wagner GR, Payne RM (2013) Widespread and enzyme-independent N{epsilon}-acetylation and N{epsilon}-succinylation in the chemical conditions of the mitochondrial matrix. J Biol Chem 288:29036–29045. doi: 10.1074/jbc.M113.486753 PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    Taoka M, Ishikawa D, Nobe Y et al (2014) RNA cytidine acetyltransferase of small-subunit ribosomal RNA: identification of acetylation sites and the responsible acetyltransferase in fission yeast, Schizosaccharomyces pombe. PLoS One 9:e112156. doi: 10.1371/journal.pone.0112156 PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Alfonso L, Ai G, Spitale RC, Bhat GJ (2014) Molecular targets of aspirin and cancer prevention. Br J Cancer 111:61–67. doi: 10.1038/bjc.2014.271 PubMedPubMedCentralCrossRefGoogle Scholar
  46. 46.
    Pan T (2013) N6-methyl-Adenosine modification in messenger and long non- coding RNA. Trends Biochem Sci 38:204–209. doi: 10.1016/j.tibs.2012.12.006.N PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    Li K, Zhang J, Yu J et al (2015) MicroRNA-214 suppresses gluconeogenesis by targeting activating transcriptional factor 4. J Biol Chem. doi: 10.1074/jbc.M114.633990 Google Scholar
  48. 48.
    Squires JE, Patel HR, Nousch M et al (2012) Widespread occurrence of 5-methylcytosine in human coding and non-coding RNA. Nucleic Acids Res 40:5023–5033. doi: 10.1093/nar/gks144 PubMedPubMedCentralCrossRefGoogle Scholar
  49. 49.
    Alarco CR (2015) N 6 -methyladenosine marks primary microRNAs for processing. Nature. doi: 10.1038/nature14281 Google Scholar
  50. 50.
    Entelis NS, Kolesnikova OA, Kazakova H et al (2002) Import of nuclear encoded RNAs into yeast and human mitochondria: experimental approaches and possible biomedical applications. Genet Eng (N Y) 24:191–213. doi: 10.1007/978-1-4615-0721-5_9 CrossRefGoogle Scholar
  51. 51.
    Alerting E (2005) Human mitochondrial tRNA Met is exported to the cytoplasm and associates with the Argonaute 2 protein. RNA 11:849–852. doi: 10.1261/rna.2210805.To CrossRefGoogle Scholar
  52. 52.
    Wang G, Chen H, Oktay Y et al (2010) PNPASE regulates RNA import into mitochondria. Cell 142:456–467. doi: 10.1016/j.cell.2010.06.035.PNPASE PubMedPubMedCentralCrossRefGoogle Scholar
  53. 53.
    Michaud M, Maréchal-Drouard L, Duchêne AM (2014) Targeting of cytosolic mRNA to mitochondria: naked RNA can bind to the mitochondrial surface. Biochimie 100:159–166. doi: 10.1016/j.biochi.2013.11.007 PubMedCrossRefGoogle Scholar
  54. 54.
    Salinas T, Duchêne A-M, Delage L et al (2006) The voltage-dependent anion channel, a major component of the tRNA import machinery in plant mitochondria. Proc Natl Acad Sci U S A 103:18362–18367. doi: 10.1073/pnas.0606449103 PubMedPubMedCentralCrossRefGoogle Scholar
  55. 55.
    Tarassov I, Kamenski P, Kolesnikova O et al (2007) Import of nuclear DNA-encoded RNAs into mitochondria and mitochondrial translation. Cell Cycle 6:2473–2477. doi: 10.4161/cc.6.20.4783 PubMedCrossRefGoogle Scholar
  56. 56.
    Ro S, Ma H-Y, Park C et al (2013) The mitochondrial genome encodes abundant small noncoding RNAs. Cell Res 23:759–774. doi: 10.1038/cr.2013.37 PubMedPubMedCentralCrossRefGoogle Scholar
  57. 57.
    Mercer TR, Neph S, Dinger ME et al (2011) The human mitochondrial transcriptome. Cell 146:645–658. doi: 10.1016/j.cell.2011.06.051.The PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    Wang W, Visavadiya NP, Pandya JD et al (2014) Mitochondria-associated microRNAs in rat hippocampus following traumatic brain injury. Exp Neurol. doi: 10.1016/j.expneurol.2014.12.018 Google Scholar
  59. 59.
    Aschrafi A, Schwechter AD, Mameza MG et al (2008) MicroRNA-338 regulates local cytochrome c oxidase IV mRNA levels and oxidative phosphorylation in the axons of sympathetic neurons. J Neurosci 28:12581–12590. doi: 10.1523/JNEUROSCI.3338-08.2008 PubMedPubMedCentralCrossRefGoogle Scholar
  60. 60.
    Aschrafi A, Kar AN, Natera-Naranjo O et al (2012) MicroRNA-338 regulates the axonal expression of multiple nuclear-encoded mitochondrial mRNAs encoding subunits of the oxidative phosphorylation machinery. Cell Mol Life Sci 69:4017–4027. doi: 10.1007/s00018-012-1064-8 PubMedCrossRefGoogle Scholar
  61. 61.
    Jacovetti C, Abderrahmani A, Parnaud G et al (2012) MicroRNAs contribute to compensatory β cell expansion during pregnancy and obesity. J Clin Invest 122:3541–3551. doi: 10.1172/JCI64151 PubMedPubMedCentralCrossRefGoogle Scholar
  62. 62.
    Zheng S, Li Y, Zhang Y et al (2011) MiR-101 regulates HSV-1 replication by targeting ATP5B. Antiviral Res 89:219–226. doi: 10.1016/j.antiviral.2011.01.008 PubMedCrossRefGoogle Scholar
  63. 63.
    Willers IM, Martínez-Reyes I, Martínez-Diez M, Cuezva JM (2012) miR-127-5p targets the 3′UTR of human β-F1-ATPase mRNA and inhibits its translation. Biochim Biophys Acta 1817:838–848. doi: 10.1016/j.bbabio.2012.03.005 PubMedCrossRefGoogle Scholar
  64. 64.
    Das S, Ferlito M, Kent OA et al (2012) Nuclear miRNA regulates the mitochondrial genome in the heart. Circ Res 110:1596–1603. doi: 10.1161/CIRCRESAHA.112.267732 PubMedPubMedCentralCrossRefGoogle Scholar
  65. 65.
    Pandey A, Pain J, Ghosh AK et al (2015) Fe-S cluster biogenesis in isolated mammalian mitochondria: coordinated use of persulfide sulfur and iron and requirements for GTP, NADH, and ATP. J Biol Chem 290:640–657. doi: 10.1074/jbc.M114.610402 PubMedCrossRefGoogle Scholar
  66. 66.
    Tong WH, Rouault T (2000) Distinct iron-sulfur cluster assembly complexes exist in the cytosol and mitochondria of human cells. EMBO J 19:5692–5700. doi: 10.1093/emboj/19.21.5692 PubMedPubMedCentralCrossRefGoogle Scholar
  67. 67.
    Gee HE, Ivan C, Calin GA, Ivan M (2013) HypoxamiRs and cancer: from biology to targeted therapy. Antioxid Redox Signal. doi: 10.1089/ars.2013.5639 PubMedGoogle Scholar
  68. 68.
    Merlo A, de Quiros SB, Secades P et al (2012) Identification of a signaling axis HIF-1α/microRNA-210/ISCU independent of SDH mutation that defines a subgroup of head and neck paragangliomas. J Clin Endocrinol Metab 97:E2194–E2200. doi: 10.1210/jc.2012-2410 PubMedCrossRefGoogle Scholar
  69. 69.
    Yoshioka Y, Kosaka N, Ochiya T, Kato T (2012) Micromanaging iron homeostasis: hypoxia-inducible micro-RNA-210 suppresses iron homeostasis-related proteins. J Biol Chem 287:34110–34119. doi: 10.1074/jbc.M112.356717 PubMedPubMedCentralCrossRefGoogle Scholar
  70. 70.
    Qiao A, Khechaduri A, Kannan Mutharasan R et al (2013) MicroRNA-210 decreases heme levels by targeting ferrochelatase in cardiomyocytes. J Am Heart Assoc 2:e000121. doi: 10.1161/JAHA.113.000121 PubMedPubMedCentralCrossRefGoogle Scholar
  71. 71.
    Cottrill KA, Chan SY, Loscalzo J (2014) Hypoxamirs and mitochondrial metabolism. Antioxid Redox Signal 21:1189–1201. doi: 10.1089/ars.2013.5641 PubMedPubMedCentralCrossRefGoogle Scholar
  72. 72.
    Kim JH, Park SG, Song S-Y et al (2013) Reactive oxygen species-responsive miR-210 regulates proliferation and migration of adipose-derived stem cells via PTPN2. Cell Death Dis 4:e588. doi: 10.1038/cddis.2013.117 PubMedPubMedCentralCrossRefGoogle Scholar
  73. 73.
    Semenza GL (2011) Hypoxia-inducible factor 1: regulator of mitochondrial metabolism and mediator of ischemic preconditioning. Biochim Biophys Acta 1813:1263–1268. doi: 10.1016/j.bbamcr.2010.08.006 PubMedCrossRefGoogle Scholar
  74. 74.
    Zacharewicz E, Lamon S, Russell AP (2013) MicroRNAs in skeletal muscle and their regulation with exercise, ageing, and disease. Front Physiol 4:266. doi: 10.3389/fphys.2013.00266 PubMedPubMedCentralCrossRefGoogle Scholar
  75. 75.
    Cottrill KA, Chan SY, Loscalzo J (2014) Hypoxamirs and mitochondrial metabolism. Antioxid Redox Signal 21:1189–1201. doi: 10.1089/ars.2013.5641 PubMedPubMedCentralCrossRefGoogle Scholar
  76. 76.
    McCormick R, Buffa FM, Ragoussis J, Harris AL (2010) The role of hypoxia regulated microRNAs in cancer. Curr Top Microbiol Immunol 345:47–69PubMedGoogle Scholar
  77. 77.
    Ivan M, Huang X (2014) miR-210: fine-tuning the hypoxic response. Adv Exp Med Biol 772:205–227. doi: 10.1007/978-1-4614-5915-6_10 PubMedPubMedCentralCrossRefGoogle Scholar
  78. 78.
    Chan SY, Loscalzo J (2010) MicroRNA-210: a unique and pleiotropic hypoxamir. Cell Cycle 9:1072–1083. doi: 10.4161/cc.9.6.11006 PubMedPubMedCentralCrossRefGoogle Scholar
  79. 79.
    Hale A, Lee C, Annis S et al (2014) An Argonaute 2 switch regulates circulating miR-210 to coordinate hypoxic adaptation across cells. Biochim Biophys Acta. doi: 10.1016/j.bbamcr.2014.06.012 PubMedPubMedCentralGoogle Scholar
  80. 80.
    Chen B, Liu Y, Jin X et al (2014) MicroRNA-26a regulates glucose metabolism by direct targeting PDHX in colorectal cancer cells. BMC Cancer 14:443. doi: 10.1186/1471-2407-14-443 PubMedPubMedCentralCrossRefGoogle Scholar
  81. 81.
    Tibiche C, Wang E (2008) MicroRNA regulatory patterns on the human metabolic network. Open Syst Biol J 1:1–8. doi: 10.2174/1876392800801010001 CrossRefGoogle Scholar
  82. 82.
    Chan SY, Zhang Y-Y, Hemann C et al (2009) MicroRNA-210 controls mitochondrial metabolism during hypoxia by repressing the iron-sulfur cluster assembly proteins ISCU1/2. Cell Metab 10:273–284. doi: 10.1016/j.cmet.2009.08.015 PubMedPubMedCentralCrossRefGoogle Scholar
  83. 83.
    Wang X, Wang X (2006) Systematic identification of microRNA functions by combining target prediction and expression profiling. Nucleic Acids Res 34:1646–1652. doi: 10.1093/nar/gkl068 PubMedPubMedCentralCrossRefGoogle Scholar
  84. 84.
    Puisségur M-P, Mazure NM, Bertero T et al (2011) miR-210 is overexpressed in late stages of lung cancer and mediates mitochondrial alterations associated with modulation of HIF-1 activity. Cell Death Differ 18:465–478. doi: 10.1038/cdd.2010.119 PubMedCrossRefGoogle Scholar
  85. 85.
    Gao P, Tchernyshyov I, Chang T-C et al (2009) c-Myc suppression of miR-23a/b enhances mitochondrial glutaminase expression and glutamine metabolism. Nature 458:762–765. doi: 10.1038/nature07823 PubMedPubMedCentralCrossRefGoogle Scholar
  86. 86.
    Rathore MG, Saumet A, Rossi J-F et al (2012) The NF-κB member p65 controls glutamine metabolism through miR-23a. Int J Biochem Cell Biol 44:1448–1456. doi: 10.1016/j.biocel.2012.05.011 PubMedCrossRefGoogle Scholar
  87. 87.
    Leivonen S-K, Rokka A, Ostling P et al (2011) Identification of miR-193b targets in breast cancer cells and systems biological analysis of their functional impact. Mol Cell Proteomics 10:M110.005322. doi: 10.1074/mcp.M110.005322 PubMedPubMedCentralCrossRefGoogle Scholar
  88. 88.
    Mersey BD, Jin P, Danner DJ (2005) Human microRNA (miR29b) expression controls the amount of branched chain α-ketoacid dehydrogenase complex in a cell. Hum Mol Genet 14:3371–3377. doi: 10.1093/hmg/ddi368 PubMedCrossRefGoogle Scholar
  89. 89.
    Benatti RO, Melo AM, Borges FO et al (2014) Maternal high-fat diet consumption modulates hepatic lipid metabolism and microRNA-122 (miR-122) and microRNA-370 (miR-370) expression in offspring. Br J Nutr 122:1–11. doi: 10.1017/S0007114514000579 Google Scholar
  90. 90.
    Wende AR, Symons JD, Abel ED (2012) Mechanisms of lipotoxicity in the cardiovascular system. Curr Hypertens Rep 14:517–531. doi: 10.1007/s11906-012-0307-2 PubMedPubMedCentralCrossRefGoogle Scholar
  91. 91.
    Daimiel-Ruiz L, Klett M, Konstantinisou V et al (2014) Dietary lipids modulate the expression of miR-107, a miRNA that regulates the circadian system. Mol Nutr Food Res. doi: 10.1002/mnfr.201400616 Google Scholar
  92. 92.
    Sripada L, Tomar D, Singh R (2012) Mitochondria: one of the destinations of miRNAs. Mitochondrion 12:593–599. doi: 10.1016/j.mito.2012.10.009 PubMedCrossRefGoogle Scholar
  93. 93.
    Trajkovski M, Hausser J, Soutschek J et al (2011) MicroRNAs 103 and 107 regulate insulin sensitivity. Nature 474:649–653. doi: 10.1038/nature10112 PubMedCrossRefGoogle Scholar
  94. 94.
    Huang T-C, Sahasrabuddhe NA, Kim M-S et al (2012) Regulation of lipid metabolism by Dicer revealed through SILAC mice. J Proteome Res 11:2193–2205. doi: 10.1021/pr2009884 PubMedPubMedCentralCrossRefGoogle Scholar
  95. 95.
    Rottiers V, Najafi-Shoushtari SH, Kristo F et al (2011) MicroRNAs in metabolism and metabolic diseases. Cold Spring Harb Symp Quant Biol 76:225–233. doi: 10.1101/sqb.2011.76.011049 PubMedCrossRefGoogle Scholar
  96. 96.
    Iliopoulos D, Drosatos K, Hiyama Y et al (2010) MicroRNA-370 controls the expression of microRNA-122 and Cpt1alpha and affects lipid metabolism. J Lipid Res 51:1513–1523. doi: 10.1194/jlr.M004812 PubMedPubMedCentralCrossRefGoogle Scholar
  97. 97.
    Gerin I, Clerbaux L-A, Haumont O et al (2010) Expression of miR-33 from an SREBP2 intron inhibits cholesterol export and fatty acid oxidation. J Biol Chem 285:33652–33661. doi: 10.1074/jbc.M110.152090 PubMedPubMedCentralCrossRefGoogle Scholar
  98. 98.
    Bommer GT, MacDougald OA (2011) Regulation of lipid homeostasis by the bifunctional SREBF2-miR33a locus. Cell Metab 13:241–247. doi: 10.1016/j.cmet.2011.02.004 PubMedPubMedCentralCrossRefGoogle Scholar
  99. 99.
    Moore KJ, Rayner KJ, Suárez Y, Fernández-Hernando C (2011) The role of microRNAs in cholesterol efflux and hepatic lipid metabolism. Annu Rev Nutr 31:49–63. doi: 10.1146/annurev-nutr-081810-160756 PubMedPubMedCentralCrossRefGoogle Scholar
  100. 100.
    Fernández-Hernando C, Moore KJ (2011) MicroRNA modulation of cholesterol homeostasis. Arterioscler Thromb Vasc Biol 31:2378–2382. doi: 10.1161/ATVBAHA.111.226688 PubMedPubMedCentralCrossRefGoogle Scholar
  101. 101.
    Xu X, So J-S, Park J-G, Lee A-H (2013) Transcriptional control of hepatic lipid metabolism by SREBP and ChREBP. Semin Liver Dis 33:301–311. doi: 10.1055/s-0033-1358523.Transcriptional PubMedPubMedCentralCrossRefGoogle Scholar
  102. 102.
    Fernández-hernando C, Suárez Y, Rayner KJ, Moore KJ (2011) MicroRNAs in lipid metabolism. Curr Opin Lipidol 22:86–92. doi: 10.1097/MOL.0b013e3283428d9d.MicroRNAs PubMedPubMedCentralCrossRefGoogle Scholar
  103. 103.
    Goedeke L, Vales-Lara FM, Fenstermaker M et al (2013) A regulatory role for microRNA 33* in controlling lipid metabolism gene expression. Mol Cell Biol 33:2339–2352. doi: 10.1128/MCB.01714-12 PubMedPubMedCentralCrossRefGoogle Scholar
  104. 104.
    Esau C, Davis S, Murray SF et al (2006) miR-122 regulation of lipid metabolism revealed by in vivo antisense targeting. Cell Metab 3:87–98. doi: 10.1016/j.cmet.2006.01.005 PubMedCrossRefGoogle Scholar
  105. 105.
    Lynn FC (2009) Meta-regulation: microRNA regulation of glucose and lipid metabolism. Trends Endocrinol Metab 20:452–459. doi: 10.1016/j.tem.2009.05.007 PubMedCrossRefGoogle Scholar
  106. 106.
    Singh PK, Brand RE, Mehla K (2012) MicroRNAs in pancreatic cancer metabolism. Nat Rev Gastroenterol Hepatol 9:334–344. doi: 10.1038/nrgastro.2012.63 PubMedPubMedCentralCrossRefGoogle Scholar
  107. 107.
    Shea CM, Tzertzinis G (2010) Controlled expression of functional miR-122 with a ligand inducible expression system. BMC Biotechnol 10:76. doi: 10.1186/1472-6750-10-76 PubMedPubMedCentralCrossRefGoogle Scholar
  108. 108.
    Kurtz CL, Peck BCE, Finnin EE et al (2014) microRNA-29 fine-tunes the expression of key FOXA2-activated lipid metabolism genes and is dysregulated in animal models of insulin resistance and diabetes. Diabetes. doi: 10.2337/db13-1015 PubMedPubMedCentralGoogle Scholar
  109. 109.
    el Azzouzi H, Leptidis S, Dirkx E et al (2013) The hypoxia-inducible microRNA cluster miR-199a ~214 targets myocardial PPARδ and impairs mitochondrial fatty acid oxidation. Cell Metab 18:341–354. doi: 10.1016/j.cmet.2013.08.009 PubMedCrossRefGoogle Scholar
  110. 110.
    Li B, Zhang Z, Zhang H et al (2014) Abberant miR-199a-5p/caveolin1/PPAR a axis in hepatic steatosis. J Mol Endocrinol 53:393–403. doi: 10.1530/JME-14-0127 PubMedCrossRefGoogle Scholar
  111. 111.
    Foley NH, O’Neill LA (2012) miR-107: a Toll-like receptor-regulated miRNA dysregulated in obesity and type II diabetes. J Leukoc Biol 92:521–527. doi: 10.1189/jlb.0312160 PubMedCrossRefGoogle Scholar
  112. 112.
    Wilfred BR, Wang W-X, Nelson PT (2007) Energizing miRNA research: a review of the role of miRNAs in lipid metabolism, with a prediction that miR-103/107 regulates human metabolic pathways. Mol Genet Metab 91:209–217. doi: 10.1016/j.ymgme.2007.03.011 PubMedPubMedCentralCrossRefGoogle Scholar
  113. 113.
    Peng Y, Xiang H, Chen C et al (2013) MiR-224 impairs adipocyte early differentiation and regulates fatty acid metabolism. Int J Biochem Cell Biol 45:1585–1593. doi: 10.1016/j.biocel.2013.04.029 PubMedCrossRefGoogle Scholar
  114. 114.
    Thorrez L, Laudadio I, Van Deun K et al (2011) Tissue-specific disallowance of housekeeping genes: the other face of cell differentiation. Genome Res 21:95–105. doi: 10.1101/gr.109173.110 PubMedPubMedCentralCrossRefGoogle Scholar
  115. 115.
    Dávalos A, Goedeke L, Smibert P et al (2011) miR-33a/b contribute to the regulation of fatty acid metabolism and insulin signaling. Proc Natl Acad Sci U S A 108:9232–9237. doi: 10.1073/pnas.1102281108 PubMedPubMedCentralCrossRefGoogle Scholar
  116. 116.
    Desler C, Lykke A, Rasmussen LJ (2010) The effect of mitochondrial dysfunction on cytosolic nucleotide metabolism. J Nucleic Acids. doi: 10.4061/2010/701518 PubMedPubMedCentralGoogle Scholar
  117. 117.
    Wu C, Gong Y, Sun A et al (2013) The human MTHFR rs4846049 polymorphism increases coronary heart disease risk through modifying miRNA binding. Nutr Metab Cardiovasc Dis 23:693–698. doi: 10.1016/j.numecd.2012.02.009 PubMedCrossRefGoogle Scholar
  118. 118.
    Stone N, Pangilinan F, Molloy AM et al (2011) Bioinformatic and genetic association analysis of microRNA target sites in one-carbon metabolism genes. PLoS One 6:e21851. doi: 10.1371/journal.pone.0021851 PubMedPubMedCentralCrossRefGoogle Scholar
  119. 119.
    Rawls J, Knecht W, Diekert K et al (2000) Requirements for the mitochondrial import and localization of dihydroorotate dehydrogenase. Eur J Biochem 267:2079–2087. doi: 10.1046/j.1432-1327.2000.01213.x PubMedCrossRefGoogle Scholar
  120. 120.
    Zhai H, Song B, Xu X et al (2013) Inhibition of autophagy and tumor growth in colon cancer by miR-502. Oncogene 32:1570–1579. doi: 10.1038/onc.2012.167 PubMedCrossRefGoogle Scholar
  121. 121.
    Soni MS, Rabaglia ME, Bhatnagar S et al (2014) Downregulation of Carnitine acyl-carnitine translocase by miRNAs 132 and 212 amplifies glucose-stimulated insulin secretion. Diabetes 1372:1–17. doi: 10.2337/db13-1677 Google Scholar
  122. 122.
    Liu Z, Jeppesen PB, Gregersen S et al (2008) Dose- and glucose-dependent effects of amino acids on insulin secretion from isolated mouse islets and clonal INS-1E beta-cells. Rev Diabet Stud 5:232–244. doi: 10.1900/RDS.2008.5.232 PubMedCrossRefGoogle Scholar
  123. 123.
    Morita S, Horii T, Kimura M, Hatada I (2013) MiR-184 regulates insulin secretion through repression of Slc25a22. PeerJ 1:e162. doi: 10.7717/peerj.162 PubMedPubMedCentralCrossRefGoogle Scholar
  124. 124.
    Vienberg S, Geiger J, Madsen S, Dalgaard LT (2016) MicroRNAs in metabolism. Acta Physiol (Oxf). doi: 10.1111/apha.12681 Google Scholar
  125. 125.
    Youle RJ, van der Bliek AM (2012) Mitochondrial fission, fusion and stress. Science 337:1062–1065. doi: 10.1007/s13398-014-0173-7.2 PubMedPubMedCentralCrossRefGoogle Scholar
  126. 126.
    Chan DC (2012) Fusion and fission: interlinked processes critical for mitochondrial health. Annu Rev Genet 46:265–287. doi: 10.1146/annurev-genet-110410-132529 PubMedCrossRefGoogle Scholar
  127. 127.
    Li J, Donath S, Li Y et al (2010) miR-30 regulates mitochondrial fission through targeting p53 and the dynamin-related protein-1 pathway. PLoS Genet 6:e1000795. doi: 10.1371/journal.pgen.1000795 PubMedPubMedCentralCrossRefGoogle Scholar
  128. 128.
    Wang J-X, Jiao J-Q, Li Q et al (2011) miR-499 regulates mitochondrial dynamics by targeting calcineurin and dynamin-related protein-1. Nat Med 17:71–78. doi: 10.1038/nm.2282 PubMedCrossRefGoogle Scholar
  129. 129.
    Long B, Wang K, Li N et al (2013) miR-761 regulates the mitochondrial network by targeting mitochondrial fission factor. Free Radic Biol Med 65:371–379. doi: 10.1016/j.freeradbiomed.2013.07.009 PubMedPubMedCentralCrossRefGoogle Scholar
  130. 130.
    Tak H, Kim J, Jayabalan AK et al (2014) miR-27 regulates mitochondrial networks by directly targeting the mitochondrial fission factor. Exp Mol Med 46:e123. doi: 10.1038/emm.2014.73 PubMedPubMedCentralCrossRefGoogle Scholar
  131. 131.
    Wang K, Long B, Jiao J-Q et al (2012) miR-484 regulates mitochondrial network through targeting Fis1. Nat Commun 3:781. doi: 10.1038/ncomms1770 PubMedCrossRefGoogle Scholar
  132. 132.
    Sun L, Wang N, Ban T et al (2014) MicroRNA-23a mediates mitochondrial compromise in estrogen deficiency-induced concentric remodeling via targeting PGC-1α. J Mol Cell Cardiol 75:1–11. doi: 10.1016/j.yjmcc.2014.06.012 PubMedCrossRefGoogle Scholar
  133. 133.
    Aoi W, Naito Y, Mizushima K et al (2010) The microRNA miR-696 regulates PGC-1α in mouse skeletal muscle in response to physical activity. Am J Physiol Endocrinol Metab 298:799–806. doi: 10.1152/ajpendo.00448.2009 CrossRefGoogle Scholar
  134. 134.
    Zhang X, Zuo X, Yang B et al (2014) microrna directly enhances mitochondrial translation during muscle differentiation. Cell 158:607–619. doi: 10.1016/j.cell.2014.05.047 PubMedPubMedCentralCrossRefGoogle Scholar
  135. 135.
    Yamamoto H, Morino K, Nishio Y et al (2012) MicroRNA-494 regulates mitochondrial biogenesis in skeletal muscle through mitochondrial transcription factor A and Forkhead box j3. Am J Physiol Endocrinol Metab 303:E1419–E1427. doi: 10.1152/ajpendo.00097.2012 PubMedCrossRefGoogle Scholar
  136. 136.
    Li J, Li Y, Jiao J et al (2014) Mitofusin 1 is negatively regulated by microRNA 140 in cardiomyocyte apoptosis. Mol Cell Biol 34:1788–1799. doi: 10.1128/MCB.00774-13 PubMedPubMedCentralCrossRefGoogle Scholar
  137. 137.
    Zhang Y, Yang L, Gao Y-F et al (2013) MicroRNA-106b induces mitochondrial dysfunction and insulin resistance in C2C12 myotubes by targeting mitofusin-2. Mol Cell Endocrinol 381:230–240. doi: 10.1016/j.mce.2013.08.004 PubMedCrossRefGoogle Scholar
  138. 138.
    Yan X, Liang H, Deng T et al (2013) The identification of novel targets of miR-16 and characterization of their biological functions in cancer cells. Mol Cancer 12:92. doi: 10.1186/1476-4598-12-92 PubMedPubMedCentralCrossRefGoogle Scholar
  139. 139.
    Chen B, Li H, Zeng X et al (2012) Roles of microRNA on cancer cell metabolism. J Transl Med 10:228. doi: 10.1186/1479-5876-10-228 PubMedPubMedCentralCrossRefGoogle Scholar
  140. 140.
    Tomasetti M, Santarelli L, Neuzil J, Dong L (2014) MicroRNA regulation of cancer metabolism: role in tumour suppression. Mitochondrion 19:29–38. doi: 10.1016/j.mito.2014.06.004 PubMedCrossRefGoogle Scholar
  141. 141.
    Weinberg SE, Chandel NS (2015) Targeting mitochondria metabolism for cancer therapy. Nat Chem Biol 11:9–15. doi: 10.1038/nchembio.1712 PubMedPubMedCentralCrossRefGoogle Scholar
  142. 142.
    Tomasetti M, Neuzil J, Dong L (2013) MicroRNAs as regulators of mitochondrial function: role in cancer suppression. Biochim Biophys Acta 1840:1441–1453. doi: 10.1016/j.bbagen.2013.09.002 PubMedCrossRefGoogle Scholar
  143. 143.
    Tattikota SG, Sury MD, Rathjen T et al (2013) Argonaute2 regulates the pancreatic β-cell secretome. Mol Cell Proteomics 12:1214–1225. doi: 10.1074/mcp.M112.024786 PubMedPubMedCentralCrossRefGoogle Scholar
  144. 144.
    Baseler WA, Thapa D, Jagannathan R et al (2012) miR-141 as a regulator of the mitochondrial phosphate carrier (Slc25a3) in the type 1 diabetic heart. Am J Physiol Cell Physiol 303:C1244–C1251. doi: 10.1152/ajpcell.00137.2012 PubMedPubMedCentralCrossRefGoogle Scholar
  145. 145.
    Kim S, Rhee J, Yoo HJ et al (2015) Bioinformatic and metabolomic analysis reveals miR-155 regulates thiamine level in breast cancer. Cancer Lett 357:488–497. doi: 10.1016/j.canlet.2014.11.058 PubMedCrossRefGoogle Scholar
  146. 146.
    Nishi H, Ono K, Iwanaga Y et al (2010) MicroRNA-15b modulates cellular ATP levels and degenerates mitochondria via Arl2 in neonatal rat cardiac myocytes. J Biol Chem 285:4920–4930. doi: 10.1074/jbc.M109.082610 PubMedCrossRefGoogle Scholar
  147. 147.
    Sun LL, Jiang BG, Li WT et al (2011) MicroRNA-15a positively regulates insulin synthesis by inhibiting uncoupling protein-2 expression. Diabetes Res Clin Pract 91:94–100. doi: 10.1016/j.diabres.2010.11.006 PubMedCrossRefGoogle Scholar
  148. 148.
    Chen C, Wang K, Chen J et al (2009) In vitro evidence suggests that miR-133a-mediated regulation of uncoupling protein 2 (UCP2) is an indispensable step in myogenic differentiation. J Biol Chem 284:5362–5369. doi: 10.1074/jbc.M807523200 PubMedCrossRefGoogle Scholar
  149. 149.
    Marchi S, Lupini L, Patergnani S et al (2013) Downregulation of the mitochondrial calcium uniporter by cancer-related miR-25. Curr Biol 23:58–63. doi: 10.1016/j.cub.2012.11.026 PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer International Publishing 2016

Authors and Affiliations

  1. 1.Department of Science and EnvironmentRoskilde UniversityRoskildeDenmark

Personalised recommendations