Cellular and Molecular Life Sciences

, Volume 74, Issue 1, pp 153–172 | Cite as

CDK5 downregulation enhances synaptic plasticity

  • Rafael Andrés Posada-Duque
  • Omar Ramirez
  • Steffen Härtel
  • Nibaldo C. Inestrosa
  • Felipe Bodaleo
  • Christian González-Billault
  • Alfredo Kirkwood
  • Gloria Patricia Cardona-GómezEmail author
Original Article


CDK5 is a serine/threonine kinase that is involved in the normal function of the adult brain and plays a role in neurotransmission and synaptic plasticity. However, its over-regulation has been associated with Tau hyperphosphorylation and cognitive deficits. Our previous studies have demonstrated that CDK5 targeting using shRNA-miR provides neuroprotection and prevents cognitive deficits. Dendritic spine morphogenesis and forms of long-term synaptic plasticity—such as long-term potentiation (LTP)—have been proposed as essential processes of neuroplasticity. However, whether CDK5 participates in these processes remains controversial and depends on the experimental model. Using wild-type mice that received injections of CDK5 shRNA-miR in CA1 showed an increased LTP and recovered the PPF in deficient LTP of APPswe/PS1Δ9 transgenic mice. On mature hippocampal neurons CDK5, shRNA-miR for 12 days induced increased dendritic protrusion morphogenesis, which was dependent on Rac activity. In addition, silencing of CDK5 increased BDNF expression, temporarily increased phosphorylation of CaMKII, ERK, and CREB; and facilitated calcium signaling in neurites. Together, our data suggest that CDK5 downregulation induces synaptic plasticity in mature neurons involving Ca2+ signaling and BDNF/CREB activation.


CDK5 RNAi Dendritic protrusion morphogenesis BDNF/CREB Calcium Synaptic plasticity LTP 



Cyclin-dependent kinase 5




Alzheimer’s disease


Day in vitro


Microtubule-associated protein-2


Rho kinase


Sodium dodecyl sulfate-polyacrylamide gel electrophoresis




GTP enzyme-linked immunosorbent assay


Infectious units of virus


Postsynaptic density-95


NMDA receptor


Triple transgenic Alzheimer’s disease mice


Adeno-associated virus


Short hairpin RNA in a microRNA backbone


p21-activated kinase





The authors thank American Journal Experts for editing the English language in this manuscript. This research was supported by a grant from the Colciencias, projects # 111545921503 and #111554531400 (GPC-G), Mobility’s Project Colombia-Chile 576-2011, and the PROLAB Collaboration in Latin America/IBRO (CG-B and GPC-G). In addition, the Fogarty International Center and the NIA of NIH under Award Number RO1-AG029802-01 supported this research (GPC-G). R.A.P.-D. was sponsored by ENLAZA mundos fellowship. F.B. and C.G.-B. were supported by FONDAP Grant 15150012, and OR and SH were supported by FONDECYT 1151029, CONICYT PIA ACT1402, DAAD and ICM P09-015-F (Chile). The authors would like to thank the Advanced Microscopy Unit and Viral Vector and Gene Therapy Cores of the Group of Neuroscience of the University of Antioquia. The content of this manuscript is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.


  1. 1.
    Dhavan R, Tsai L-H (2001) A decade of CDK5. Nat Rev Mol Cell Biol 2(10):749–759PubMedCrossRefGoogle Scholar
  2. 2.
    Lai KO, Ip NY (2009) Recent advances in understanding the roles of Cdk5 in synaptic plasticity. Biochim Biophys Acta 1792(8):741–745. doi: 10.1016/j.bbadis.2009.05.001 PubMedCrossRefGoogle Scholar
  3. 3.
    Grant P, Sharma P, Pant HC (2001) Cyclin-dependent protein kinase 5 (Cdk5) and the regulation of neurofilament metabolism. Eur J Biochem 268(6):1534–1546. doi: 10.1046/j.1432-1327.2001.02025.x PubMedCrossRefGoogle Scholar
  4. 4.
    Zukerberg LR, Patrick GN, Nikolic M, Humbert S, Wu C-L, Lanier LM, Gertler FB, Vidal M, Van Etten RA, Tsai L-H (2000) Cables links Cdk5 and c-Abl and facilitates Cdk5 tyrosine phosphorylation, kinase upregulation, and neurite outgrowth. Neuron 26(3):633–646. doi: 10.1016/s0896-6273(00)81200-3 PubMedCrossRefGoogle Scholar
  5. 5.
    Cheung ZH, Fu AK, Ip NY (2006) Synaptic roles of Cdk5: implications in higher cognitive functions and neurodegenerative diseases. Neuron 50(1):13–18. doi: 10.1016/j.neuron.2006.02.024 PubMedCrossRefGoogle Scholar
  6. 6.
    Cheung ZH, Chin WH, Chen Y, Ng YP, Ip NY (2007) Cdk5 is involved in BDNF-stimulated dendritic growth in hippocampal neurons. PLoS Biol 5(4):e63. doi: 10.1371/journal.pbio.0050063 PubMedPubMedCentralCrossRefGoogle Scholar
  7. 7.
    Cheung ZH, Ip NY (2007) The roles of cyclin-dependent kinase 5 in dendrite and synapse development. Biotechnol J 2(8):949–957. doi: 10.1002/biot.200700056 PubMedCrossRefGoogle Scholar
  8. 8.
    Patrick GN, Zukerberg L, Nikolic M, de la Monte S, Dikkes P, Tsai LH (1999) Conversion of p35 to p25 deregulates Cdk5 activity and promotes neurodegeneration. Nature 402(6762):615–622. doi: 10.1038/45159 PubMedCrossRefGoogle Scholar
  9. 9.
    Bhatt DH, Zhang S, Gan WB (2009) Dendritic spine dynamics. Annu Rev Physiol 71:261–282. doi: 10.1146/annurev.physiol.010908.163140 PubMedCrossRefGoogle Scholar
  10. 10.
    Bourne JN, Harris KM (2008) Balancing structure and function at hippocampal dendritic spines. Annu Rev Neurosci 31(1):47–67. doi: 10.1146/annurev.neuro.31.060407.125646 PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    Collins MO, Yu L, Coba MP, Husi H, Campuzano I, Blackstock WP, Choudhary JS, Grant SG (2005) Proteomic analysis of in vivo phosphorylated synaptic proteins. J Biol Chem 280(7):5972–5982. doi: 10.1074/jbc.M411220200 PubMedCrossRefGoogle Scholar
  12. 12.
    Posada-Duque RA, López-Tobón A, Piedrahita D, González-Billault C, Cardona-Gomez GP (2015) p35 and Rac1 underlie the neuroprotection and cognitive improvement induced by CDK5 silencing. J Neurochem 134(2):354–370. doi: 10.1111/jnc.13127 PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    Sananbenesi F, Fischer A, Wang X, Schrick C, Neve R, Radulovic J, Tsai LH (2007) A hippocampal Cdk5 pathway regulates extinction of contextual fear. Nat Neurosci 10(8):1012–1019. doi: 10.1038/nn1943 PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    Xin X, Ferraro F, Back N, Eipper BA, Mains RE (2004) Cdk5 and Trio modulate endocrine cell exocytosis. J Cell Sci 117(Pt 20):4739–4748. doi: 10.1242/jcs.01333 PubMedCrossRefGoogle Scholar
  15. 15.
    Tolias KF, Duman JG, Um K (2011) Control of synapse development and plasticity by Rho GTPase regulatory proteins. Prog Neurobiol 94(2):133–148. doi: 10.1016/j.pneurobio.2011.04.011 PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Li Z, Van Aelst L, Cline HT (2000) Rho GTPases regulate distinct aspects of dendritic arbor growth in Xenopus central neurons in vivo. Nat Neurosci 3(3):217–225. doi: 10.1038/72920 PubMedCrossRefGoogle Scholar
  17. 17.
    Li Z, Aizenman CD, Cline HT (2002) Regulation of rho GTPases by crosstalk and neuronal activity in vivo. Neuron 33(5):741–750PubMedCrossRefGoogle Scholar
  18. 18.
    Govek EE, Newey SE, Van Aelst L (2005) The role of the Rho GTPases in neuronal development. Genes Dev 19(1):1–49. doi: 10.1101/gad.1256405 PubMedCrossRefGoogle Scholar
  19. 19.
    Tada T, Sheng M (2006) Molecular mechanisms of dendritic spine morphogenesis. Curr Opin Neurobiol 16(1):95–101. doi: 10.1016/j.conb.2005.12.001 PubMedCrossRefGoogle Scholar
  20. 20.
    Lee T, Winter C, Marticke SS, Lee A, Luo L (2000) Essential roles of Drosophila RhoA in the regulation of neuroblast proliferation and dendritic but not axonal morphogenesis. Neuron 25(2):307–316PubMedCrossRefGoogle Scholar
  21. 21.
    Ruchhoeft ML, S-i Ohnuma, McNeill L, Holt CE, Harris WA (1999) The neuronal architecture of xenopus retinal ganglion cells is sculpted by rho-family GTPases in vivo. J Neurosci 19(19):8454–8463PubMedGoogle Scholar
  22. 22.
    Murakoshi H, Wang H, Yasuda R (2011) Local, persistent activation of Rho GTPases during plasticity of single dendritic spines. Nature 472(7341):100–104. doi: 10.1038/nature09823 PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Hawasli AH, Benavides DR, Nguyen C, Kansy JW, Hayashi K, Chambon P, Greengard P, Powell CM, Cooper DC, Bibb JA (2007) Cyclin-dependent kinase 5 governs learning and synaptic plasticity via control of NMDAR degradation. Nat Neurosci 10(7):880–886. doi: 10.1038/nn1914 PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Plattner F, Hernández A, Kistler TM, Pozo K, Zhong P, Yuen EY, Tan C, Hawasli AH, Cooke SF, Nishi A, Guo A, Wiederhold T, Yan Z, Bibb JA (2014) Memory enhancement by targeting Cdk5 regulation of NR2B. Neuron 81(5):1070–1083. doi: 10.1016/j.neuron.2014.01.022 PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Li BS, Sun MK, Zhang L, Takahashi S, Ma W, Vinade L, Kulkarni AB, Brady RO, Pant HC (2001) Regulation of NMDA receptors by cyclin-dependent kinase-5. Proc Natl Acad Sci USA 98(22):12742–12747. doi: 10.1073/pnas.211428098 PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Lai K-O, Wong ASL, Cheung M-C, Xu P, Liang Z, Lok K-C, Xie H, Palko ME, Yung W-H, Tessarollo L, Cheung ZH, Ip NY (2012) TrkB phosphorylation by Cdk5 is required for activity-dependent structural plasticity and spatial memory. Nat Neurosci 15(11):1506–1515.
  27. 27.
    Kida S (2012) A functional role for CREB as a positive regulator of memory formation and LTP. Exp Neurobiol 21(4):136–140PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Yiu AP, Rashid AJ, Josselyn SA (2011) Increasing CREB Function in the CA1 region of dorsal hippocampus rescues the spatial memory deficits in a mouse model of Alzheimer’s disease. Neuropsychopharmacology 36(11):2169–2186.
  29. 29.
    Posada-Duque RA, Palacio-Castañeda V, Cardona-Gómez GP (2015) CDK5 knockdown in astrocytes provide neuroprotection as a trophic source via Rac1. Mol Cell Neurosci 68:151–166. doi: 10.1016/j.mcn.2015.07.001 PubMedCrossRefGoogle Scholar
  30. 30.
    Gutierrez-Vargas JA, Munera A, Cardona-Gomez GP (2015) CDK5 knockdown prevents hippocampal degeneration and cognitive dysfunction produced by cerebral ischemia. J Cereb Blood Flow Metab. doi: 10.1038/jcbfm.2015.150 PubMedPubMedCentralGoogle Scholar
  31. 31.
    Megill A, Tran T, Eldred K, Lee NJ, Wong PC, Hoe HS, Kirkwood A, Lee HK (2015) Defective age-dependent metaplasticity in a mouse model of Alzheimer’s disease. J Neurosci 35(32):11346–11357. doi: 10.1523/JNEUROSCI.5289-14.2015 PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Savonenko A, Xu GM, Melnikova T, Morton JL, Gonzales V, Wong MPF, Price DL, Tang F, Markowska AL, Borchelt DR (2005) Episodic-like memory deficits in the APPswe/PS1dE9 mouse model of Alzheimer’s disease: relationships to β-amyloid deposition and neurotransmitter abnormalities. Neurobiol Dis 18(3):602–617. doi: 10.1016/j.nbd.2004.10.022 PubMedCrossRefGoogle Scholar
  33. 33.
    Boric K, Munoz P, Gallagher M, Kirkwood A (2008) Potential adaptive function for altered long-term potentiation mechanisms in aging hippocampus. J Neurosci 28(32):8034–8039. doi: 10.1523/JNEUROSCI.2036-08.2008 PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Piedrahita D, Hernández I, López-Tobón A, Fedorov D, Obara B, Manjunath BS, Boudreau RL, Davidson B, LaFerla F, Gallego-Gómez JC, Kosik KS, Cardona-Gómez GP (2010) Silencing of CDK5 reduces neurofibrillary tangles in transgenic Alzheimer’s mice. J Neurosci 30(42):13966–13976. doi: 10.1523/jneurosci.3637-10.2010 PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Boudreau RL, McBride JL, Martins I, Shen S, Xing Y, Carter BJ, Davidson BL (2009) Nonallele-specific silencing of mutant and wild-type Huntingtin demonstrates therapeutic efficacy in huntington’s disease mice. Mol Ther 17(6):1053–1063.
  36. 36.
    Urabe M, Ding C, Kotin RM (2002) Insect cells as a factory to produce adeno-associated virus type 2 vectors. Hum Gene Ther 13(16):1935–1943PubMedCrossRefGoogle Scholar
  37. 37.
    Posada-Duque RA, Velasquez-Carvajal D, Eckert GP, Cardona-Gomez GP (2013) Atorvastatin requires geranylgeranyl transferase-I and Rac1 activation to exert neuronal protection and induce plasticity. Neurochem Int 62(4):433–445. doi: 10.1016/j.neuint.2013.01.026 PubMedCrossRefGoogle Scholar
  38. 38.
    Tortosa E, Montenegro-Venegas C, Benoist M, Härtel S, González-Billault C, Esteban JA, Avila J (2011) Microtubule-associated protein 1B (MAP1B) is required for dendritic spine development and synaptic maturation. J Biol Chem 286(47):40638–40648. doi: 10.1074/jbc.M111.271320 PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    Albensi BC, Oliver DR, Toupin J, Odero G (2007) Electrical stimulation protocols for hippocampal synaptic plasticity and neuronal hyper-excitability: are they effective or relevant? Exp Neurol 204(1):1–13. doi: 10.1016/j.expneurol.2006.12.009 PubMedCrossRefGoogle Scholar
  40. 40.
    Arellano JI, Benavides-Piccione R, DeFelipe J, Yuste R (2007) Ultrastructure of dendritic spines: correlation between synaptic and spine morphologies. Front Neurosci. doi: 10.3389/neuro. PubMedPubMedCentralGoogle Scholar
  41. 41.
    Rex CS, Chen LY, Sharma A, Liu J, Babayan AH, Gall CM, Lynch G (2009) Different Rho GTPase-dependent signaling pathways initiate sequential steps in the consolidation of long-term potentiation. J Cell Biol 186(1):85–97. doi: 10.1083/jcb.200901084 PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    Wu G-Y, Deisseroth K, Tsien RW (2001) Activity-dependent CREB phosphorylation: convergence of a fast, sensitive calmodulin kinase pathway and a slow, less sensitive mitogen-activated protein kinase pathway. Proc Natl Acad Sci 98(5):2808–2813. doi: 10.1073/pnas.051634198 PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Wayman GA, Tokumitsu H, Davare MA, Soderling TR (2011) Analysis of CaM-kinase signaling in cells. Cell Calcium 50(1):1–8. doi: 10.1016/j.ceca.2011.02.007 PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    Gomes JoR, Costa JoT, Melo CV, Felizzi F, Monteiro PC, Pinto MJ, Inácio AR, Wieloch T, Almeida RD, Graos MR, Duarte CB (2012) Excitotoxicity downregulates TrkB.FL signaling and upregulates the neuroprotective truncated TrkB receptors in cultured hippocampal and striatal neurons. J Neurosci 32(13):4610–4622. doi: 10.1523/jneurosci.0374-12.2012 PubMedCrossRefGoogle Scholar
  45. 45.
    Fenner BM (2012) Truncated TrkB: beyond a dominant negative receptor. Cytokine Growth Factor Rev 23(1–2):15–24. doi: 10.1016/j.cytogfr.2012.01.002 PubMedCrossRefGoogle Scholar
  46. 46.
    Stevens CF, Tonegawa S, Wang Y (1994) The role of calcium, calmodulin kinase II in three forms of synaptic plasticity. Curr Biol 4(8):687–693. doi: 10.1016/S0960-9822(00)00153-6 PubMedCrossRefGoogle Scholar
  47. 47.
    Murakoshi H, Wang H, Yasuda R (2011) Local, persistent activation of Rho GTPases during plasticity of single dendritic spines. Nature 472(7341):100–104.
  48. 48.
    Lisman J, Schulman H, Cline H (2002) The molecular basis of CaMKII function in synaptic and behavioural memory. Nat Rev Neurosci 3(3):175–190.
  49. 49.
    Sheng Y, Zhang L, Su SC, Tsai L-H, Julius Zhu J (2015) Cdk5 is a new rapid synaptic homeostasis regulator capable of initiating the early alzheimer-like pathology. Cerebral Cortex. doi: 10.1093/cercor/bhv032 Google Scholar
  50. 50.
    Poore CP, Sundaram JR, Pareek TK, Fu A, Amin N, Mohamed NE, Zheng Y-L, Goh AXH, Lai MK, Ip NY, Pant HC, Kesavapany S (2010) Cdk5-mediated phosphorylation of β-catenin regulates its localization and GluR2-mediated synaptic activity. J Neurosci 30(25):8457–8467. doi: 10.1523/jneurosci.6062-09.2010 PubMedCrossRefGoogle Scholar
  51. 51.
    Uribe-Arias A, Posada-Duque RA, González-Billault C, Villegas A, Lopera F, Cardona-Gómez GP (2016) p120-catenin is necessary for neuroprotection induced by CDK5 silencing in models of Alzheimer’s disease. J Neurochem. doi: 10.1111/jnc.13697 PubMedGoogle Scholar
  52. 52.
    Elia LP, Yamamoto M, Zang K, Reichardt LF (2006) p120 catenin regulates dendritic spine and synapse development through Rho-family GTPases and cadherins. Neuron 51(1):43–56PubMedPubMedCentralCrossRefGoogle Scholar
  53. 53.
    Herry C, Ciocchi S, Senn V, Demmou L, Muller C, Luthi A (2008) Switching on and off fear by distinct neuronal circuits. Nature 454(7204):600–606. doi: 10.1038/nature07166 PubMedCrossRefGoogle Scholar
  54. 54.
    Zagrebelsky M, Holz A, Dechant G, Barde YA, Bonhoeffer T, Korte M (2005) The p75 neurotrophin receptor negatively modulates dendrite complexity and spine density in hippocampal neurons. J Neurosci 25(43):9989–9999. doi: 10.1523/JNEUROSCI.2492-05.2005 PubMedCrossRefGoogle Scholar
  55. 55.
    Hotulainen P, Llano O, Smirnov S, Tanhuanpaa K, Faix J, Rivera C, Lappalainen P (2009) Defining mechanisms of actin polymerization and depolymerization during dendritic spine morphogenesis. J Cell Biol 185(2):323–339. doi: 10.1083/jcb.200809046 PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    Trommald M, Hulleberg G (1997) Dimensions and density of dendritic spines from rat dentate granule cells based on reconstructions from serial electron micrographs. J Comp Neurol 377(1):15–28. doi: 10.1002/(sici)1096-9861(19970106)377:1<15:aid-cne3>;2-m PubMedCrossRefGoogle Scholar
  57. 57.
    Morabito MA, Sheng M, Tsai LH (2004) Cyclin-dependent kinase 5 phosphorylates the N-terminal domain of the postsynaptic density protein PSD-95 in neurons. J Neurosci 24(4):865–876. doi: 10.1523/JNEUROSCI.4582-03.2004 PubMedCrossRefGoogle Scholar
  58. 58.
    Bianchetta MJ, Lam TT, Jones SN, Morabito MA (2011) Cyclin-dependent kinase 5 regulates PSD-95 ubiquitination in neurons. J Neurosci 31(33):12029–12035. doi: 10.1523/JNEUROSCI.2388-11.2011 PubMedPubMedCentralCrossRefGoogle Scholar
  59. 59.
    Bliss TV, Collingridge GL (1993) A synaptic model of memory: long-term potentiation in the hippocampus. Nature 361(6407):31–39. doi: 10.1038/361031a0 PubMedCrossRefGoogle Scholar
  60. 60.
    Chergui K, Svenningsson P, Greengard P (2004) Cyclin-dependent kinase 5 regulates dopaminergic and glutamatergic transmission in the striatum. Proc Natl Acad Sci USA 101(7):2191–2196. doi: 10.1073/pnas.0308652100 PubMedPubMedCentralCrossRefGoogle Scholar
  61. 61.
    Miranda-Barrientos J, Nieto-Mendoza E, Hernandez-Echeagaray E (2014) The Cdk5 inhibitor Roscovitine increases LTP induction in corticostriatal synapses. ASN Neurol 6(2). doi: 10.1042/AN20140006
  62. 62.
    Castro-Alvarez JF, Uribe-Arias A, Cardona-Gómez GP (2015) Cyclin-dependent kinase 5 targeting prevents β-amyloid aggregation involving glycogen synthase kinase 3β and phosphatases. J Neurosci Res 93(8):1258–1266. doi: 10.1002/jnr.23576 PubMedPubMedCentralCrossRefGoogle Scholar
  63. 63.
    Castro-Alvarez JF, Uribe-Arias SA, Kosik KS, Cardona-Gomez GP (2014) Long- and short-term CDK5 knockdown prevents spatial memory dysfunction and tau pathology of triple transgenic Alzheimer’s mice. Front Aging Neurosci 6:243. doi: 10.3389/fnagi.2014.00243 PubMedPubMedCentralGoogle Scholar
  64. 64.
    Cheung K-H, Shineman D, Müller M, Cárdenas C, Mei L, Yang J, Tomita T, Iwatsubo T, Lee VMY, Foskett JK (2008) Mechanism of Ca2+ disruption in Alzheimer’s disease by presenilin regulation of InsP3 receptor channel gating. Neuron 58(6):871–883. doi: 10.1016/j.neuron.2008.04.015 PubMedPubMedCentralCrossRefGoogle Scholar
  65. 65.
    Stutzmann GE, Smith I, Caccamo A, Oddo S, LaFerla FM, Parker I (2006) Enhanced ryanodine receptor recruitment contributes to Ca2+ disruptions in young, adult, and aged Alzheimer’s disease mice. J Neurosci 26(19):5180–5189. doi: 10.1523/jneurosci.0739-06.2006 PubMedCrossRefGoogle Scholar
  66. 66.
    Stutzmann GE, Caccamo A, LaFerla FM, Parker I (2004) Dysregulated IP3 signaling in cortical neurons of knock-in mice expressing an Alzheimer’s-linked mutation in presenilin1 results in exaggerated Ca2+ signals and altered membrane excitability. J Neurosci 24(2):508–513. doi: 10.1523/jneurosci.4386-03.2004 PubMedCrossRefGoogle Scholar
  67. 67.
    Müller M, Cárdenas C, Mei L, Cheung K-H, Foskett JK (2011) Constitutive cAMP response element binding protein (CREB) activation by Alzheimer’s disease presenilin-driven inositol trisphosphate receptor (InsP3R) Ca2+ signaling. Proc Natl Acad Sci 108(32):13293–13298. doi: 10.1073/pnas.1109297108 PubMedPubMedCentralCrossRefGoogle Scholar
  68. 68.
    Fdr Darios, Muriel M-P, Khondiker ME, Brice A, Ruberg M (2005) Neurotoxic calcium transfer from endoplasmic reticulum to mitochondria is regulated by cyclin-dependent kinase 5-dependent phosphorylation of Tau. J Neurosci 25(16):4159–4168. doi: 10.1523/jneurosci.0060-05.2005 CrossRefGoogle Scholar
  69. 69.
    Sun K-H, De Pablo Y, Vincent F, Shah K (2008) Deregulated Cdk5 promotes oxidative stress and mitochondrial dysfunction. J Neurochem 107(1):265–278. doi: 10.1111/j.1471-4159.2008.05616.x PubMedCrossRefGoogle Scholar
  70. 70.
    Choi HS, Chung SH (2010) Roscovitine increases intracellular calcium release and capacitative calcium entry in PC12 cells. Neurosci Lett 469(1):141–144. doi: 10.1016/j.neulet.2009.11.061 PubMedCrossRefGoogle Scholar
  71. 71.
    Wu L, Saggau P (1994) Presynaptic calcium is increased during normal synaptic transmission and paired-pulse facilitation, but not in long-term potentiation in area CA1 of hippocampus. J Neurosci 14(2):645–654PubMedGoogle Scholar
  72. 72.
    Liang Z, Ye T, Zhou X, Lai KO, Fu AK, Ip NY (2015) Cdk5 regulates activity-dependent gene expression and dendrite development. J Neurosci 35(45):15127–15134. doi: 10.1523/JNEUROSCI.1443-15.2015 PubMedCrossRefGoogle Scholar
  73. 73.
    Takemoto-Kimura S, Suzuki K, Kamijo S, Ageta-Ishihara N, Fujii H, Okuno H, Bito H (2010) Differential roles for CaM kinases in mediating excitation–morphogenesis coupling during formation and maturation of neuronal circuits. Eur J Neurosci 32(2):224–230. doi: 10.1111/j.1460-9568.2010.07353.x PubMedCrossRefGoogle Scholar
  74. 74.
    Hosokawa T, Saito T, Asada A, Ohshima T, Itakura M, Takahashi M, Fukunaga K, S-i Hisanaga (2006) Enhanced activation of Ca2+/calmodulin-dependent protein kinase II upon downregulation of cyclin-dependent kinase 5-p35. J Neurosci Res 84(4):747–754. doi: 10.1002/jnr.20975 PubMedCrossRefGoogle Scholar
  75. 75.
    Li B-S, Ma W, Jaffe H, Zheng Y, Takahashi S, Zhang L, Kulkarni AB, Pant HC (2003) Cyclin-dependent kinase-5 is involved in neuregulin-dependent activation of phosphatidylinositol 3-kinase and Akt activity mediating neuronal survival. J Biol Chem 278(37):35702–35709. doi: 10.1074/jbc.M302004200 PubMedCrossRefGoogle Scholar
  76. 76.
    Zheng YL, Li BS, Kanungo J, Kesavapany S, Amin N, Grant P, Pant HC (2007) Cdk5 modulation of mitogen-activated protein kinase signaling regulates neuronal survival. Mol Biol Cell 18(2):404–413. doi: 10.1091/mbc.E06-09-0851 PubMedPubMedCentralCrossRefGoogle Scholar
  77. 77.
    Gutierrez-Vargas JA, Moreno H, Cardona-Gómez GP (2016) Targeting CDK5 post-stroke provides long-term neuroprotection and rescues synaptic plasticity. J Cereb Blood Flow Metab. doi: 10.1177/0271678X16662476 PubMedGoogle Scholar

Copyright information

© Springer International Publishing 2016

Authors and Affiliations

  • Rafael Andrés Posada-Duque
    • 1
  • Omar Ramirez
    • 2
  • Steffen Härtel
    • 2
  • Nibaldo C. Inestrosa
    • 3
  • Felipe Bodaleo
    • 4
    • 5
  • Christian González-Billault
    • 4
    • 5
  • Alfredo Kirkwood
    • 6
  • Gloria Patricia Cardona-Gómez
    • 1
    Email author
  1. 1.Cellular and Molecular Neurobiology Area, Group of Neuroscience of Antioquia, Faculty of Medicine, SIUUniversity of AntioquiaMedellínColombia
  2. 2.Laboratory for Scientific Image Analysis (SCIAN-Lab), Center for Medical Informatics and Telemedicine (CIMT), Biomedical Neuroscience Institute BNI, ICBMUniversidad de ChileSantiagoChile
  3. 3.Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Centro de Envejecimiento y RegeneraciónPontificia Universidad Católica de ChileSantiagoChile
  4. 4.Laboratory of Cell and Neuronal Dynamics, Department of Biology, Faculty of SciencesUniversidad de ChileSantiagoChile
  5. 5.Geroscience Center for Brain Health and MetabolismSantiagoChile
  6. 6.Solomon H. Snyder Department of NeuroscienceZanvyl-Krieger Mind/Brain Institute, Johns Hopkins UniversityBaltimoreUSA

Personalised recommendations