Cellular and Molecular Life Sciences

, Volume 74, Issue 2, pp 231–243 | Cite as

BET bromodomain proteins and epigenetic regulation of inflammation: implications for type 2 diabetes and breast cancer

  • Dequina A. Nicholas
  • Guillaume Andrieu
  • Katherine J. Strissel
  • Barbara S. Nikolajczyk
  • Gerald V. Denis


Chronic inflammation drives pathologies associated with type 2 diabetes (T2D) and breast cancer. Obesity-driven inflammation may explain increased risk and mortality of breast cancer with T2D reported in the epidemiology literature. Therapeutic approaches to target inflammation in both T2D and cancer have so far fallen short of the expected improvements in disease pathogenesis or outcomes. The targeting of epigenetic regulators of cytokine transcription and cytokine signaling offers one promising, untapped approach to treating diseases driven by inflammation. Recent work has deeply implicated the Bromodomain and Extra-Terminal domain (BET) proteins, which are acetylated histone “readers”, in epigenetic regulation of inflammation. This review focuses on inflammation associated with T2D and breast cancer, and the possibility of targeting BET proteins as an approach to regulating inflammation in the clinic. Understanding inflammation in the context of BET protein regulation may provide a basis for designing promising therapeutics for T2D and breast cancer.


Chromatin reader Metabolism 



This work was supported by Grants from the National Institutes of Health: R56 DK090455 and U01 CA182898 (GVD); R21 DK089270 (BSN); Hematology Training Program T32 HL007501; and Immunology Training Program T32 AI089673.


  1. 1.
    Gallagher EJ, LeRoith D (2015) Obesity and diabetes: the increased risk of cancer and cancer-related mortality. Physiol Rev 95(3):727–748PubMedPubMedCentralCrossRefGoogle Scholar
  2. 2.
    Xu H (2013) Obesity and metabolic inflammation. Drug Discov Today Dis Mech 10(1):e21–e25CrossRefGoogle Scholar
  3. 3.
    Rose DP, Gracheck PJ, Vona-Davis L (2015) The interactions of obesity, inflammation and Insulin resistance in breast cancer. Cancers (Basel) 7(4):2147–2168CrossRefGoogle Scholar
  4. 4.
    Goran MI, Alderete TL (2012) Targeting adipose tissue inflammation to treat the underlying basis of the metabolic complications of obesity. Nestle Nutr Inst Workshop Ser. 73:49–60 (discussion p1–6) PubMedPubMedCentralCrossRefGoogle Scholar
  5. 5.
    Belkina AC, Denis GV (2012) BET domain co-regulators in obesity, inflammation and cancer. Nat Rev Cancer 12(7):465–477PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    Bastard JP, Maachi M, Lagathu C, Kim MJ, Caron M, Vidal H et al (2006) Recent advances in the relationship between obesity, inflammation, and insulin resistance. Eur Cytokine Netw 17(1):4–12PubMedGoogle Scholar
  7. 7.
    Dalmas E, Venteclef N, Caer C, Poitou C, Cremer I, Aron-Wisnewsky J et al (2014) T cell-derived IL-22 amplifies IL-1beta-driven inflammation in human adipose tissue: relevance to obesity and type 2 diabetes. Diabetes 63(6):1966–1977PubMedCrossRefGoogle Scholar
  8. 8.
    DeFuria J, Belkina AC, Jagannathan-Bogdan M, Snyder-Cappione J, Carr JD, Nersesova YR et al (2013) B cells promote inflammation in obesity and type 2 diabetes through regulation of T-cell function and an inflammatory cytokine profile. Proc Natl Acad Sci USA 110(13):5133–5138PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    Duncan BB, Schmidt MI, Pankow JS, Ballantyne CM, Couper D, Vigo A et al (2003) Low-grade systemic inflammation and the development of type 2 diabetes: the atherosclerosis risk in communities study. Diabetes 52(7):1799–1805PubMedCrossRefGoogle Scholar
  10. 10.
    Iyengar NM, Zhou XK, Gucalp A, Morris PG, Howe LR, Giri DD et al (2015) Systemic correlates of white adipose tissue inflammation in early-stage breast cancer. Clin Cancer Res 22(9):2283–2289PubMedCrossRefGoogle Scholar
  11. 11.
    Spranger J, Kroke A, Mohlig M, Hoffmann K, Bergmann MM, Ristow M et al (2003) Inflammatory cytokines and the risk to develop type 2 diabetes: results of the prospective population-based European Prospective Investigation into Cancer and Nutrition (EPIC)-Potsdam Study. Diabetes 52(3):812–817PubMedCrossRefGoogle Scholar
  12. 12.
    Howe LR, Subbaramaiah K, Hudis CA, Dannenberg AJ (2013) Molecular pathways: adipose inflammation as a mediator of obesity-associated cancer. Clin Cancer Res 19(22):6074–6083PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    Iyengar NM, Hudis CA, Dannenberg AJ (2013) Obesity and inflammation: new insights into breast cancer development and progression. Am Soc Clin Oncol Educ Book:46–51Google Scholar
  14. 14.
    Larsen CM, Faulenbach M, Vaag A, Volund A, Ehses JA, Seifert B et al (2007) Interleukin-1-receptor antagonist in type 2 diabetes mellitus. N Engl J Med 356(15):1517–1526PubMedCrossRefGoogle Scholar
  15. 15.
    Ofei F, Hurel S, Newkirk J, Sopwith M, Taylor R (1996) Effects of an engineered human anti-TNF-alpha antibody (CDP571) on insulin sensitivity and glycemic control in patients with NIDDM. Diabetes 45(7):881–885PubMedCrossRefGoogle Scholar
  16. 16.
    Yazdani-Biuki B, Stelzl H, Brezinschek HP, Hermann J, Mueller T, Krippl P et al (2004) Improvement of insulin sensitivity in insulin resistant subjects during prolonged treatment with the anti-TNF-alpha antibody infliximab. Eur J Clin Invest 34(9):641–642PubMedCrossRefGoogle Scholar
  17. 17.
    Dominguez H, Storgaard H, Rask-Madsen C, Steffen Hermann T, Ihlemann N, Baunbjerg Nielsen D et al (2005) Metabolic and vascular effects of tumor necrosis factor-alpha blockade with etanercept in obese patients with type 2 diabetes. J Vasc Res 42(6):517–525PubMedCrossRefGoogle Scholar
  18. 18.
    Ip B, Cilfone NA, Belkina AC, DeFuria J, Jagannathan-Bogdan M, Zhu M et al (2016) Th17 cytokines differentiate obesity from obesity-associated type 2 diabetes and promote TNFalpha production. Obesity (Silver Spring) 24(1):102–112CrossRefGoogle Scholar
  19. 19.
    Agrawal A, Fentiman IS (2008) NSAIDs and breast cancer: a possible prevention and treatment strategy. Int J Clin Pract 62(3):444–449PubMedCrossRefGoogle Scholar
  20. 20.
    Brandao RD, Veeck J, Van de Vijver KK, Lindsey P, de Vries B, van Elssen CH et al (2013) A randomised controlled phase II trial of pre-operative celecoxib treatment reveals anti-tumour transcriptional response in primary breast cancer. Breast Cancer Res 15(2):R29PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Denis GV (2010) Bromodomain coactivators in cancer, obesity, type 2 diabetes, and inflammation. Discov Med 10(55):489–499PubMedPubMedCentralGoogle Scholar
  22. 22.
    Shi J, Vakoc CR (2014) The mechanisms behind the therapeutic activity of BET bromodomain inhibition. Mol Cell 54(5):728–736PubMedCrossRefGoogle Scholar
  23. 23.
    Filippakopoulos P, Knapp S (2014) Targeting bromodomains: epigenetic readers of lysine acetylation. Nat Rev Drug Discov 13(5):337–356PubMedCrossRefGoogle Scholar
  24. 24.
    Hosogai N, Fukuhara A, Oshima K, Miyata Y, Tanaka S, Segawa K et al (2007) Adipose tissue hypoxia in obesity and its impact on adipocytokine dysregulation. Diabetes 56(4):901–911PubMedCrossRefGoogle Scholar
  25. 25.
    Rausch ME, Weisberg S, Vardhana P, Tortoriello DV (2008) Obesity in C57BL/6J mice is characterized by adipose tissue hypoxia and cytotoxic T-cell infiltration. Int J Obes (Lond) 32(3):451–463CrossRefGoogle Scholar
  26. 26.
    Hummasti S, Hotamisligil GS (2010) Endoplasmic reticulum stress and inflammation in obesity and diabetes. Circ Res 107(5):579–591PubMedCrossRefGoogle Scholar
  27. 27.
    Halberg N, Khan T, Trujillo ME, Wernstedt-Asterholm I, Attie AD, Sherwani S et al (2009) Hypoxia-inducible factor 1alpha induces fibrosis and insulin resistance in white adipose tissue. Mol Cell Biol 29(16):4467–4483PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Winer S, Winer DA (2012) The adaptive immune system as a fundamental regulator of adipose tissue inflammation and insulin resistance. Immunol Cell Biol 90(8):755–762PubMedCrossRefGoogle Scholar
  29. 29.
    Khodabandehloo H, Gorgani-Firuzjaee S, Panahi G, Meshkani R (2016) Molecular and cellular mechanisms linking inflammation to insulin resistance and beta-cell dysfunction. Transl Res 167(1):228–256PubMedCrossRefGoogle Scholar
  30. 30.
    Song MJ, Kim KH, Yoon JM, Kim JB (2006) Activation of Toll-like receptor 4 is associated with insulin resistance in adipocytes. Biochem Biophys Res Commun 346(3):739–745PubMedCrossRefGoogle Scholar
  31. 31.
    Grimble RF (2002) Inflammatory status and insulin resistance. Curr Opin Clin Nutr Metab Care 5(5):551–559PubMedCrossRefGoogle Scholar
  32. 32.
    Pickup JC, Crook MA (1998) Is type II diabetes mellitus a disease of the innate immune system? Diabetologia 41(10):1241–1248PubMedCrossRefGoogle Scholar
  33. 33.
    Moller DE (2000) Potential role of TNF-alpha in the pathogenesis of insulin resistance and type 2 diabetes. Trends Endocrinol Metab 11(6):212–217PubMedCrossRefGoogle Scholar
  34. 34.
    Solinas G, Vilcu C, Neels JG, Bandyopadhyay GK, Luo JL, Naugler W et al (2007) JNK1 in hematopoietically derived cells contributes to diet-induced inflammation and insulin resistance without affecting obesity. Cell Metab 6(5):386–397PubMedCrossRefGoogle Scholar
  35. 35.
    Saberi M, Woods NB, de Luca C, Schenk S, Lu JC, Bandyopadhyay G et al (2009) Hematopoietic cell-specific deletion of toll-like receptor 4 ameliorates hepatic and adipose tissue insulin resistance in high-fat-fed mice. Cell Metab 10(5):419–429PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    Nikolajczyk BS, Jagannathan-Bogdan M, Denis GV (2012) The outliers become a stampede as immunometabolism reaches a tipping point. Immunol Rev 249(1):253–275PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    Morris DL, Cho KW, Delproposto JL, Oatmen KE, Geletka LM, Martinez-Santibanez G et al (2013) Adipose tissue macrophages function as antigen-presenting cells and regulate adipose tissue CD4+ T cells in mice. Diabetes 62(8):2762–2772PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Oh DY, Morinaga H, Talukdar S, Bae EJ, Olefsky JM (2012) Increased macrophage migration into adipose tissue in obese mice. Diabetes 61(2):346–354PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    Boutens L, Stienstra R (2016) Adipose tissue macrophages: going off track during obesity. Diabetologia 59(5):879–894PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    Olefsky JM, Glass CK (2010) Macrophages, inflammation, and insulin resistance. Annu Rev Physiol 72:219–246PubMedCrossRefGoogle Scholar
  41. 41.
    Mantovani A, Sozzani S, Locati M, Allavena P, Sica A (2002) Macrophage polarization: tumor-associated macrophages as a paradigm for polarized M2 mononuclear phagocytes. Trends Immunol 23(11):549–555PubMedCrossRefGoogle Scholar
  42. 42.
    Winer DA, Winer S, Shen L, Chng MH, Engleman EG (2012) B lymphocytes as emerging mediators of insulin resistance. Int J Obes Suppl 2(Suppl 1):S4–S7PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Winer DA, Winer S, Shen L, Wadia PP, Yantha J, Paltser G et al (2011) B cells promote insulin resistance through modulation of T cells and production of pathogenic IgG antibodies. Nat Med 17(5):610–617PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    McDonnell ME, Ganley-Leal LM, Mehta A, Bigornia SJ, Mott M, Rehman Q et al (2012) B lymphocytes in human subcutaneous adipose crown-like structures. Obesity (Silver Spring) 20(7):1372–1378CrossRefGoogle Scholar
  45. 45.
    Duffaut C, Galitzky J, Lafontan M, Bouloumie A (2009) Unexpected trafficking of immune cells within the adipose tissue during the onset of obesity. Biochem Biophys Res Commun 384(4):482–485PubMedCrossRefGoogle Scholar
  46. 46.
    Lee BC, Lee J (2014) Cellular and molecular players in adipose tissue inflammation in the development of obesity-induced insulin resistance. Biochim Biophys Acta 1842(3):446–462PubMedCrossRefGoogle Scholar
  47. 47.
    Wu H, Ghosh S, Perrard XD, Feng L, Garcia GE, Perrard JL et al (2007) T-cell accumulation and regulated on activation, normal T cell expressed and secreted upregulation in adipose tissue in obesity. Circulation 115(8):1029–1038PubMedCrossRefGoogle Scholar
  48. 48.
    Strissel KJ, Stancheva Z, Miyoshi H, Perfield JW 2nd, DeFuria J, Jick Z et al (2007) Adipocyte death, adipose tissue remodeling, and obesity complications. Diabetes 56(12):2910–2918PubMedCrossRefGoogle Scholar
  49. 49.
    Morris PG, Hudis CA, Giri D, Morrow M, Falcone DJ, Zhou XK et al (2011) Inflammation and increased aromatase expression occur in the breast tissue of obese women with breast cancer. Cancer Prev Res (Phila) 4(7):1021–1029CrossRefGoogle Scholar
  50. 50.
    Nishimura S, Manabe I, Nagasaki M, Eto K, Yamashita H, Ohsugi M et al (2009) CD8+ effector T cells contribute to macrophage recruitment and adipose tissue inflammation in obesity. Nat Med 15(8):914–920PubMedCrossRefGoogle Scholar
  51. 51.
    Kendall MR, Hupfeld CJ (2008) FTY720, a sphingosine-1-phosphate receptor modulator, reverses high-fat diet-induced weight gain, insulin resistance and adipose tissue inflammation in C57BL/6 mice. Diabetes Obes Metab 10(9):802–805PubMedCrossRefGoogle Scholar
  52. 52.
    Strissel KJ, DeFuria J, Shaul ME, Bennett G, Greenberg AS, Obin MS (2010) T-cell recruitment and Th1 polarization in adipose tissue during diet-induced obesity in C57BL/6 mice. Obesity 18(10):1918–1925PubMedPubMedCentralCrossRefGoogle Scholar
  53. 53.
    Rocha VZ, Folco EJ, Sukhova G, Shimizu K, Gotsman I, Vernon AH et al (2008) Interferon-gamma, a Th1 cytokine, regulates fat inflammation: a role for adaptive immunity in obesity. Circ Res 103(5):467–476PubMedPubMedCentralCrossRefGoogle Scholar
  54. 54.
    Winer S, Chan Y, Paltser G, Truong D, Tsui H, Bahrami J et al (2009) Normalization of obesity-associated insulin resistance through immunotherapy. Nat Med 15(8):921–929PubMedPubMedCentralCrossRefGoogle Scholar
  55. 55.
    O’Rourke RW, Metcalf MD, White AE, Madala A, Winters BR, Maizlin II et al (2009) Depot-specific differences in inflammatory mediators and a role for NK cells and IFN-gamma in inflammation in human adipose tissue. Int J Obes (Lond) 33(9):978–990CrossRefGoogle Scholar
  56. 56.
    Eljaafari A, Robert M, Chehimi M, Chanon S, Durand C, Vial G et al (2015) Adipose tissue-derived stem cells from obese subjects contribute to inflammation and reduced insulin response in adipocytes through differential regulation of the Th1/Th17 balance and monocyte activation. Diabetes 64(7):2477–2488PubMedCrossRefGoogle Scholar
  57. 57.
    Guo H, Xu BC, Yang XG, Peng D, Wang Y, Liu XB et al (2014) A high frequency of peripheral blood IL-22 CD4 T cells in patients with new onset type 2 diabetes mellitus. J Clin Lab Anal 30(2):95–102PubMedCrossRefGoogle Scholar
  58. 58.
    Weaver CT, Harrington LE, Mangan PR, Gavrieli M, Murphy KM (2006) Th17: an effector CD4 T cell lineage with regulatory T cell ties. Immunity 24(6):677–688PubMedCrossRefGoogle Scholar
  59. 59.
    Langrish CL, Chen Y, Blumenschein WM, Mattson J, Basham B, Sedgwick JD et al (2005) IL-23 drives a pathogenic T cell population that induces autoimmune inflammation. J Exp Med 201(2):233–240PubMedPubMedCentralCrossRefGoogle Scholar
  60. 60.
    Dai X, Zhan J, Demmy TA, Poordad FB, Fauceglia PL, Zhang H et al (2015) Monocytes play different roles in stimulating T cells in obese diabetic individuals. Int J Immunopathol Pharmacol 28(3):374–383PubMedCrossRefGoogle Scholar
  61. 61.
    Pradhan AD, Manson JE, Rifai N, Buring JE, Ridker PM (2001) C-reactive protein, interleukin 6, and risk of developing type 2 diabetes mellitus. JAMA 286(3):327–334PubMedCrossRefGoogle Scholar
  62. 62.
    Barzilay JI, Abraham L, Heckbert SR, Cushman M, Kuller LH, Resnick HE et al (2001) The relation of markers of inflammation to the development of glucose disorders in the elderly: the Cardiovascular Health Study. Diabetes 50(10):2384–2389PubMedCrossRefGoogle Scholar
  63. 63.
    Festa A, Hanley AJ, Tracy RP, D’Agostino R Jr, Haffner SM (2003) Inflammation in the prediabetic state is related to increased insulin resistance rather than decreased insulin secretion. Circulation 108(15):1822–1830PubMedCrossRefGoogle Scholar
  64. 64.
    Schmidt MI, Duncan BB, Sharrett AR, Lindberg G, Savage PJ, Offenbacher S et al (1999) Markers of inflammation and prediction of diabetes mellitus in adults (Atherosclerosis Risk in Communities study): a cohort study. Lancet 353(9165):1649–1652PubMedCrossRefGoogle Scholar
  65. 65.
    Vozarova B, Weyer C, Lindsay RS, Pratley RE, Bogardus C, Tataranni PA (2002) High white blood cell count is associated with a worsening of insulin sensitivity and predicts the development of type 2 diabetes. Diabetes 51(2):455–461PubMedCrossRefGoogle Scholar
  66. 66.
    Bigornia SJ, Farb MG, Mott MM, Hess DT, Carmine B, Fiscale A et al (2012) Relation of depot-specific adipose inflammation to insulin resistance in human obesity. Nutr Diabetes 2:e30PubMedPubMedCentralCrossRefGoogle Scholar
  67. 67.
    Farb MG, Bigornia S, Mott M, Tanriverdi K, Morin KM, Freedman JE et al (2011) Reduced adipose tissue inflammation represents an intermediate cardiometabolic phenotype in obesity. J Am Coll Cardiol 58(3):232–237PubMedPubMedCentralCrossRefGoogle Scholar
  68. 68.
    Gauthier MS, O’Brien EL, Bigornia S, Mott M, Cacicedo JM, Xu XJ et al (2011) Decreased AMP-activated protein kinase activity is associated with increased inflammation in visceral adipose tissue and with whole-body insulin resistance in morbidly obese humans. Biochem Biophys Res Commun 404(1):382–387PubMedCrossRefGoogle Scholar
  69. 69.
    Apovian CM, Bigornia S, Mott M, Meyers MR, Ulloor J, Gagua M et al (2008) Adipose macrophage infiltration is associated with insulin resistance and vascular endothelial dysfunction in obese subjects. Arterioscler Thromb Vasc Biol 28(9):1654–1659PubMedPubMedCentralCrossRefGoogle Scholar
  70. 70.
    Zeng C, Shi X, Zhang B, Liu H, Zhang L, Ding W et al (2012) The imbalance of Th17/Th1/Tregs in patients with type 2 diabetes: relationship with metabolic factors and complications. J Mol Med (Berl) 90(2):175–186CrossRefGoogle Scholar
  71. 71.
    Fabbrini E, Cella M, McCartney SA, Fuchs A, Abumrad NA, Pietka TA et al (2013) Association between specific adipose tissue CD4+ T-cell populations and insulin resistance in obese individuals. Gastroenterology 145(2):366e1–3–374 e1–3CrossRefGoogle Scholar
  72. 72.
    Jagannathan-Bogdan M, McDonnell ME, Shin H, Rehman Q, Hasturk H, Apovian CM et al (2011) Elevated proinflammatory cytokine production by a skewed T cell compartment requires monocytes and promotes inflammation in type 2 diabetes. J Immunol 186(2):1162–1172PubMedCrossRefGoogle Scholar
  73. 73.
    Feuerer M, Herrero L, Cipolletta D, Naaz A, Wong J, Nayer A et al (2009) Lean, but not obese, fat is enriched for a unique population of regulatory T cells that affect metabolic parameters. Nat Med 15(8):930–939PubMedPubMedCentralCrossRefGoogle Scholar
  74. 74.
    Larsson SC, Mantzoros CS, Wolk A (2007) Diabetes mellitus and risk of breast cancer: a meta-analysis. Int J Cancer 121(4):856–862PubMedCrossRefGoogle Scholar
  75. 75.
    Barone BB, Yeh HC, Snyder CF, Peairs KS, Stein KB, Derr RL et al (2008) Long-term all-cause mortality in cancer patients with preexisting diabetes mellitus: a systematic review and meta-analysis. JAMA 300(23):2754–2764PubMedPubMedCentralCrossRefGoogle Scholar
  76. 76.
    Moore LL, Chadid S, Singer MR, Kreger BE, Denis GV (2014) Metabolic health reduces risk of obesity-related cancer in framingham study adults. Cancer Epidemiol Biomark Prev 23(10):2057–2065CrossRefGoogle Scholar
  77. 77.
    Campbell PT, Newton CC, Patel AV, Jacobs EJ, Gapstur SM (2012) Diabetes and cause-specific mortality in a prospective cohort of one million US adults. Diabetes Care 35(9):1835–1844PubMedPubMedCentralCrossRefGoogle Scholar
  78. 78.
    Lipscombe LL, Goodwin PJ, Zinman B, McLaughlin JR, Hux JE (2008) The impact of diabetes on survival following breast cancer. Breast Cancer Res Treat 109(2):389–395PubMedCrossRefGoogle Scholar
  79. 79.
    Currie CJ, Poole CD, Jenkins-Jones S, Gale EA, Johnson JA, Morgan CL (2012) Mortality after incident cancer in people with and without type 2 diabetes: impact of metformin on survival. Diabetes Care 35(2):299–304PubMedPubMedCentralCrossRefGoogle Scholar
  80. 80.
    Chen JY, Chiou WK, Chou WY, Lin JD (2016) The impact of type 2 diabetes mellitus on mortality in hospitalized female cancer patients in Taiwan. Asia Pac J Clin Oncol 12(1):e75–e81PubMedCrossRefGoogle Scholar
  81. 81.
    Cleveland RJ, North KE, Stevens J, Teitelbaum SL, Neugut AI, Gammon MD (2012) The association of diabetes with breast cancer incidence and mortality in the Long Island Breast Cancer Study Project. Cancer Causes Control 23(7):1193–1203PubMedPubMedCentralCrossRefGoogle Scholar
  82. 82.
    Calle EE, Rodriguez C, Walker-Thurmond K, Thun MJ (2003) Overweight, obesity, and mortality from cancer in a prospectively studied cohort of US adults. N Engl J Med 348(17):1625–1638PubMedCrossRefGoogle Scholar
  83. 83.
    Subbaramaiah K, Howe LR, Bhardwaj P, Du B, Gravaghi C, Yantiss RK et al (2011) Obesity is associated with inflammation and elevated aromatase expression in the mouse mammary gland. Cancer Prev Res (Phila) 4(3):329–346CrossRefGoogle Scholar
  84. 84.
    Santander AM, Lopez-Ocejo O, Casas O, Agostini T, Sanchez L, Lamas-Basulto E et al (2015) paracrine interactions between adipocytes and tumor cells recruit and modify macrophages to the mammary tumor microenvironment: the role of obesity and inflammation in breast adipose tissue. Cancers (Basel) 7(1):143–178CrossRefGoogle Scholar
  85. 85.
    Kim EJ, Choi MR, Park H, Kim M, Hong JE, Lee JY et al (2011) Dietary fat increases solid tumor growth and metastasis of 4T1 murine mammary carcinoma cells and mortality in obesity-resistant BALB/c mice. Breast Cancer Res 13(4):R78PubMedPubMedCentralCrossRefGoogle Scholar
  86. 86.
    Poirier H, Shapiro JS, Kim RJ, Lazar MA (2006) Nutritional supplementation with trans-10, cis-12-conjugated linoleic acid induces inflammation of white adipose tissue. Diabetes 55(6):1634–1641PubMedCrossRefGoogle Scholar
  87. 87.
    Berryhill GE, Gloviczki JM, Trott JF, Aimo L, Kraft J, Cardiff RD et al (2012) Diet-induced metabolic change induces estrogen-independent allometric mammary growth. Proc Natl Acad Sci USA 109(40):16294–16299PubMedPubMedCentralCrossRefGoogle Scholar
  88. 88.
    Frydenberg H, Thune I, Lofterod T, Mortensen ES, Eggen AE, Risberg T et al (2016) Pre-diagnostic high-sensitive C-reactive protein and breast cancer risk, recurrence, and survival. Breast Cancer Res Treat 155(2):345–354PubMedCrossRefGoogle Scholar
  89. 89.
    Lee SK, Choi MY, Bae SY, Lee JH, Lee HC, Kil WH et al (2015) Immediate postoperative inflammation is an important prognostic factor in breast cancer. Oncology 88(6):337–344PubMedCrossRefGoogle Scholar
  90. 90.
    van Verschuer VM, Hooning MJ, van Baare-Georgieva RD, Hollestelle A, Timmermans AM, Koppert LB et al (2015) Tumor-associated inflammation as a potential prognostic tool in BRCA1/2-associated breast cancer. Hum Pathol 46(2):182–190PubMedCrossRefGoogle Scholar
  91. 91.
    Bertolini F, Orecchioni S, Petit JY, Kolonin MG (2014) Obesity, proinflammatory mediators, adipose tissue progenitors, and breast cancer. Curr Opin Oncol 26(6):545–550PubMedCrossRefGoogle Scholar
  92. 92.
    Dethlefsen C, Hojfeldt G, Hojman P (2013) The role of intratumoral and systemic IL-6 in breast cancer. Breast Cancer Res Treat 138(3):657–664PubMedCrossRefGoogle Scholar
  93. 93.
    Davison Z, de Blacquiere GE, Westley BR, May FE (2011) Insulin-like growth factor-dependent proliferation and survival of triple-negative breast cancer cells: implications for therapy. Neoplasia 13(6):504–515PubMedPubMedCentralCrossRefGoogle Scholar
  94. 94.
    Grivennikov SI, Greten FR, Karin M (2010) Immunity, inflammation, and cancer. Cell 140(6):883–899PubMedPubMedCentralCrossRefGoogle Scholar
  95. 95.
    Benevides L, da Fonseca DM, Donate PB, Tiezzi DG, De Carvalho DD, de Andrade JM et al (2015) IL17 promotes mammary tumor progression by changing the behavior of tumor cells and eliciting tumorigenic neutrophils recruitment. Cancer Res 75(18):3788–3799PubMedCrossRefGoogle Scholar
  96. 96.
    Zhu X, Mulcahy LA, Mohammed RA, Lee AH, Franks HA, Kilpatrick L et al (2008) IL-17 expression by breast-cancer-associated macrophages: IL-17 promotes invasiveness of breast cancer cell lines. Breast Cancer Res 10(6):R95PubMedPubMedCentralCrossRefGoogle Scholar
  97. 97.
    Nam JS, Terabe M, Kang MJ, Chae H, Voong N, Yang YA et al (2008) Transforming growth factor beta subverts the immune system into directly promoting tumor growth through interleukin-17. Cancer Res 68(10):3915–3923PubMedPubMedCentralCrossRefGoogle Scholar
  98. 98.
    Welte T, Zhang XH (2015) Interleukin-17 could promote breast cancer progression at several stages of the disease. Mediators Inflamm 2015:804347PubMedPubMedCentralCrossRefGoogle Scholar
  99. 99.
    Roy LD, Sahraei M, Schettini JL, Gruber HE, Besmer DM, Mukherjee P (2014) Systemic neutralization of IL-17A significantly reduces breast cancer associated metastasis in arthritic mice by reducing CXCL12/SDF-1 expression in the metastatic niches. BMC Cancer 14:225PubMedPubMedCentralCrossRefGoogle Scholar
  100. 100.
    Roy LD, Ghosh S, Pathangey LB, Tinder TL, Gruber HE, Mukherjee P (2011) Collagen induced arthritis increases secondary metastasis in MMTV-PyV MT mouse model of mammary cancer. BMC Cancer 11:365PubMedPubMedCentralCrossRefGoogle Scholar
  101. 101.
    Yang L, Qi Y, Hu J, Tang L, Zhao S, Shan B (2012) Expression of Th17 cells in breast cancer tissue and its association with clinical parameters. Cell Biochem Biophys 62(1):153–159PubMedCrossRefGoogle Scholar
  102. 102.
    Faghih Z, Rezaeifard S, Safaei A, Ghaderi A, Erfani N (2013) IL-17 and IL-4 producing CD8+ T cells in tumor draining lymph nodes of breast cancer patients: positive association with tumor progression. Iran J Immunol 10(4):193–204PubMedGoogle Scholar
  103. 103.
    Du JW, Xu KY, Fang LY, Qi XL (2012) Interleukin-17, produced by lymphocytes, promotes tumor growth and angiogenesis in a mouse model of breast cancer. Mol Med Rep 6(5):1099–1102PubMedGoogle Scholar
  104. 104.
    Chung AS, Wu X, Zhuang G, Ngu H, Kasman I, Zhang J et al (2013) An interleukin-17-mediated paracrine network promotes tumor resistance to anti-angiogenic therapy. Nat Med 19(9):1114–1123PubMedCrossRefGoogle Scholar
  105. 105.
    Coffelt SB, Kersten K, Doornebal CW, Weiden J, Vrijland K, Hau CS et al (2015) IL-17-producing gammadelta T cells and neutrophils conspire to promote breast cancer metastasis. Nature 522(7556):345–348PubMedPubMedCentralCrossRefGoogle Scholar
  106. 106.
    Yasmin R, Siraj S, Hassan A, Khan AR, Abbasi R, Ahmad N (2015) Epigenetic regulation of inflammatory cytokines and associated genes in human malignancies. Mediators Inflamm 2015:201703PubMedPubMedCentralCrossRefGoogle Scholar
  107. 107.
    Falkenberg KJ, Johnstone RW (2014) Histone deacetylases and their inhibitors in cancer, neurological diseases and immune disorders. Nat Rev Drug Discov 13(9):673–691PubMedCrossRefGoogle Scholar
  108. 108.
    Dhalluin C, Carlson JE, Zeng L, He C, Aggarwal AK, Zhou MM (1999) Structure and ligand of a histone acetyltransferase bromodomain. Nature 399(6735):491–496PubMedCrossRefGoogle Scholar
  109. 109.
    Haynes SR, Dollard C, Winston F, Beck S, Trowsdale J, Dawid IB (1992) The bromodomain: a conserved sequence found in human, Drosophila and yeast proteins. Nucleic Acids Res 20(10):2603PubMedPubMedCentralCrossRefGoogle Scholar
  110. 110.
    Filippakopoulos P, Qi J, Picaud S, Shen Y, Smith WB, Fedorov O et al (2010) Selective inhibition of BET bromodomains. Nature 468(7327):1067–1073PubMedPubMedCentralCrossRefGoogle Scholar
  111. 111.
    Sanchez R, Zhou MM (2009) The role of human bromodomains in chromatin biology and gene transcription. Curr Opin Drug Discov Dev 12(5):659–665Google Scholar
  112. 112.
    Owen DJ, Ornaghi P, Yang JC, Lowe N, Evans PR, Ballario P et al (2000) The structural basis for the recognition of acetylated histone H4 by the bromodomain of histone acetyltransferase gcn5p. EMBO J 19(22):6141–6149PubMedPubMedCentralCrossRefGoogle Scholar
  113. 113.
    Devaiah BN, Singer DS (2013) Two faces of brd4: mitotic bookmark and transcriptional lynchpin. Transcription 4(1):13–17PubMedCrossRefGoogle Scholar
  114. 114.
    Devaiah BN, Lewis BA, Cherman N, Hewitt MC, Albrecht BK, Robey PG et al (2012) BRD4 is an atypical kinase that phosphorylates serine2 of the RNA polymerase II carboxy-terminal domain. Proc Natl Acad Sci USA 109(18):6927–6932PubMedPubMedCentralCrossRefGoogle Scholar
  115. 115.
    Baranello L, Wojtowicz D, Cui K, Devaiah BN, Chung HJ, Chan-Salis KY et al (2016) RNA polymerase II regulates topoisomerase 1 activity to favor efficient transcription. Cell 165(2):357–371PubMedCrossRefGoogle Scholar
  116. 116.
    Yang Z, Yik JH, Chen R, He N, Jang MK, Ozato K et al (2005) Recruitment of P-TEFb for stimulation of transcriptional elongation by the bromodomain protein Brd4. Mol Cell 19(4):535–545PubMedCrossRefGoogle Scholar
  117. 117.
    Zhou Q, Li T, Price DH (2012) RNA polymerase II elongation control. Annu Rev Biochem 81:119–143PubMedPubMedCentralCrossRefGoogle Scholar
  118. 118.
    Wu SY, Lee AY, Lai HT, Zhang H, Chiang CM (2013) Phospho switch triggers Brd4 chromatin binding and activator recruitment for gene-specific targeting. Mol Cell 49(5):843–857PubMedPubMedCentralCrossRefGoogle Scholar
  119. 119.
    Shi J, Wang Y, Zeng L, Wu Y, Deng J, Zhang Q et al (2014) Disrupting the interaction of BRD4 with diacetylated Twist suppresses tumorigenesis in basal-like breast cancer. Cancer Cell 25(2):210–225PubMedPubMedCentralCrossRefGoogle Scholar
  120. 120.
    LeRoy G, Rickards B, Flint SJ (2008) The double bromodomain proteins Brd2 and Brd3 couple histone acetylation to transcription. Mol Cell 30(1):51–60PubMedPubMedCentralCrossRefGoogle Scholar
  121. 121.
    Huang B, Yang XD, Zhou MM, Ozato K, Chen LF (2009) Brd4 coactivates transcriptional activation of NF-kappaB via specific binding to acetylated RelA. Mol Cell Biol 29(5):1375–1387PubMedCrossRefGoogle Scholar
  122. 122.
    Xiao Y, Liang L, Huang M, Qiu Q, Zeng S, Shi M et al (2015) Bromodomain and extra-terminal domain bromodomain inhibition prevents synovial inflammation via blocking IkappaB kinase-dependent NF-kappaB activation in rheumatoid fibroblast-like synoviocytes. Rheumatology 55(1):173–184 PubMedCrossRefGoogle Scholar
  123. 123.
    Jung KH, Das A, Chai JC, Kim SH, Morya N, Park KS et al (2015) RNA sequencing reveals distinct mechanisms underlying BET inhibitor JQ1-mediated modulation of the LPS-induced activation of BV-2 microglial cells. J Neuroinflamm 12:36CrossRefGoogle Scholar
  124. 124.
    Choi CS, Hong SH, Sim S, Cho KS, Kim JW, Yang SM et al (2015) The epigenetic reader BRD2 as a specific modulator of PAI-1 expression in lipopolysaccharide-stimulated mouse primary astrocytes. Neurochem Res 40(11):2211–2219PubMedCrossRefGoogle Scholar
  125. 125.
    Chan CH, Fang C, Qiao Y, Yarilina A, Prinjha RK, Ivashkiv LB (2015) BET bromodomain inhibition suppresses transcriptional responses to cytokine-Jak-STAT signaling in a gene-specific manner in human monocytes. Eur J Immunol 45(1):287–297PubMedCrossRefGoogle Scholar
  126. 126.
    Meng S, Zhang L, Tang Y, Tu Q, Zheng L, Yu L et al (2014) BET inhibitor JQ1 blocks inflammation and bone destruction. J Dent Res 93(7):657–662PubMedPubMedCentralCrossRefGoogle Scholar
  127. 127.
    Barrett E, Brothers S, Wahlestedt C, Beurel E (2014) I-BET151 selectively regulates IL-6 production. Biochim Biophys Acta 1842(9):1549–1555PubMedPubMedCentralCrossRefGoogle Scholar
  128. 128.
    Nosaka T, Kawashima T, Misawa K, Ikuta K, Mui AL, Kitamura T (1999) STAT5 as a molecular regulator of proliferation, differentiation and apoptosis in hematopoietic cells. EMBO J 18(17):4754–4765PubMedPubMedCentralCrossRefGoogle Scholar
  129. 129.
    Rascle A, Johnston JA, Amati B (2003) Deacetylase activity is required for recruitment of the basal transcription machinery and transactivation by STAT5. Mol Cell Biol 23(12):4162–4173PubMedPubMedCentralCrossRefGoogle Scholar
  130. 130.
    Pinz S, Unser S, Buob D, Fischer P, Jobst B, Rascle A (2015) Deacetylase inhibitors repress STAT5-mediated transcription by interfering with bromodomain and extra-terminal (BET) protein function. Nucleic Acids Res 43(7):3524–3545PubMedPubMedCentralCrossRefGoogle Scholar
  131. 131.
    Ott CJ, Kopp N, Bird L, Paranal RM, Qi J, Bowman T et al (2012) BET bromodomain inhibition targets both c-Myc and IL7R in high-risk acute lymphoblastic leukemia. Blood 120(14):2843–2852PubMedPubMedCentralCrossRefGoogle Scholar
  132. 132.
    Nicodeme E, Jeffrey KL, Schaefer U, Beinke S, Dewell S, Chung CW et al (2010) Suppression of inflammation by a synthetic histone mimic. Nature 468(7327):1119–1123PubMedCrossRefGoogle Scholar
  133. 133.
    Nadeem A, Al-Harbi NO, Al-Harbi MM, El-Sherbeeny AM, Ahmad SF, Siddiqui N et al (2015) Imiquimod-induced psoriasis-like skin inflammation is suppressed by BET bromodomain inhibitor in mice through RORC/IL-17A pathway modulation. Pharmacol Res 99:248–257PubMedCrossRefGoogle Scholar
  134. 134.
    Mele DA, Salmeron A, Ghosh S, Huang HR, Bryant BM, Lora JM (2013) BET bromodomain inhibition suppresses TH17-mediated pathology. J Exp Med 210(11):2181–2190PubMedPubMedCentralCrossRefGoogle Scholar
  135. 135.
    Klein K, Kabala PA, Grabiec AM, Gay RE, Kolling C, Lin LL et al (2016) The bromodomain protein inhibitor I-BET151 suppresses expression of inflammatory genes and matrix degrading enzymes in rheumatoid arthritis synovial fibroblasts. Ann Rheum Dis 75(2):422–429PubMedCrossRefGoogle Scholar
  136. 136.
    Ghurye RR, Stewart HJ, Chevassut TJ (2015) Bromodomain inhibition by JQ1 suppresses lipopolysaccharide-stimulated interleukin-6 secretion in multiple myeloma cells. Cytokine 71(2):415–417PubMedCrossRefGoogle Scholar
  137. 137.
    Khan YM, Kirkham P, Barnes PJ, Adcock IM (2014) Brd4 is essential for IL-1beta-induced inflammation in human airway epithelial cells. PLoS One 9(4):e95051PubMedPubMedCentralCrossRefGoogle Scholar
  138. 138.
    Perry MM, Durham AL, Austin PJ, Adcock IM, Chung KF (2015) BET bromodomains regulate transforming growth factor-beta-induced proliferation and cytokine release in asthmatic airway smooth muscle. J Biol Chem 290(14):9111–9121PubMedPubMedCentralCrossRefGoogle Scholar
  139. 139.
    Belkina AC, Nikolajczyk BS, Denis GV (2013) BET protein function is required for inflammation: Brd2 genetic disruption and BET inhibitor JQ1 impair mouse macrophage inflammatory responses. J Immunol 190(7):3670–3678PubMedPubMedCentralCrossRefGoogle Scholar
  140. 140.
    Bandukwala HS, Gagnon J, Togher S, Greenbaum JA, Lamperti ED, Parr NJ et al (2012) Selective inhibition of CD4+ T-cell cytokine production and autoimmunity by BET protein and c-Myc inhibitors. Proc Natl Acad Sci USA 109(36):14532–14537PubMedPubMedCentralCrossRefGoogle Scholar
  141. 141.
    Mirguet O, Lamotte Y, Donche F, Toum J, Gellibert F, Bouillot A et al (2012) From ApoA1 upregulation to BET family bromodomain inhibition: discovery of I-BET151. Bioorg Med Chem Lett 22(8):2963–2967PubMedCrossRefGoogle Scholar
  142. 142.
    Boi M, Gaudio E, Bonetti P, Kwee I, Bernasconi E, Tarantelli C et al (2015) The BET bromodomain inhibitor OTX015 affects pathogenetic pathways in preclinical B-cell tumor models and synergizes with targeted drugs. Clin Cancer Res 21(7):1628–1638PubMedCrossRefGoogle Scholar
  143. 143.
    Moros A, Rodriguez V, Saborit-Villarroya I, Montraveta A, Balsas P, Sandy P et al (2014) Synergistic antitumor activity of lenalidomide with the BET bromodomain inhibitor CPI203 in bortezomib-resistant mantle cell lymphoma. Leukemia 28(10):2049–2059PubMedGoogle Scholar
  144. 144.
    Albrecht BK, Gehling VS, Hewitt MC, Vaswani RG, Cote A, Leblanc Y et al (2016) Identification of a benzoisoxazoloazepine inhibitor (CPI-0610) of the bromodomain and extra-terminal (BET) family as a candidate for human clinical trials. J Med Chem 59(4):1330–1339 PubMedCrossRefGoogle Scholar
  145. 145.
    Picaud S, Wells C, Felletar I, Brotherton D, Martin S, Savitsky P et al (2013) RVX-208, an inhibitor of BET transcriptional regulators with selectivity for the second bromodomain. Proc Natl Acad Sci USA 110(49):19754–19759PubMedPubMedCentralCrossRefGoogle Scholar
  146. 146.
    McLure KG, Gesner EM, Tsujikawa L, Kharenko OA, Attwell S, Campeau E et al (2013) RVX-208, an inducer of ApoA-I in humans, is a BET bromodomain antagonist. PLoS One 8(12):e83190PubMedPubMedCentralCrossRefGoogle Scholar
  147. 147.
    Dittmann A, Werner T, Chung CW, Savitski MM, Falth Savitski M, Grandi P et al (2014) The commonly used PI3-kinase probe LY294002 is an inhibitor of BET bromodomains. ACS Chem Biol 9(2):495–502PubMedCrossRefGoogle Scholar
  148. 148.
    Chen WC, Lai YH, Chen HY, Guo HR, Su IJ, Chen HH (2013) Interleukin-17-producing cell infiltration in the breast cancer tumour microenvironment is a poor prognostic factor. Histopathology 63(2):225–233PubMedCrossRefGoogle Scholar
  149. 149.
    Qian X, Gu L, Ning H, Zhang Y, Hsueh EC, Fu M et al (2013) Increased Th17 cells in the tumor microenvironment is mediated by IL-23 via tumor-secreted prostaglandin E2. J Immunol 190(11):5894–5902PubMedPubMedCentralCrossRefGoogle Scholar
  150. 150.
    Toniolo PA, Liu S, Yeh JE, Moraes-Vieira PM, Walker SR, Vafaizadeh V et al (2015) Inhibiting STAT5 by the BET bromodomain inhibitor JQ1 disrupts human dendritic cell maturation. J Immunol 194(7):3180–3190PubMedPubMedCentralCrossRefGoogle Scholar
  151. 151.
    Brand M, Measures AM, Wilson BG, Cortopassi WA, Alexander R, Hoss M et al (2015) Small molecule inhibitors of bromodomain-acetyl-lysine interactions. ACS Chem Biol 10(1):22–39PubMedCrossRefGoogle Scholar
  152. 152.
    Baud MG, Lin-Shiao E, Zengerle M, Tallant C, Ciulli A (2015) New synthetic routes to triazolo-benzodiazepine analogues: expanding the scope of the bump-and-hole approach for selective bromo and extra-terminal (BET) bromodomain inhibition. J Med Chem 59(4):1492–1500 PubMedPubMedCentralCrossRefGoogle Scholar
  153. 153.
    McKeown MR, Shaw DL, Fu H, Liu S, Xu X, Marineau JJ et al (2014) Biased multicomponent reactions to develop novel bromodomain inhibitors. J Med Chem 57(21):9019–9027PubMedPubMedCentralCrossRefGoogle Scholar
  154. 154.
    Xue X, Zhang Y, Liu Z, Song M, Xing Y, Xiang Q et al (2016) Discovery of benzo[cd]indol-2(1H)-ones as potent and specific BET bromodomain inhibitors: structure-based virtual screening, optimization, and biological evaluation. J Med Chem 59(4):1565–1579 PubMedCrossRefGoogle Scholar
  155. 155.
    Gehling VS, Hewitt MC, Vaswani RG, Leblanc Y, Cote A, Nasveschuk CG et al (2013) Discovery, design, and optimization of isoxazole Azepine BET inhibitors. ACS Med Chem Lett 4(9):835–840PubMedPubMedCentralCrossRefGoogle Scholar
  156. 156.
    Hay D, Fedorov O, Filippakopoulos P, Martin S, Philpott M, Picaud S et al (2013) The design and synthesis of 5- and 6-isoxazolylbenzimidazoles as selective inhibitors of the BET bromodomains. Medchemcomm 4(1):140–144PubMedPubMedCentralCrossRefGoogle Scholar
  157. 157.
    Gosmini R, Nguyen VL, Toum J, Simon C, Brusq JM, Krysa G et al (2014) The discovery of I-BET726 (GSK1324726A), a potent tetrahydroquinoline ApoA1 up-regulator and selective BET bromodomain inhibitor. J Med Chem 57(19):8111–8131PubMedCrossRefGoogle Scholar
  158. 158.
    Asangani IA, Wilder-Romans K, Dommeti VL, Krishnamurthy PM, Apel IJ, Escara-Wilke J et al (2016) BET bromodomain inhibitors enhance efficacy and disrupt resistance to AR antagonists in the treatment of prostate cancer. Mol Cancer Res 14(4):324–331 PubMedCrossRefGoogle Scholar
  159. 159.
    Basheer F, Huntly BJ (2015) BET bromodomain inhibitors in leukemia. Exp Hematol 43(8):718–731PubMedCrossRefGoogle Scholar
  160. 160.
    Chaidos A, Caputo V, Karadimitris A (2015) Inhibition of bromodomain and extra-terminal proteins (BET) as a potential therapeutic approach in haematological malignancies: emerging preclinical and clinical evidence. Ther Adv Hematol 6(3):128–141PubMedPubMedCentralCrossRefGoogle Scholar
  161. 161.
    Jung M, Gelato KA, Fernandez-Montalvan A, Siegel S, Haendler B (2015) Targeting BET bromodomains for cancer treatment. Epigenomics 7(3):487–501PubMedCrossRefGoogle Scholar
  162. 162.
    Sahai V, Redig AJ, Collier KA, Eckerdt FD, Munshi HG (2016) Targeting bet bromodomain proteins in solid tumors. Oncotarget. doi: 10.18632/oncotarget.9804 PubMedGoogle Scholar
  163. 163.
    Matzuk MM, McKeown MR, Filippakopoulos P, Li Q, Ma L, Agno JE et al (2012) Small-molecule inhibition of BRDT for male contraception. Cell 150(4):673–684PubMedPubMedCentralCrossRefGoogle Scholar
  164. 164.
    Korb E, Herre M, Zucker-Scharff I, Darnell RB, Allis CD (2015) BET protein Brd4 activates transcription in neurons and BET inhibitor Jq1 blocks memory in mice. Nat Neurosci 18(10):1464–1473PubMedPubMedCentralCrossRefGoogle Scholar
  165. 165.
    Banerjee C, Archin N, Michaels D, Belkina AC, Denis GV, Bradner J et al (2012) BET bromodomain inhibition as a novel strategy for reactivation of HIV-1. J Leukoc Biol 92(6):1147–1154PubMedPubMedCentralCrossRefGoogle Scholar
  166. 166.
    Wang F, Liu H, Blanton WP, Belkina A, Lebrasseur NK, Denis GV (2010) Brd2 disruption in mice causes severe obesity without type 2 diabetes. Biochem J 425(1):71–83CrossRefGoogle Scholar
  167. 167.
    Deeney JT, Belkina AC, Shirihai OS, Corkey BE, Denis GV (2016) BET bromodomain proteins Brd2, Brd3 and Brd4 selectively regulate metabolic Pathways in the pancreatic beta-cell. PLoS One 11(3):e0151329PubMedPubMedCentralCrossRefGoogle Scholar
  168. 168.
    Bolden JE, Tasdemir N, Dow LE, van Es JH, Wilkinson JE, Zhao Z et al (2014) Inducible in vivo silencing of Brd4 identifies potential toxicities of sustained BET protein inhibition. Cell Rep 8(6):1919–1929PubMedPubMedCentralCrossRefGoogle Scholar
  169. 169.
    French CA, Miyoshi I, Aster JC, Kubonishi I, Kroll TG, Dal Cin P et al (2001) BRD4 bromodomain gene rearrangement in aggressive carcinoma with translocation t(15;19). Am J Pathol 159(6):1987–1992PubMedPubMedCentralCrossRefGoogle Scholar
  170. 170.
    Schulze J, Moosmayer D, Weiske J, Fernandez-Montalvan A, Herbst C, Jung M et al (2015) Cell-based protein stabilization assays for the detection of interactions between small-molecule inhibitors and BRD4. J Biomol Screen 20(2):180–189PubMedCrossRefGoogle Scholar
  171. 171.
    Hugle M, Lucas X, Weitzel G, Ostrovskyi D, Breit B, Gerhardt S et al (2016) 4-Acyl pyrrole derivatives yield novel vectors for designing inhibitors of the acetyl-lysine recognition site of BRD4(1). J Med Chem 59(4):1518–1530PubMedCrossRefGoogle Scholar
  172. 172.
    Raux B, Voitovich Y, Derviaux C, Lugari A, Rebuffet E, Milhas S, et al (2016) Exploring selective inhibition of the first bromodomain of the human bromodomain and extra-terminal domain (BET) proteins. J Med Chem 59(4):1634–1641PubMedCrossRefGoogle Scholar
  173. 173.
    Baud MG, Lin-Shiao E, Cardote T, Tallant C, Pschibul A, Chan KH et al (2014) Chemical biology. A bump-and-hole approach to engineer controlled selectivity of BET bromodomain chemical probes. Science 346(6209):638–641PubMedPubMedCentralCrossRefGoogle Scholar
  174. 174.
    Zengerle M, Chan KH, Ciulli A (2015) Selective small molecule induced degradation of the BET bromodomain protein BRD4. ACS Chem Biol 10(8):1770–1777PubMedPubMedCentralCrossRefGoogle Scholar
  175. 175.
    Belkina AC, Blanton WP, Nikolajczyk BS, Denis GV (2014) The double bromodomain protein Brd2 promotes B cell expansion and mitogenesis. J Leukocyte Biol 95(3):451–460PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer International Publishing 2016

Authors and Affiliations

  1. 1.Cancer CenterBoston University School of MedicineBostonUSA
  2. 2.Department of MicrobiologyTraining Program in Inflammatory DisordersBostonUSA
  3. 3.Section of Hematology/Oncology, Department of Pharmacology and Experimental TherapeuticsBoston University School of MedicineBostonUSA

Personalised recommendations