Cellular and Molecular Life Sciences

, Volume 73, Issue 24, pp 4661–4674 | Cite as

Fractones: extracellular matrix niche controlling stem cell fate and growth factor activity in the brain in health and disease

  • Frederic MercierEmail author


The stem cell niche refers to a specific microenvironment where stem cells proliferate and differentiate to produce new specialized cells throughout an organism’s adulthood. Growth factors are crucial signaling molecules that diffuse through the extracellular space, reach the stem cell niche, and ultimately promote stem cell proliferation and differentiation. However, it is not well known how multiple growth factors, often with antagonistic activities, work together in the stem cell niche to select target stem cell populations and determine stem cell fate. There is accumulating evidence suggesting that extracellular matrix (ECM) molecules play an important role in promoting growth factor access and activity in the stem cell niche. In the adult brain neurogenic zone, where neural stem cells (NSCs) reside, there exist specialized ECM structures, which we have named fractones. The processes of NSC allow them to come into contact with fractones and interact with its individual components, which include heparan sulfate proteoglycans (HSPGs) and laminins. We have demonstrated that fractone-associated HSPGs bind growth factors and regulate NSC proliferation in the neurogenic zone. Moreover, emerging results show that fractones are structurally altered in animal models with autism and adult hydrocephalus, as demonstrated by changes in fractone size, quantity, or HSPG content. Interestingly, ECM structures similar to fractones have been found throughout β-amyloid plaques in the brain of patients with Alzheimer’s disease. Pathological fractones may cause imbalances in growth factor activity and impair neurogenesis, leading to inflammation and disorder. Generally speaking, these stem cell niche structures play a potentially vital role in controlling growth factor activity during both health and disease.


Adult neurogenesis Autism spectrum disorders Glycoproteins Meninges Neurodegenerative disorders Subventricular zone 



I thank C Alan Titchenal, Harry B Davis and Albert HW Jiang for proofreading this manuscript.


  1. 1.
    Avashi S, Srivastava RN, Singh A, Srivastava M (2008) Stem cell: past, present and future—a review article. Intern J Med Update 3(1):22–30Google Scholar
  2. 2.
    Messina E, De Angelise L, Frati G, Morrone S, Chimenti S, Fiordaliso F, Salio M, Battaglia M, Latronico MVG, Coletta M, Vivarelli E, Frati L, Cossu G, Giacomello A (2004) Isolation and expansion of adult cardiac stem cells from human and murine heart. Circ Res 95:911–921CrossRefPubMedGoogle Scholar
  3. 3.
    Doetsch J, Garcia-Verdugo JM, Alvarez-Buylla (1997) Cellular composition and three-dimensional organization of the subventricular germinal zone in the adult mammalian brain. J Neurosci 17:5046–5061PubMedGoogle Scholar
  4. 4.
    Ming GL, Song H (2001) Adult neurogenesis in the mammalian brain: significant answers and significant questions. Neuron 70(687):702Google Scholar
  5. 5.
    Rojas Rios P, Gonzalez-Reyes A (2014) The plasticity of stem cell niches: general properties behind homeostasis and repair. Stem Cells 32:852–859CrossRefPubMedGoogle Scholar
  6. 6.
    Bragdon B, Moseychuk O, Saldanha S, King D, Julian J, Nohe A (2011) Bone morphogenetic proteins: a critical review. Cell Signal 23:609–620CrossRefPubMedGoogle Scholar
  7. 7.
    Burgess AW (2015) Growth factors and cytokines. Rev Cell Biol Mol Med 1:104–126Google Scholar
  8. 8.
    Levi-Montalcini R, Angeletti PU (1964) Hormonal control of the NGF content in the submaxillary glands of mice. Int Ser Monogr Oral Biol 3:129–141PubMedGoogle Scholar
  9. 9.
    Mercier F, Hatton GI (2004) Meninges and perivasculature as mediators of CNS plasticity. In: Non-neuronal cells in the nervous system: function and dysfunction. Adv Mol Cell Biol 31:215–253Google Scholar
  10. 10.
    Nakagawa T, Schwartz JP (2004) Expression of neurotrophic factors and cytokines and their receptors on astrocytes in vivo. In: Non-neuronal cells in the nervous system: function and dysfunction. Adv Mol Cell Biol 31:561–273Google Scholar
  11. 11.
    Ornitz DM, Itoh M (2015) The fibroblast growth factor signaling pathway. Rev Dev Biol 4:215–266Google Scholar
  12. 12.
    Wachs FP, Winner B, Couillard-Despres S, Shiller T, Aigner R, Winkler J, Bogdahn U, Aigner L (2006) Transforming growth factor-beta1 is a negative modulator of adult neurogenesis. J Neuropathol Exp Neurol 65:358–370CrossRefPubMedGoogle Scholar
  13. 13.
    Brickman YG, Ford MD, Small DH, Bartlett PF, Nurcombe V (1995) Heparan sulfates mediate the binding of basic fibroblast growth factor to a specific receptor on neural precursor cells. J Biol Chem 270:24941–24948CrossRefPubMedGoogle Scholar
  14. 14.
    Gordon MY, Riley GP, Watt SM, Greaves MS (1987) Compartmentalization of a hemopoietic growth factor (GM-CSF) by glycosaminoglycans in the bone marrow microenvironment. Nature 326:403–405CrossRefPubMedGoogle Scholar
  15. 15.
    Roberts R, Gallagher J, Spooncer E, Alien TD, Bloomfield F, Dexter TM (1988) Heparan-sulfate bound growth factors: a mechanism for stromal cell-mediated hematopoesis. Nature 332:376–378CrossRefPubMedGoogle Scholar
  16. 16.
    Rapraeger AC, Guimond S, Krufka A, Olwin BB (1994) Regulation by heparin sulfate in fibroblast growth factor signaling. Methods Enzymol 245:219–240CrossRefPubMedGoogle Scholar
  17. 17.
    Yayon A, Klagsbrun M, Esko JD, Leder P, Ornitz DM (1991) Cell surface, heparin-like molecules are required for binding of fibroblast growth factor to its high affinity receptor. Cell 64:841–848CrossRefPubMedGoogle Scholar
  18. 18.
    Mercier F, Kitasako JT, Hatton GI (2002) Anatomy of the brain neurogenic zones revisited: fractones and the fibroblast/macrophage network. J Comp Neurol 451:170–188CrossRefPubMedGoogle Scholar
  19. 19.
    Douet V, Arikawa-Hirasawa E, Mercier F (2012) Fractone-heparan sulfates mediate BMP-7-inhibition of cell proliferation in the adult subventricular zone. Neurosci Lett 528:120–125CrossRefPubMedGoogle Scholar
  20. 20.
    Douet V, Arikawa-Hirasawa E, Mercier F (2013) Fractone-heparan sulphates mediate FGF-2 stimulation of cell proliferation in the adult subventricular zone. Cell Prolif 46:137–145CrossRefPubMedGoogle Scholar
  21. 21.
    Kerever A, Schnack J, Vellinga D, Ichikawa N, Moon C, Arikawa-Hirasawa E, Efird JT, Mercier F (2007) Novel extracellular matrix structures in the neural stem cell niche capture the neurogenic factor FGF-2 from the extracellular milieu. Stem Cells 25:2146–2157CrossRefPubMedGoogle Scholar
  22. 22.
    Mercier F, Douet V (2014) Bone morphogenetic protein-4 inhibits adult neurogenesis and is regulated by fractone-heparan sulfates in the subventricular zone. J Chem Neuroanat 57–58:54–61CrossRefPubMedGoogle Scholar
  23. 23.
    Clemmons DR (2004) The relative roles of growth hormone and IGF-1 in controlling insulin sensitivity. J Clin Invest 113:25–27CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Grau V, Wilker S, Lips KS, Hartman P, Rose F, Padberg W, Fehrenbach H, Wessler I, Kummer W (2007) Administration of keratinocyte growth factor down regulates the pulmonary capacity of acetylcholine production. Int J Biochem Cell Biol 39:1955–1963CrossRefPubMedGoogle Scholar
  25. 25.
    Turnbull AV, Rivier CL (1999) Regulation of the hypothalamic-pituitary-adrenal axis by cytokines actions and mechanisms of actions. Physiol Rev 79:1–71PubMedGoogle Scholar
  26. 26.
    Yajima Y, Saito T (1984) The effect of epidermal growth factor on cell proliferation and prolactin production by GH3 rat pituitary cells. J Cell Physiol 120:249–256CrossRefPubMedGoogle Scholar
  27. 27.
    Thorne RG, Hrabetova S, Nicholson C (2004) Diffusion of epidermal growth factor in the rat brain extracellular space measured by integrative optical imaging. J Neurophysiol 92:3471–3481CrossRefPubMedGoogle Scholar
  28. 28.
    Connor B, Dragunow M (1998) The role of neuronal growth factors in neurodegenerative disorders of the human brain. Brain Res Rev 27:1–39CrossRefPubMedGoogle Scholar
  29. 29.
    Steed DL (1997) The role of growth factors in wound healing. Surg Clinics 77:575–586CrossRefGoogle Scholar
  30. 30.
    Wahl SM, Wong H, McCartney-Francis (1989) Role of growth factors in inflammation and repair. J Cell Biochem 40:193–199CrossRefPubMedGoogle Scholar
  31. 31.
    Kim SH, Turnbull J, Guimond S (2011) Extracellular matrix and cell signaling: the dynamic cooperation of integrin, proteoglycan and growth factor receptor. J Endocrinol 209:139–151CrossRefPubMedGoogle Scholar
  32. 32.
    Eliceri BP (2001) Integrin and growth factor receptor crosstalk. Circ Res 89:1104–1110CrossRefGoogle Scholar
  33. 33.
    Coltrini D, Rusnati M, Zoppetti G, Oreste P, Isacchi A, Caccia P, Bergonzoni L, Presta M (1993) Biochemical bases for interactions of human basic fibroblast growth factor with glycosaminoglycans. New insights from trypsin digestion studies. Eur J Biochem 214:51–58CrossRefPubMedGoogle Scholar
  34. 34.
    Farhquar MG (1991) The glomerular basement membrane. In: Hay ED (ed) Cell biology of the extracellular matrix. Plenum Press, New York, pp 365–418Google Scholar
  35. 35.
    Castro-Munozledo F (2013) Review: corneal epithelial stem cells, their niche and wound healing. Mol Vis 19:1600–1613PubMedPubMedCentralGoogle Scholar
  36. 36.
    Fujiwara H, Ferreira M, Donati G, Marciano DK, Linton JM, Sato Y, Sekiguchi K, Reichardt F, Watt FM (2011) The basement membrane of hair follicle stem cells is a muscle cell niche. Cell 144:577–589CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Kazanis I, ffrench-Constant C (2011) Extracellular matrix and the neural stem cell niche. Dev Neurobiol 71:1006–1017CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Mackay-Sim A (2010) Stem cells and their niche in the adult olfactory mucosa. Arch Ital Biol 148:47–58PubMedGoogle Scholar
  39. 39.
    Mercier F, Kitasako JT, Hatton GI (2003) Fractones and other basal laminae in the hypothalamus. J Comp Neurol 455:324–340CrossRefPubMedGoogle Scholar
  40. 40.
    Mercier F, Schnack J, Saint George Chaumet M (2011) Fractones: home and conductors of the neural stem cell niche. In: Seki T et al (eds) Neurogenesis in the adult brain, vol 1. Springer, Japan, pp 109–136Google Scholar
  41. 41.
    Bifari F, Beto N, Pino A, Kusalo M, Malpeli G, Di Chio M, Bersan E, Amato E, Scarpa A, Kamprepra M, Fumagalli G, Decimo I (2015) Meninges harbor cell-expressing neural precursor markers during development and adulthood. Front Cell Neurosci 9:383CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Chyba M, Mercier F, Rader J, Douet V, Arikawa-Hirasawa E, Chow Kwon Y, Kodama R (2011) Dynamic mathematical modeling of cell-fractone interactions. J Math Ind 3:79–88Google Scholar
  43. 43.
    Mercier F, Mambie S, Hatton GI (2006) Brain macrophages: enigmas and conundrums. In: Dermietzel et al (eds) Blood-brain barriers—from ontogeny to artificial barriers. Wiley-VCH, Weinheim, pp 129–165CrossRefGoogle Scholar
  44. 44.
    Mercier F (2004) Astroglia as a modulation interface between meninges and neurons. In: Hatton GI, Parpura V (eds) Glial/neuronal signaling, chapter 5. Kluwer Publishers, Amsterdam, pp 125–162Google Scholar
  45. 45.
    Kerever A, Mercier F, Nonaka R, de Vega S, Oda Y, Zalc B, Okada Y, Hottari N, Yamada Y, Arikawa-Hirasawa E (2014) Perlecan is required for FGF-2 signaling in the neural stem cell niche. Stem Cell Res 12:492–505CrossRefPubMedGoogle Scholar
  46. 46.
    Das GD, Altman J (1970) Postnatal neurogenesis in the caudate nucleus and nucleus accumbens septi in the rat. Brain Res 21:122–127CrossRefPubMedGoogle Scholar
  47. 47.
    Lois C, Alvarez-Buylla A (1994) Long distance neuronal migration in the adult mammalian brain. Science 265:1145–1148CrossRefGoogle Scholar
  48. 48.
    Mercier F, Arikawa-Hirasawa E (2012) Heparan sulfate niche for cell proliferation in the adult brain. Neurosci Lett 510:67–72CrossRefPubMedGoogle Scholar
  49. 49.
    Seki T (2002) Hippocampal adult neurogenesis occurs in a microenvironment provided by PSA-NCAM-expressing immature neurons. J Neurosci Res 69:772–783CrossRefPubMedGoogle Scholar
  50. 50.
    Seri B, Herrera DG, Gritti A, Ferron S, Collado L, Vescovi A, Garcia-Verdugo JM, Alvarez-Buylla A (2006) Composition and organization of the SCZ. A large germinal layer containing neural stem cells in the adult mammalian brain. Cereb Cortex 16:103–111CrossRefGoogle Scholar
  51. 51.
    Mandelbrot BB (1983) The fractal geometry of nature. WH Freeman, San FranciscoGoogle Scholar
  52. 52.
    Ling EA (1998) Origin, nature and some functional considerations of intraventricular macrophages, with special reference to the epiplexus cells. Microsc Res Tech 41:43–56CrossRefPubMedGoogle Scholar
  53. 53.
    Hada SH, Habuchi H, Kariya Y, Itoh N, Reddi AH, Kimata K (2004) Characterization of growth factor binding structures in heparin/heparan sulfate using an octasaccharide library. J Biol Chem 279:12346–12354CrossRefGoogle Scholar
  54. 54.
    Brightman MW (2002) The brain’s interstitial clefts and their glial walls. J Neurocytol 31(2002):569–603Google Scholar
  55. 55.
    Ishihara M, Guo Y, Wei Z, Yang Z, Swiedler SJ, Orellana A, Hirsberg CB (1993) Regulation of biosynthesis of the basis fibroblast growth factor binding domains of heparan sulfate by heparan sulfate-N-deacetylase/N-sulfotransferase expression. J Biol Chem 268:20091–20095PubMedGoogle Scholar
  56. 56.
    Colak D, Mori T, Brill MS, Pfeifer A, Falk S, Deng C, Monteiro R, Mummery C, Sommer L, Gotz M (2008) Ault neurogenesis requires smad4-mediated bone morphogenetic protein signaling in stem cells. J Neurosci 28:434–446CrossRefPubMedGoogle Scholar
  57. 57.
    Dierker T, Dreier R, Peterson A, Bordych C, Grobe K (2009) Heparan sulfate-modulated, metalloprotease-mediated sonic hedgehog release from producing cells. J Biol Chem 284:8013–8022CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Gordts PL, Esko JD (2015) Heparan sulfate proteoglycans fine-tune macrophage inflammation via IFN-gamma. Cytokine 72:118–119CrossRefPubMedGoogle Scholar
  59. 59.
    Khan SA, Nelson MS, Pan C, Gaffney PM, Gupta P (2008) Endogenous heparan sulfate and heparin modulate bone morphogenetic protein-4 signaling and activity. Am J Physiol Cell Physiol 294:1387–1397CrossRefGoogle Scholar
  60. 60.
    Kishimoto S, Nakamura S, Hattori H, Nakamura SI, Oonuma F, Kanatani Y, Tanaka Y, Mori Y, Harada Y, Tagawa M, Ishihara M (2009) Human stem cell factor (SCF) is a heparin-binding cytokine. J Biochem 145:275–278CrossRefPubMedGoogle Scholar
  61. 61.
    Lyon M, Rushton G, Gallagher JT (1997) The interaction of the transforming growth factor-betas with heparin/heparan sulfate is isoform specific. J Biol Chem 18:18000–18006CrossRefGoogle Scholar
  62. 62.
    Thorne BA, Plowman GD (1994) The heparin-binding domain of amphiregulin necessitates the precursor pro-region for growth factor secretion. Mol Cell Biol 14:1635–1646CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    Johanson C, McMillan P, Tavares R, Spangenberger A, Duncan J, Silverberg G, Stopa E (2004) Homeostatic capabilities of the choroid plexus epithelium in Alzheimer’s disease. Cerebrospinal Fluid Res 1:3CrossRefPubMedPubMedCentralGoogle Scholar
  64. 64.
    Stopa EG, Berzin TM, Kim S, Song P, Kuo-Leblnc V, Rodriguez-Wolf M, Johanson CE (2001) Human choroid plexus growth factors: what are the implications for CSF dynamics in Alzheimer’s disease? Exp Neurol 167:40–47CrossRefPubMedGoogle Scholar
  65. 65.
    Choe Y, Kozlova A, Graf D, Pleasure SJ (2013) Bone morphogenetic protein signaling is a major determinant of dentate development. J Neurosci 16:6667–6675Google Scholar
  66. 66.
    Bifari F, Decimo I, Chimulera C, Bersan E, Malpelli G, Johansson J, Lisi V, Bonetti B, Fumagalli G, Pizzolo G, Krampera M (2009) Novel stem/progenitor cells with neuronal differentiation potential reside in the leptomeningeal niche. J Cell Mol Med 9B:3195–3208CrossRefGoogle Scholar
  67. 67.
    Louveau A, Smirnov I, Keyes TJ, Eccles JD, Rouhani SJ, Peske D, Derecki NC, Castle D, Mandell JW, Lee KS, Harris TH, Kipnis J (2015) Structural and functional features of central nervous system lymphatics. Nature 523:531–533CrossRefGoogle Scholar
  68. 68.
    Mercier F, Weatherby TM, Harttine DK (2013) Meningeal-like organization of neural tissue sin calanoid copepods. J Comp Neurol 521:760–790CrossRefPubMedGoogle Scholar
  69. 69.
    Siegenthaler JA, Pleasure SJ (2011) We have got you covered: how the meninges control brain development. Curr Opin Genet Dev 21:249–255CrossRefPubMedPubMedCentralGoogle Scholar
  70. 70.
    Mercier F, Cho-Kown Y, Douet D (2012) Hippocampus/amygdala alterations, loss of heparan sulfates, fractones and ventricle wall reduction in adult BTBR T+tf/J mice, animal model for autism. Neurosci Lett 506:208–213CrossRefPubMedGoogle Scholar
  71. 71.
    Mercier F, Cho-Kwon Y, Kodama R (2011) Meningeal/vascular alterations and loss of extracellular matrix in the neurogenic zone of adult BTBR T+tf/J mice, animal model for autism. Neurosci Lett 498:173–178CrossRefPubMedGoogle Scholar
  72. 72.
    Wahlsten D, Metten P, Crabbe JC (2003) Survey of 21 inbred mouse strains in two laboratories reveals that BTBR T+tf/J has severely reduced hippocampal commissure and absent corpus callosum. Brain Res 971:44–57CrossRefGoogle Scholar
  73. 73.
    Moy SS, Nadler JJ, Young NB, Perez A, Holloway LP, Barbaro LP, Barbaro JR, West LM, Threadgill DW, Lauder JM, Magnuson TR, Crawley JN (2007) Mouse behavioural tasks relevant to autism: phenotype of 10 inbred mice. Behav Brian Res 176:4–20CrossRefGoogle Scholar
  74. 74.
    Campos-Ordonez T, Herranz-Perez V, Chaichana KL, Riccon-Torroella J, Garcia-Verdugo JM, Quinines-Hinojosa A, Gonzalez-Perez O (2014) Long-term hydrocephalus alters the cytoarchitecture of the adult subventricular zone. Exp Neurol 261:236–244CrossRefPubMedGoogle Scholar
  75. 75.
    Palu E, Liesi P (2002) Differential distribution of laminins in Alzheimer disease and normal human brain tissue. J Neurosci Res 69:243–256CrossRefPubMedGoogle Scholar
  76. 76.
    Yasuoka K, Hirata K, Kuraoka A, Kawabuchi M (2004) Expression of amyloid precursor protein-like molecule in astroglial cells of he subventricular zone and rostral migratory stream of the adult rat forebrain. J Anat 205:135–146CrossRefPubMedPubMedCentralGoogle Scholar
  77. 77.
    Leveugle B, Scanameo A, Ding W, Fillit H (1994) Binding of heparan sulfate glycosaminoglycan to beta-amyloid peptide: inhibition by potentially therapeutic polysulfated compounds. NeuroReport 5:1389–1392PubMedGoogle Scholar
  78. 78.
    Scholefield Z, Yates EA, Wayne G, Amour A, McDowell W, Turnbull JE (2003) Heparan sulfate regulate amyloid precursor protein processing by BACE1, the Alzheimer’s β-secretase. J Cell Biol 163:97–107CrossRefPubMedPubMedCentralGoogle Scholar
  79. 79.
    Homes BB, DeVos SL, Kfoury N, Li M, Jacks R, Yanamandra K, Ouidja MO, Brodsky FM, Marasa J, Bagchi DP, Kotsbauer PT, Miller TM, Papy-Garcia D, Diamnon MI (2013) Heparan sulfate proteoglycans mediate internalization and propagation of specific proteopathic seeds. Proc Natl Acad Sci 110:E3138–E3147CrossRefGoogle Scholar
  80. 80.
    Irie F, Badie-Mahdavi H, Yamaguchi Y (2012) Autism-like socio-communicative deficits and stereotypies in mice lacking heparan sulfate. Proc Natl Aced Sci 109:5052–5056CrossRefGoogle Scholar
  81. 81.
    Campanella GSV, Em Lee, Sun J, Luster AD (2003) CXCR3 and heparin binding sites of the chemokine IP-10 (CXCL10). J Biol Chem 278:17066–17074CrossRefPubMedGoogle Scholar
  82. 82.
    Kerever Yamada T, Suzuki Y, Mercier F, Arikawa-Hirasawa E (2015) Fractone aging in the subventricular zone of the lateral ventricle. J Chem Neuroanat 66–67:52–60CrossRefPubMedGoogle Scholar
  83. 83.
    Gonzalez-Perez O, Alvarez-Buylla A (2011) Oligodendrogenesis in the subventricular zone and the role of epidermal growth factor. Brain Res Rev 67:147–156CrossRefPubMedPubMedCentralGoogle Scholar
  84. 84.
    Relucio J, Menezes M, Miyagoe-Suzuki MJ, Takeda S, Colognato H (2012) Laminin regulates postnatal oligodendrocyte production by promoting oligodendrocyte precursor survival in the subventricular zone. Glia 60:1451–1467CrossRefPubMedGoogle Scholar
  85. 85.
    El Waly B, Macchi M, Cayre M, Durbec P (2014) Oligodendrogenesis in the normal and pathological central nervous system. Front Neurosci 8:145PubMedPubMedCentralGoogle Scholar
  86. 86.
    Winkler S, Stahl RC, Carey DJ, Bansal R (2002) Syndecan-3 and perlecan are differentially expressed by progenitor and mature oligodendrocytes and accumulate in the extracellular matrix. J Neurosci Res 69:477–487CrossRefPubMedGoogle Scholar
  87. 87.
    Pye DA, Vived RR, Turnbull JE, Hyde P, Gallagher JT (1998) Heparan sulfate oligosaccharide require 6-O-sulfation for promotion of basic fibroblast growth factor mitogenic activity. J Biol Chem 273:22936–22942CrossRefPubMedGoogle Scholar
  88. 88.
    Sasaki N, Higashi N, Taka T, Nakajima M, Irimura T (2004) Cell surface localization of heparanase on macrophages regulates degradation of extracellular matrix heparan sulfate. J Immunol 172:3830–3835CrossRefPubMedGoogle Scholar
  89. 89.
    Edwards IJ, Xu H, Obonuke JC, Goldberg IJ, Wagner WD (1995) Differentiated macrophages synthetize a heparan sulfate proteoglycan and an oversulfated chondrotine sulfate proteoglycan that bind lipoprotein lipase. Arterioscler Thromb Vasc Biol 15:400–409CrossRefPubMedGoogle Scholar
  90. 90.
    Zhang GL, Zhang X, Wanfg XM, Li JP (2014) Towards understanding the role of heparan sulfate proteoglycans in Alzheimer’s disease. BioMed Res Int. doi: 10.1155/2014/516028
  91. 91.
    Perez-Martin M, Grondona JM, Cifuentes M, Perez-Figares JM, Jimenez JA, Fernandez-Llebrez P (2000) Ependymal explants from the lateral ventricle of the adult bovine brain: a model system for morphological and functional studies of the ependyma. Cell Tissue Res 300:11–19Google Scholar
  92. 92.
    Mercier F, Hatton GI (2000) Immunocytochemical basis for a meningeo-glial network. J Comp Neurol 420:445–465CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing 2016

Authors and Affiliations

  1. 1.Department of Tropical Medicine, Medical Microbiology and Pharmacology, John A. Burns School of MedicineUniversity of HawaiiHonoluluUSA

Personalised recommendations