Cellular and Molecular Life Sciences

, Volume 73, Issue 23, pp 4415–4431 | Cite as

Axial and limb muscle development: dialogue with the neighbourhood

  • Marianne DeriesEmail author
  • Sólveig Thorsteinsdóttir


Skeletal muscles are part of the musculoskeletal system which also includes nerves, tendons, connective tissue, bones and blood vessels. Here we review the development of axial and limb muscles in amniotes within the context of their surrounding tissues in vivo. We highlight the reciprocal dialogue mediated by signalling factors between cells of these adjacent tissues and developing muscles and also demonstrate its importance from the onset of muscle cell differentiation well into foetal development. Early embryonic tissues secrete factors which are important regulators of myogenesis. However, later muscle development relies on other tissue collaborators, such as developing nerves and connective tissue, which are in turn influenced by the developing muscles themselves. We conclude that skeletal muscle development in vivo is a compelling example of the importance of reciprocal interactions between developing tissues for the complete and coordinated development of a functional system.


Embryo Myotome Limb muscle Skeletal myogenesis Neighbouring tissues Paracrine communication 



We thank Christine L. Mummery for her critical comments, our team for useful discussion and André B. Gonçalves for the image in Fig. 2a. We also thank John Harris for giving the anti-MyoD antibody. Pax3 antibody was developed by C.P. Ordahl and was obtained from the Developmental Studies Hybridoma Bank, developed under the auspices of the NICHD and maintained by The University of Iowa, Department of Biology, Iowa City, IA52242, USA. M.D. is supported by Fundação para a Ciência e a Tecnologia (FCT) post-doc grant SFRH/BPD/65370/2009 (Portugal). This manuscript is an output of FCT project PTDC/SAU-BID/120130/2010 (Portugal).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    Noden DM, Francis-West P (2006) The differentiation and morphogenesis of craniofacial muscles. Dev Dyn 235(5):1194–1218PubMedCrossRefGoogle Scholar
  2. 2.
    Engel AG, Franzini-Armstrong C (2004) Myology, vol 1, 3rd edn. Mc Graw Hill ProfessionalGoogle Scholar
  3. 3.
    Biressi S, Molinaro M, Cossu G (2007) Cellular heterogeneity during vertebrate skeletal muscle development. Dev Biol 308(2):281–293PubMedCrossRefGoogle Scholar
  4. 4.
    Emerson CPJ, Hauschka SD (2004) The embryonic origin of muscle. In: Myology, vol 1, 3rd edn. Mc Graw Hill Professional, pp 3–44Google Scholar
  5. 5.
    Tajbakhsh S (2009) Skeletal muscle stem cells in developmental versus regenerative myogenesis. J Intern Med 266(4):372–389PubMedCrossRefGoogle Scholar
  6. 6.
    Buckingham M, Rigby PW (2014) Gene regulatory networks and transcriptional mechanisms that control myogenesis. Dev Cell 28(3):225–238. doi: 10.1016/j.devcel.2013.12.020 PubMedCrossRefGoogle Scholar
  7. 7.
    Bryson-Richardson RJ, Currie PD (2008) The genetics of vertebrate myogenesis. Nat Rev Genet 9(8):632–646. doi: 10.1038/nrg2369 PubMedCrossRefGoogle Scholar
  8. 8.
    Merrell AJ, Ellis BJ, Fox ZD, Lawson JA, Weiss JA, Kardon G (2015) Muscle connective tissue controls development of the diaphragm and is a source of congenital diaphragmatic hernias. Nat Genet 47(5):496–504. doi: 10.1038/ng.3250 PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    Mayeuf-Louchart A, Montarras D, Bodin C, Kume T, Vincent SD, Buckingham M (2016) Endothelial cell specification in the somite is compromised in Pax3-positive progenitors of Foxc1/2 conditional mutants, with loss of forelimb myogenesis. Development 143(5):872–879. doi: 10.1242/dev.128017 PubMedCrossRefGoogle Scholar
  10. 10.
    Yumoto N, Kim N, Burden SJ (2012) Lrp4 is a retrograde signal for presynaptic differentiation at neuromuscular synapses. Nature 489(7416):438–442. doi: 10.1038/nature11348 PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    Burden SJ, Yumoto N, Zhang W (2013) The role of MuSK in synapse formation and neuromuscular disease. Cold Spring Harb Perspect Biol 5(5):a009167. doi: 10.1101/cshperspect.a009167 PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    Theis S, Patel K, Valasek P, Otto A, Pu Q, Harel I, Tzahor E, Tajbakhsh S, Christ B, Huang R (2010) The occipital lateral plate mesoderm is a novel source for vertebrate neck musculature. Development 137(17):2961–2971. doi: 10.1242/dev.049726 PubMedCrossRefGoogle Scholar
  13. 13.
    Pu Q, Patel K, Huang R (2015) The lateral plate mesoderm: a novel source of skeletal muscle. Results Probl Cell Differ 56:143–163. doi: 10.1007/978-3-662-44608-9_7 PubMedCrossRefGoogle Scholar
  14. 14.
    Dequéant ML, Pourquié O (2008) Segmental patterning of the vertebrate embryonic axis. Nat Rev Genet 9(5):370–382. doi: 10.1038/nrg2320 PubMedCrossRefGoogle Scholar
  15. 15.
    Pourquié O (2004) The chick embryo: a leading model in somitogenesis studies. Mech Dev 121(9):1069–1079. doi: 10.1016/j.mod.2004.05.002 PubMedCrossRefGoogle Scholar
  16. 16.
    Andrade RP, Palmeirim I, Bajanca F (2007) Molecular clocks underlying vertebrate embryo segmentation: a 10-year-old hairy-go-round. Birth Defects Res C Embryo Today 81(2):65–83. doi: 10.1002/bdrc.20094 PubMedCrossRefGoogle Scholar
  17. 17.
    Relaix F, Rocancourt D, Mansouri A, Buckingham M (2005) A Pax3/Pax7-dependent population of skeletal muscle progenitor cells. Nature 435(7044):948–953PubMedCrossRefGoogle Scholar
  18. 18.
    Kalcheim C, Kahane N, Cinnamon Y, Ben-Yair R (2006) Mechanisms of lineage segregation in the avian dermomyotome. Anat Embryol (Berl) 211(Suppl 1):31–36CrossRefGoogle Scholar
  19. 19.
    Atit R, Sgaier SK, Mohamed OA, Taketo MM, Dufort D, Joyner AL, Niswander L, Conlon RA (2006) β-catenin activation is necessary and sufficient to specify the dorsal dermal fate in the mouse. Dev Biol 296(1):164–176. doi: 10.1016/j.ydbio.2006.04.449 PubMedCrossRefGoogle Scholar
  20. 20.
    Seale P, Bjork B, Yang W, Kajimura S, Chin S, Kuang S, Scimè A, Devarakonda S, Conroe HM, Erdjument-Bromage H, Tempst P, Rudnicki MA, Beier DR, Spiegelman BM (2008) PRDM16 controls a brown fat/skeletal muscle switch. Nature 454(7207):961–967. doi: 10.1038/nature07182 PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Esner M, Meilhac SM, Relaix F, Nicolas JF, Cossu G, Buckingham ME (2006) Smooth muscle of the dorsal aorta shares a common clonal origin with skeletal muscle of the myotome. Development 133(4):737–749. doi: 10.1242/dev.02226 PubMedCrossRefGoogle Scholar
  22. 22.
    Ben-Yair R, Kalcheim C (2008) Notch and bone morphogenetic protein differentially act on dermomyotome cells to generate endothelium, smooth, and striated muscle. J Cell Biol 180(3):607–618. doi: 10.1083/jcb.200707206 PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Yvernogeau L, Auda-Boucher G, Fontaine-Perus J (2012) Limb bud colonization by somite-derived angioblasts is a crucial step for myoblast emigration. Development 139(2):277–287. doi: 10.1242/dev.067678 PubMedCrossRefGoogle Scholar
  24. 24.
    Ben-Yair R, Kalcheim C (2005) Lineage analysis of the avian dermomyotome sheet reveals the existence of single cells with both dermal and muscle progenitor fates. Development 132(4):689–701PubMedCrossRefGoogle Scholar
  25. 25.
    Hollway G, Currie P (2005) Vertebrate myotome development. Birth Defects Res C Embryo Today 75(3):172–179PubMedCrossRefGoogle Scholar
  26. 26.
    Thorsteinsdóttir S, Deries M, Cachaço AS, Bajanca F (2011) The extracellular matrix dimension of skeletal muscle development. Dev Biol 354(2):191–207. doi: 10.1016/j.ydbio.2011.03.015 PubMedCrossRefGoogle Scholar
  27. 27.
    Venters SJ, Thorsteinsdóttir S, Duxson MJ (1999) Early development of the myotome in the mouse. Dev Dyn 216(3):219–232PubMedCrossRefGoogle Scholar
  28. 28.
    Pu Q, Abduelmula A, Masyuk M, Theiss C, Schwandulla D, Hans M, Patel K, Brand-Saberi B, Huang R (2013) The dermomyotome ventrolateral lip is essential for the hypaxial myotome formation. BMC Dev Biol 13:37. doi: 10.1186/1471-213X-13-37 PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Gros J, Manceau M, Thomé V, Marcelle C (2005) A common somitic origin for embryonic muscle progenitors and satellite cells. Nature 435(7044):954–958PubMedCrossRefGoogle Scholar
  30. 30.
    Kassar-Duchossoy L, Giacone E, Gayraud-Morel B, Jory A, Gomes D, Tajbakhsh S (2005) Pax3/Pax7 mark a novel population of primitive myogenic cells during development. Genes Dev 19(12):1426–1431PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Christ B, Jacob M, Jacob HJ (1983) On the origin and development of the ventrolateral abdominal muscles in the avian embryo. An experimental and ultrastructural study. Anat Embryol (Berl) 166(1):87–101CrossRefGoogle Scholar
  32. 32.
    Cinnamon Y, Kahane N, Kalcheim C (1999) Characterization of the early development of specific hypaxial muscles from the ventrolateral myotome. Development 126(19):4305–4315PubMedGoogle Scholar
  33. 33.
    Deries M, Schweitzer R, Duxson MJ (2010) Developmental fate of the mammalian myotome. Dev Dyn 239(11):2898–2910. doi: 10.1002/dvdy.22425 PubMedCrossRefGoogle Scholar
  34. 34.
    Deries M, Collins JJ, Duxson MJ (2008) The mammalian myotome: a muscle with no innervation. Evol Dev 10(6):746–755PubMedCrossRefGoogle Scholar
  35. 35.
    Tosney KW, Landmesser LT (1985) Growth cone morphology and trajectory in the lumbosacral region of the chick embryo. J Neurosci 5(9):2345–2358PubMedGoogle Scholar
  36. 36.
    Hurren B, Collins JJ, Duxson MJ, Deries M (2015) First neuromuscular contact correlates with onset of primary myogenesis in rat and mouse limb muscles. PLoS One 10(7):e0133811. doi: 10.1371/journal.pone.0133811 PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    Cohen A (1938) Myotome fusion in the embryo of Amblystoma punctatum after treatment with lithium and other agents. J Exp Zool 79(3):461–473CrossRefGoogle Scholar
  38. 38.
    Pourquie O, Coltey M, Teillet MA, Ordahl C, Le Douarin NM (1993) Control of dorsoventral patterning of somitic derivatives by notochord and floor plate. Proc Natl Acad Sci USA 90(11):5242–5246PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    Strudel G (1955) L’action morphogène du tube nerveux et de la corde sur la differénciation des vertèbres et des muscles vertébraux chez l’embryon de poulet. Arch Anat Pathol (Paris) 44(3):209–235Google Scholar
  40. 40.
    Murtaugh LC, Zeng L, Chyung JH, Lassar AB (2001) The chick transcriptional repressor Nkx3.2 acts downstream of Shh to promote BMP-dependent axial chondrogenesis. Dev Cell 1(3):411–422PubMedCrossRefGoogle Scholar
  41. 41.
    Kahane N, Ribes V, Kicheva A, Briscoe J, Kalcheim C (2013) The transition from differentiation to growth during dermomyotome-derived myogenesis depends on temporally restricted hedgehog signaling. Development 140(8):1740–1750. doi: 10.1242/dev.092726 PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    Borycki AG, Brunk B, Tajbakhsh S, Buckingham M, Chiang C, Emerson CP Jr (1999) Sonic hedgehog controls epaxial muscle determination through Myf5 activation. Development 126(18):4053–4063PubMedGoogle Scholar
  43. 43.
    Kruger M, Mennerich D, Fees S, Schafer R, Mundlos S, Braun T (2001) Sonic hedgehog is a survival factor for hypaxial muscles during mouse development. Development 128(5):743–752PubMedGoogle Scholar
  44. 44.
    Anderson C, Thorsteinsdóttir S, Borycki AG (2009) Sonic hedgehog-dependent synthesis of laminin α1 controls basement membrane assembly in the myotome. Development 136(20):3495–3504. doi: 10.1242/dev.036087 PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Borello U, Berarducci B, Murphy P, Bajard L, Buffa V, Piccolo S, Buckingham M, Cossu G (2006) The Wnt/β-catenin pathway regulates Gli-mediated Myf5 expression during somitogenesis. Development 133(18):3723–3732. doi: 10.1242/dev.02517 PubMedCrossRefGoogle Scholar
  46. 46.
    Gros J, Serralbo O, Marcelle C (2009) WNT11 acts as a directional cue to organize the elongation of early muscle fibres. Nature 457(7229):589–593PubMedCrossRefGoogle Scholar
  47. 47.
    Tajbakhsh S, Borello U, Vivarelli E, Kelly R, Papkoff J, Duprez D, Buckingham M, Cossu G (1998) Differential activation of Myf5 and MyoD by different Wnts in explants of mouse paraxial mesoderm and the later activation of myogenesis in the absence of Myf5. Development 125(21):4155–4162PubMedGoogle Scholar
  48. 48.
    Marcelle C, Stark MR, Bronner-Fraser M (1997) Coordinate actions of BMPs, Wnts, Shh and noggin mediate patterning of the dorsal somite. Development 124(20):3955–3963PubMedGoogle Scholar
  49. 49.
    Pourquié O, Fan CM, Coltey M, Hirsinger E, Watanabe Y, Breant C, Francis-West P, Brickell P, Tessier-Lavigne M, Le Douarin NM (1996) Lateral and axial signals involved in avian somite patterning: a role for BMP4. Cell 84(3):461–471PubMedCrossRefGoogle Scholar
  50. 50.
    Hirsinger E, Duprez D, Jouve C, Malapert P, Cooke J, Pourquié O (1997) Noggin acts downstream of Wnt and Sonic Hedgehog to antagonize BMP4 in avian somite patterning. Development 124(22):4605–4614PubMedGoogle Scholar
  51. 51.
    Linker C, Lesbros C, Gros J, Burrus LW, Rawls A, Marcelle C (2005) β-Catenin-dependent Wnt signalling controls the epithelial organisation of somites through the activation of paraxis. Development 132(17):3895–3905. doi: 10.1242/dev.01961 PubMedCrossRefGoogle Scholar
  52. 52.
    Marmigère F, Ernfors P (2007) Specification and connectivity of neuronal subtypes in the sensory lineage. Nat Rev Neurosci 8(2):114–127. doi: 10.1038/nrn2057 PubMedCrossRefGoogle Scholar
  53. 53.
    Rickmann M, Fawcett JW, Keynes RJ (1985) The migration of neural crest cells and the growth of motor axons through the rostral half of the chick somite. J Embryol Exp Morphol 90:437–455PubMedGoogle Scholar
  54. 54.
    Rios AC, Serralbo O, Salgado D, Marcelle C (2011) Neural crest regulates myogenesis through the transient activation of NOTCH. Nature 473(7348):532–535. doi: 10.1038/nature09970 PubMedCrossRefGoogle Scholar
  55. 55.
    Deries M, Gonçalves AB, Vaz R, Martins GG, Rodrigues G, Thorsteinsdóttir S (2012) Extracellular matrix remodeling accompanies axial muscle development and morphogenesis in the mouse. Dev Dyn 241(2):350–364. doi: 10.1002/dvdy.23703 PubMedCrossRefGoogle Scholar
  56. 56.
    Martins GG, Rifes P, Amândio R, Rodrigues G, Palmeirim I, Thorsteinsdóttir S (2009) Dynamic 3D cell rearrangements guided by a fibronectin matrix underlie somitogenesis. PLoS One 4(10):e7429. doi: 10.1371/journal.pone.0007429 PubMedPubMedCentralCrossRefGoogle Scholar
  57. 57.
    Serralbo O, Marcelle C (2014) Migrating cells mediate long-range WNT signaling. Development 141(10):2057–2063. doi: 10.1242/dev.107656 PubMedCrossRefGoogle Scholar
  58. 58.
    Bajanca F, Luz M, Raymond K, Martins GG, Sonnenberg A, Tajbakhsh S, Buckingham M, Thorsteinsdóttir S (2006) Integrin α6β1-laminin interactions regulate early myotome formation in the mouse embryo. Development 133(9):1635–1644. doi: 10.1242/dev.02336 PubMedCrossRefGoogle Scholar
  59. 59.
    Tosney KW, Dehnbostel DB, Erickson CA (1994) Neural crest cells prefer the myotome’s basal lamina over the sclerotome as a substratum. Dev Biol 163(2):389–406. doi: 10.1006/dbio.1994.1157 PubMedCrossRefGoogle Scholar
  60. 60.
    Koblar SA, Krull CE, Pasquale EB, McLennan R, Peale FD, Cerretti DP, Bothwell M (2000) Spinal motor axons and neural crest cells use different molecular guides for segmental migration through the rostral half-somite. J Neurobiol 42(4):437–447PubMedCrossRefGoogle Scholar
  61. 61.
    Halperin-Barlev O, Kalcheim C (2011) Sclerotome-derived Slit1 drives directional migration and differentiation of Robo2-expressing pioneer myoblasts. Development 138(14):2935–2945. doi: 10.1242/dev.065714 PubMedCrossRefGoogle Scholar
  62. 62.
    Wong K, Park HT, Wu JY, Rao Y (2002) Slit proteins: molecular guidance cues for cells ranging from neurons to leukocytes. Curr Opin Genet Dev 12(5):583–591PubMedCrossRefGoogle Scholar
  63. 63.
    Kablar B, Krastel K, Tajbakhsh S, Rudnicki MA (2003) Myf5 and MyoD activation define independent myogenic compartments during embryonic development. Dev Biol 258(2):307–318PubMedCrossRefGoogle Scholar
  64. 64.
    Ikeya M, Takada S (1998) Wnt signaling from the dorsal neural tube is required for the formation of the medial dermomyotome. Development 125(24):4969–4976PubMedGoogle Scholar
  65. 65.
    Amthor H, Christ B, Patel K (1999) A molecular mechanism enabling continuous embryonic muscle growth—a balance between proliferation and differentiation. Development 126(5):1041–1053PubMedGoogle Scholar
  66. 66.
    Dietrich S, Schubert FR, Healy C, Sharpe PT, Lumsden A (1998) Specification of the hypaxial musculature. Development 125(12):2235–2249PubMedGoogle Scholar
  67. 67.
    Amthor H, Connolly D, Patel K, Brand-Saberi B, Wilkinson DG, Cooke J, Christ B (1996) The expression and regulation of follistatin and a follistatin-like gene during avian somite compartmentalization and myogenesis. Dev Biol 178(2):343–362PubMedCrossRefGoogle Scholar
  68. 68.
    Cinnamon Y, Kahane N, Bachelet I, Kalcheim C (2001) The sub-lip domain—a distinct pathway for myotome precursors that demonstrate rostral-caudal migration. Development 128(3):341–351PubMedGoogle Scholar
  69. 69.
    Van Ho AT, Hayashi S, Brohl D, Aurade F, Rattenbach R, Relaix F (2011) Neural crest cell lineage restricts skeletal muscle progenitor cell differentiation through Neuregulin1-ErbB3 signaling. Dev Cell 21(2):273–287. doi: 10.1016/j.devcel.2011.06.019 PubMedCrossRefGoogle Scholar
  70. 70.
    Delfini MC, De La Celle M, Gros J, Serralbo O, Marics I, Seux M, Scaal M, Marcelle C (2009) The timing of emergence of muscle progenitors is controlled by an FGF/ERK/SNAIL1 pathway. Dev Biol 333(2):229–237. doi: 10.1016/j.ydbio.2009.05.544 PubMedCrossRefGoogle Scholar
  71. 71.
    Vinagre T, Moncaut N, Carapuco M, Novoa A, Bom J, Mallo M (2010) Evidence for a myotomal Hox/Myf cascade governing nonautonomous control of rib specification within global vertebral domains. Dev Cell 18(4):655–661. doi: 10.1016/j.devcel.2010.02.011 PubMedCrossRefGoogle Scholar
  72. 72.
    Brent AE, Braun T, Tabin CJ (2005) Genetic analysis of interactions between the somitic muscle, cartilage and tendon cell lineages during mouse development. Development 132(3):515–528PubMedCrossRefGoogle Scholar
  73. 73.
    Babiuk RP, Zhang W, Clugston R, Allan DW, Greer JJ (2003) Embryological origins and development of the rat diaphragm. J Comp Neurol 455(4):477–487. doi: 10.1002/cne.10503 PubMedCrossRefGoogle Scholar
  74. 74.
    Sambasivan R, Kuratani S, Tajbakhsh S (2011) An eye on the head: the development and evolution of craniofacial muscles. Development 138(12):2401–2415. doi: 10.1242/dev.040972 PubMedCrossRefGoogle Scholar
  75. 75.
    Murphy M, Kardon G (2011) Origin of vertebrate limb muscle the role of progenitor and myoblast populations. Curr Top Dev Biol 96:1–32. doi: 10.1016/B978-0-12-385940-2.00001-2 PubMedCrossRefGoogle Scholar
  76. 76.
    Duprez D (2002) Signals regulating muscle formation in the limb during embryonic development. Int J Dev Biol 46(7):915–925PubMedGoogle Scholar
  77. 77.
    Francis-West PH, Antoni L, Anakwe K (2003) Regulation of myogenic differentiation in the developing limb bud. J Anat 202(1):69–81PubMedPubMedCentralCrossRefGoogle Scholar
  78. 78.
    Lee AS, Harris J, Bate M, Vijayraghavan K, Fisher L, Tajbakhsh S, Duxson M (2013) Initiation of primary myogenesis in amniote limb muscles. Dev Dyn 242(9):1043–1055. doi: 10.1002/dvdy.23998 PubMedCrossRefGoogle Scholar
  79. 79.
    Vasyutina E, Birchmeier C (2006) The development of migrating muscle precursor cells. Anat Embryol (Berl) 211(Suppl 1):37–41. doi: 10.1007/s00429-006-0118-9 CrossRefGoogle Scholar
  80. 80.
    Brand-Saberi B, Muller TS, Wilting J, Christ B, Birchmeier C (1996) Scatter factor/hepatocyte growth factor (SF/HGF) induces emigration of myogenic cells at interlimb level in vivo. Dev Biol 179(1):303–308. doi: 10.1006/dbio.1996.0260 PubMedCrossRefGoogle Scholar
  81. 81.
    Dietrich S, Abou-Rebyeh F, Brohmann H, Bladt F, Sonnenberg-Riethmacher E, Yamaai T, Lumsden A, Brand-Saberi B, Birchmeier C (1999) The role of SF/HGF and c-Met in the development of skeletal muscle. Development 126(8):1621–1629PubMedGoogle Scholar
  82. 82.
    Relaix F, Polimeni M, Rocancourt D, Ponzetto C, Schafer BW, Buckingham M (2003) The transcriptional activator PAX3-FKHR rescues the defects of Pax3 mutant mice but induces a myogenic gain-of-function phenotype with ligand-independent activation of Met signaling in vivo. Genes Dev 17(23):2950–2965. doi: 10.1101/gad.281203 PubMedPubMedCentralCrossRefGoogle Scholar
  83. 83.
    Vasyutina E, Stebler J, Brand-Saberi B, Schulz S, Raz E, Birchmeier C (2005) CXCR4 and Gab1 cooperate to control the development of migrating muscle progenitor cells. Genes Dev 19(18):2187–2198. doi: 10.1101/gad.346205 PubMedPubMedCentralCrossRefGoogle Scholar
  84. 84.
    Swartz ME, Eberhart J, Pasquale EB, Krull CE (2001) EphA4/ephrin–A5 interactions in muscle precursor cell migration in the avian forelimb. Development 128(23):4669–4680PubMedGoogle Scholar
  85. 85.
    Linker C, Lesbros C, Stark MR, Marcelle C (2003) Intrinsic signals regulate the initial steps of myogenesis in vertebrates. Development 130(20):4797–4807. doi: 10.1242/dev.00688 PubMedCrossRefGoogle Scholar
  86. 86.
    Scaal M, Bonafede A, Dathe V, Sachs M, Cann G, Christ B, Brand-Saberi B (1999) SF/HGF is a mediator between limb patterning and muscle development. Development 126(21):4885–4893PubMedGoogle Scholar
  87. 87.
    Heymann S, Koudrova M, Arnold H, Koster M, Braun T (1996) Regulation and function of SF/HGF during migration of limb muscle precursor cells in chicken. Dev Biol 180(2):566–578PubMedCrossRefGoogle Scholar
  88. 88.
    Itoh N, Mima T, Mikawa T (1996) Loss of fibroblast growth factor receptors is necessary for terminal differentiation of embryonic limb muscle. Development 122(1):291–300PubMedGoogle Scholar
  89. 89.
    Anakwe K, Robson L, Hadley J, Buxton P, Church V, Allen S, Hartmann C, Harfe B, Nohno T, Brown AM, Evans DJ, Francis-West P (2003) Wnt signalling regulates myogenic differentiation in the developing avian wing. Development 130(15):3503–3514PubMedCrossRefGoogle Scholar
  90. 90.
    Ladher RK, Church VL, Allen S, Robson L, Abdelfattah A, Brown NA, Hattersley G, Rosen V, Luyten FP, Dale L, Francis-West PH (2000) Cloning and expression of the Wnt antagonists Sfrp-2 and Frzb during chick development. Dev Biol 218(2):183–198. doi: 10.1006/dbio.1999.9586 PubMedCrossRefGoogle Scholar
  91. 91.
    Hu JK, McGlinn E, Harfe BD, Kardon G, Tabin CJ (2012) Autonomous and nonautonomous roles of Hedgehog signaling in regulating limb muscle formation. Genes Dev 26(18):2088–2102. doi: 10.1101/gad.187385.112 PubMedPubMedCentralCrossRefGoogle Scholar
  92. 92.
    Anderson C, Williams VC, Moyon B, Daubas P, Tajbakhsh S, Buckingham ME, Shiroishi T, Hughes SM, Borycki AG (2012) Sonic hedgehog acts cell-autonomously on muscle precursor cells to generate limb muscle diversity. Genes Dev 26(18):2103–2117. doi: 10.1101/gad.187807.112 PubMedPubMedCentralCrossRefGoogle Scholar
  93. 93.
    Geetha-Loganathan P, Nimmagadda S, Prols F, Patel K, Scaal M, Huang R, Christ B (2005) Ectodermal Wnt-6 promotes Myf5-dependent avian limb myogenesis. Dev Biol 288(1):221–233. doi: 10.1016/j.ydbio.2005.09.035 PubMedCrossRefGoogle Scholar
  94. 94.
    Hutcheson DA, Zhao J, Merrell A, Haldar M, Kardon G (2009) Embryonic and fetal limb myogenic cells are derived from developmentally distinct progenitors and have different requirements for β-catenin. Genes Dev 23(8):997–1013PubMedPubMedCentralCrossRefGoogle Scholar
  95. 95.
    Amthor H, Christ B, Weil M, Patel K (1998) The importance of timing differentiation during limb muscle development. Curr Biol 8(11):642–652PubMedCrossRefGoogle Scholar
  96. 96.
    Robson LG, Hughes SM (1996) The distal limb environment regulates MyoD accumulation and muscle differentiation in mouse-chick chimaeric limbs. Development 122(12):3899–3910PubMedGoogle Scholar
  97. 97.
    Clase KL, Mitchell PJ, Ward PJ, Dorman CM, Johnson SE, Hannon K (2000) FGF5 stimulates expansion of connective tissue fibroblasts and inhibits skeletal muscle development in the limb. Dev Dyn 219(3):368–380. doi: 10.1002/1097-0177(2000)9999:9999<:AID-DVDY1056>3.0.CO;2-8 PubMedCrossRefGoogle Scholar
  98. 98.
    Marics I, Padilla F, Guillemot JF, Scaal M, Marcelle C (2002) FGFR4 signaling is a necessary step in limb muscle differentiation. Development 129(19):4559–4569PubMedGoogle Scholar
  99. 99.
    Mok GF, Cardenas R, Anderton H, Campbell KH, Sweetman D (2014) Interactions between FGF18 and retinoic acid regulate differentiation of chick embryo limb myoblasts. Dev Biol 396(2):214–223. doi: 10.1016/j.ydbio.2014.10.004 PubMedCrossRefGoogle Scholar
  100. 100.
    Ashby PR, Wilson SJ, Harris AJ (1993) Formation of primary and secondary myotubes in aneural muscles in the mouse mutant peroneal muscular-atrophy. Dev Biol 156(2):519–528PubMedCrossRefGoogle Scholar
  101. 101.
    Ross JJ, Duxson MJ, Harris AJ (1987) Neural determination of muscle fibre numbers in embryonic rat lumbrical muscles. Development 100(3):395–409PubMedGoogle Scholar
  102. 102.
    Delfini MC, Hirsinger E, Pourquié O, Duprez D (2000) Delta 1-activated notch inhibits muscle differentiation without affecting Myf5 and Pax3 expression in chick limb myogenesis. Development 127(23):5213–5224PubMedGoogle Scholar
  103. 103.
    Vasyutina E, Lenhard DC, Birchmeier C (2007) Notch function in myogenesis. Cell Cycle 6(12):1451–1454PubMedCrossRefGoogle Scholar
  104. 104.
    Mourikis P, Gopalakrishnan S, Sambasivan R, Tajbakhsh S (2012) Cell-autonomous Notch activity maintains the temporal specification potential of skeletal muscle stem cells. Development 139(24):4536–4548. doi: 10.1242/dev.084756 PubMedCrossRefGoogle Scholar
  105. 105.
    Cusella-De Angelis MG, Molinari S, Le Donne A, Coletta M, Vivarelli E, Bouche M, Molinaro M, Ferrari S, Cossu G (1994) Differential response of embryonic and fetal myoblasts to TGF β: a possible regulatory mechanism of skeletal muscle histogenesis. Development 120(4):925–933PubMedGoogle Scholar
  106. 106.
    Messina G, Biressi S, Monteverde S, Magli A, Cassano M, Perani L, Roncaglia E, Tagliafico E, Starnes L, Campbell CE, Grossi M, Goldhamer DJ, Gronostajski RM, Cossu G (2010) Nfix regulates fetal-specific transcription in developing skeletal muscle. Cell 140(4):554–566. doi: 10.1016/j.cell.2010.01.027 PubMedCrossRefGoogle Scholar
  107. 107.
    Harris AJ, Duxson MJ, Fitzsimons RB, Rieger F (1989) Myonuclear birthdates distinguish the origins of primary and secondary myotubes in embryonic mammalian skeletal muscles. Development 107(4):771–784PubMedGoogle Scholar
  108. 108.
    Auda-Boucher G, Jarno V, Fournier-Thibault C, Butler-Browne G, Fontaine-Pérus J (1997) Acetylcholine receptor formation in mouse-chick chimera. Exp Cell Res 236(1):29–42PubMedCrossRefGoogle Scholar
  109. 109.
    Hughes DS, Ontell M (1992) Morphometric analysis of the developing, murine aneural soleus muscle. Dev Dyn 193(2):175–184PubMedCrossRefGoogle Scholar
  110. 110.
    Wilson SJ, Harris AJ (1993) Formation of myotubes in aneural rat muscles. Dev Biol 156(2):509–518. doi: 10.1006/dbio.1993.1097 PubMedCrossRefGoogle Scholar
  111. 111.
    Duxson MJ, Usson Y, Harris AJ (1989) The origin of secondary myotubes in mammalian skeletal muscles: ultrastructural studies. Development 107:743–750PubMedGoogle Scholar
  112. 112.
    Ko CP, Robitaille R (2015) Perisynaptic Schwann cells at the neuromuscular synapse: adaptable, multitasking glial cells. Cold Spring Harb Perspect Biol 7(10):a020503. doi: 10.1101/cshperspect.a020503 PubMedCrossRefGoogle Scholar
  113. 113.
    Darabid H, Perez-Gonzalez AP, Robitaille R (2014) Neuromuscular synaptogenesis: coordinating partners with multiple functions. Nat Rev Neurosci 15(11):703–718PubMedCrossRefGoogle Scholar
  114. 114.
    Burden SJ (2002) Building the vertebrate neuromuscular synapse. J Neurobiol 53(4):501–511PubMedCrossRefGoogle Scholar
  115. 115.
    Washabaugh CH, Ontell MP, Shand SH, Bradbury N, Kant JA, Ontell M (2007) Neuronal control of myogenic regulatory factor accumulation in fetal muscle. Dev Dyn 236(3):732–745. doi: 10.1002/dvdy.21078 PubMedCrossRefGoogle Scholar
  116. 116.
    Weatherbee SD, Anderson KV, Niswander LA (2006) LDL-receptor-related protein 4 is crucial for formation of the neuromuscular junction. Development 133(24):4993–5000. doi: 10.1242/dev.02696 PubMedCrossRefGoogle Scholar
  117. 117.
    Kim N, Stiegler AL, Cameron TO, Hallock PT, Gomez AM, Huang JH, Hubbard SR, Dustin ML, Burden SJ (2008) Lrp4 is a receptor for Agrin and forms a complex with MuSK. Cell 135(2):334–342. doi: 10.1016/j.cell.2008.10.002 PubMedPubMedCentralCrossRefGoogle Scholar
  118. 118.
    Kardon G (1998) Muscle and tendon morphogenesis in the avian hind limb. Development 125(20):4019–4032PubMedGoogle Scholar
  119. 119.
    Mathew SJ, Hansen JM, Merrell AJ, Murphy MM, Lawson JA, Hutcheson DA, Hansen MS, Angus-Hill M, Kardon G (2011) Connective tissue fibroblasts and Tcf4 regulate myogenesis. Development 138(2):371–384. doi: 10.1242/dev.057463 PubMedPubMedCentralCrossRefGoogle Scholar
  120. 120.
    Hasson P, DeLaurier A, Bennett M, Grigorieva E, Naiche LA, Papaioannou VE, Mohun TJ, Logan MP (2010) Tbx4 and Tbx5 acting in connective tissue are required for limb muscle and tendon patterning. Dev Cell 18(1):148–156. doi: 10.1016/j.devcel.2009.11.013 PubMedPubMedCentralCrossRefGoogle Scholar
  121. 121.
    Hasson P (2011) “Soft” tissue patterning: muscles and tendons of the limb take their form. Dev Dyn 240(5):1100–1107. doi: 10.1002/dvdy.22608 PubMedCrossRefGoogle Scholar
  122. 122.
    Wang H, Noulet F, Edom-Vovard F, Tozer S, Le Grand F, Duprez D (2010) Bmp signaling at the tips of skeletal muscles regulates the number of fetal muscle progenitors and satellite cells during development. Dev Cell 18(4):643–654. doi: 10.1016/j.devcel.2010.02.008 PubMedCrossRefGoogle Scholar
  123. 123.
    Lejard V, Blais F, Guerquin MJ, Bonnet A, Bonnin MA, Havis E, Malbouyres M, Bidaud CB, Maro G, Gilardi-Hebenstreit P, Rossert J, Ruggiero F, Duprez D (2011) EGR1 and EGR2 involvement in vertebrate tendon differentiation. J Biol Chem 286(7):5855–5867. doi: 10.1074/jbc.M110.153106 PubMedCrossRefGoogle Scholar
  124. 124.
    Edom-Vovard F, Schuler B, Bonnin MA, Teillet MA, Duprez D (2002) Fgf4 positively regulates scleraxis and tenascin expression in chick limb tendons. Dev Biol 247(2):351–366PubMedCrossRefGoogle Scholar
  125. 125.
    Kutchuk L, Laitala A, Soueid-Bomgarten S, Shentzer P, Rosendahl AH, Eilot S, Grossman M, Sagi I, Sormunen R, Myllyharju J, Maki JM, Hasson P (2015) Muscle composition is regulated by a Lox-TGFβ feedback loop. Development 142(5):983–993. doi: 10.1242/dev.113449 PubMedCrossRefGoogle Scholar
  126. 126.
    Tozer S, Bonnin MA, Relaix F, Di Savino S, Garcia-Villalba P, Coumailleau P, Duprez D (2007) Involvement of vessels and PDGFB in muscle splitting during chick limb development. Development 134(14):2579–2591. doi: 10.1242/dev.02867 PubMedCrossRefGoogle Scholar
  127. 127.
    Mourikis P, Tajbakhsh S (2014) Distinct contextual roles for Notch signalling in skeletal muscle stem cells. BMC Dev Biol 14:2. doi: 10.1186/1471-213X-14-2 PubMedPubMedCentralCrossRefGoogle Scholar
  128. 128.
    Prols F, Sagar, Scaal M (2016) Signaling filopodia in vertebrate embryonic development. Cell Mol Life Sci 73(5):961–974. doi: 10.1007/s00018-015-2097-6 PubMedCrossRefGoogle Scholar
  129. 129.
    Muller P, Rogers KW, Yu SR, Brand M, Schier AF (2013) Morphogen transport. Development 140(8):1621–1638. doi: 10.1242/dev.083519 PubMedPubMedCentralCrossRefGoogle Scholar
  130. 130.
    Sagar, Prols F, Wiegreffe C, Scaal M (2015) Communication between distant epithelial cells by filopodia-like protrusions during embryonic development. Development 142(4):665–671. doi: 10.1242/dev.115964 PubMedCrossRefGoogle Scholar
  131. 131.
    Sanders TA, Llagostera E, Barna M (2013) Specialized filopodia direct long-range transport of SHH during vertebrate tissue patterning. Nature 497(7451):628–632. doi: 10.1038/nature12157 PubMedPubMedCentralCrossRefGoogle Scholar
  132. 132.
    Ayers KL, Mteirek R, Cervantes A, Lavenant-Staccini L, Therond PP, Gallet A (2012) Dally and Notum regulate the switch between low and high level Hedgehog pathway signalling. Development 139(17):3168–3179. doi: 10.1242/dev.078402 PubMedCrossRefGoogle Scholar
  133. 133.
    Venters SJ, Thorsteinsdóttir S, Duxson MJ (1999) Early development of the myotome in the mouse. Dev Dyn 216(3):219–232PubMedCrossRefGoogle Scholar
  134. 134.
    Brent AE, Tabin CJ (2004) FGF acts directly on the somitic tendon progenitors through the Ets transcription factors Pea3 and Erm to regulate scleraxis expression. Development 131(16):3885–3896. doi: 10.1242/dev.01275 PubMedCrossRefGoogle Scholar
  135. 135.
    Tosney KW (1987) Proximal tissues and patterned neurite outgrowth at the lumbosacral level of the chick embryo: deletion of the dermamyotome. Dev Biol 122(2):540–558PubMedCrossRefGoogle Scholar
  136. 136.
    Kablar B, Rudnicki MA (1999) Development in the absence of skeletal muscle results in the sequential ablation of motor neurons from the spinal cord to the brain. Dev Biol 208(1):93–109PubMedCrossRefGoogle Scholar
  137. 137.
    Chal J, Oginuma M, Al Tanoury Z, Gobert B, Sumara O, Hick A, Bousson F, Zidouni Y, Mursch C, Moncuquet P, Tassy O, Vincent S, Miyanari A, Bera A, Garnier JM, Guevara G, Hestin M, Kennedy L, Hayashi S, Drayton B, Cherrier T, Gayraud-Morel B, Gussoni E, Relaix F, Tajbakhsh S, Pourquie O (2015) Differentiation of pluripotent stem cells to muscle fiber to model Duchenne muscular dystrophy. Nat Biotechnol 33(9):962–969. doi: 10.1038/nbt.3297 PubMedCrossRefGoogle Scholar
  138. 138.
    Rooney JE, Knapp JR, Hodges BL, Wuebbles RD, Burkin DJ (2012) Laminin-111 protein therapy reduces muscle pathology and improves viability of a mouse model of merosin-deficient congenital muscular dystrophy. Am J Pathol 180(4):1593–1602. doi: 10.1016/j.ajpath.2011.12.019 PubMedPubMedCentralCrossRefGoogle Scholar
  139. 139.
    von Maltzahn J, Renaud JM, Parise G, Rudnicki MA (2012) Wnt7a treatment ameliorates muscular dystrophy. Proc Natl Acad Sci USA 109(50):20614–20619. doi: 10.1073/pnas.1215765109 CrossRefGoogle Scholar
  140. 140.
    Kawashima K, Fujii T (2008) Basic and clinical aspects of non-neuronal acetylcholine: overview of non-neuronal cholinergic systems and their biological significance. J Pharmacol Sci 106(2):167–173PubMedCrossRefGoogle Scholar
  141. 141.
    Wu H, Xiong WC, Mei L (2010) To build a synapse: signaling pathways in neuromuscular junction assembly. Development 137(7):1017–1033. doi: 10.1242/dev.038711 PubMedPubMedCentralCrossRefGoogle Scholar
  142. 142.
    Xiao YT, Xiang LX, Shao JZ (2007) Bone morphogenetic protein. Biochem Biophys Res Commun 362(3):550–553. doi: 10.1016/j.bbrc.2007.08.045 PubMedCrossRefGoogle Scholar
  143. 143.
    Bragdon B, Moseychuk O, Saldanha S, King D, Julian J, Nohe A (2011) Bone morphogenetic proteins: a critical review. Cell Signal 23(4):609–620. doi: 10.1016/j.cellsig.2010.10.003 PubMedCrossRefGoogle Scholar
  144. 144.
    Li X, Wang C, Xiao J, McKeehan WL, Wang F (2016) Fibroblast growth factors, old kids on the new block. Semin Cell Dev Biol. doi: 10.1016/j.semcdb.2015.12.014 Google Scholar
  145. 145.
    Eswarakumar VP, Lax I, Schlessinger J (2005) Cellular signaling by fibroblast growth factor receptors. Cytokine Growth Factor Rev 16(2):139–149. doi: 10.1016/j.cytogfr.2005.01.001 PubMedCrossRefGoogle Scholar
  146. 146.
    Maki JM (2009) Lysyl oxidases in mammalian development and certain pathological conditions. Histol Histopathol 24(5):651–660PubMedGoogle Scholar
  147. 147.
    Csiszar K (2001) Lysyl oxidases: a novel multifunctional amine oxidase family. Prog Nucleic Acid Res Mol Biol 70:1–32PubMedCrossRefGoogle Scholar
  148. 148.
    Newbern J, Birchmeier C (2010) Nrg1/ErbB signaling networks in Schwann cell development and myelination. Semin Cell Dev Biol 21(9):922–928. doi: 10.1016/j.semcdb.2010.08.008 PubMedPubMedCentralCrossRefGoogle Scholar
  149. 149.
    Britsch S (2007) The neuregulin-I/ErbB signaling system in development and disease. Adv Anat Embryol Cell Biol 190:1–65PubMedCrossRefGoogle Scholar
  150. 150.
    Demoulin JB, Essaghir A (2014) PDGF receptor signaling networks in normal and cancer cells. Cytokine Growth Factor Rev 25(3):273–283. doi: 10.1016/j.cytogfr.2014.03.003 PubMedCrossRefGoogle Scholar
  151. 151.
    Birchmeier C, Gherardi E (1998) Developmental roles of HGF/SF and its receptor, the c-Met tyrosine kinase. Trends Cell Biol 8(10):404–410PubMedCrossRefGoogle Scholar
  152. 152.
    Zhang YW, Vande Woude GF (2003) HGF/SF-met signaling in the control of branching morphogenesis and invasion. J Cell Biochem 88(2):408–417. doi: 10.1002/jcb.10358 PubMedCrossRefGoogle Scholar
  153. 153.
    Yang J, Andre P, Ye L, Yang YZ (2015) The Hedgehog signalling pathway in bone formation. Int J Oral Sci 7(2):73–79. doi: 10.1038/ijos.2015.14 PubMedPubMedCentralCrossRefGoogle Scholar
  154. 154.
    Teperino R, Aberger F, Esterbauer H, Riobo N, Pospisilik JA (2014) Canonical and non-canonical Hedgehog signalling and the control of metabolism. Semin Cell Dev Biol 33:81–92. doi: 10.1016/j.semcdb.2014.05.007 PubMedCrossRefGoogle Scholar
  155. 155.
    Maksym RB, Tarnowski M, Grymula K, Tarnowska J, Wysoczynski M, Liu R, Czerny B, Ratajczak J, Kucia M, Ratajczak MZ (2009) The role of stromal-derived factor-1–CXCR7 axis in development and cancer. Eur J Pharmacol 625(1–3):31–40. doi: 10.1016/j.ejphar.2009.04.071 PubMedPubMedCentralCrossRefGoogle Scholar
  156. 156.
    Komiya Y, Habas R (2008) Wnt signal transduction pathways. Organogenesis 4(2):68–75PubMedPubMedCentralCrossRefGoogle Scholar
  157. 157.
    Stanganello E, Scholpp S (2016) Role of cytonemes in Wnt transport. J Cell Sci. doi: 10.1242/jcs.182469 PubMedGoogle Scholar

Copyright information

© Springer International Publishing 2016

Authors and Affiliations

  1. 1.Centro de Ecologia, Evolução e Alterações Ambientais, Departamento de Biologia Animal, Faculdade de CiênciasUniversidade de LisboaLisbonPortugal

Personalised recommendations