Advertisement

Cellular and Molecular Life Sciences

, Volume 73, Issue 19, pp 3711–3718 | Cite as

Liposarcoma: molecular targets and therapeutic implications

  • Kate Lynn J. Bill
  • Lucia Casadei
  • Bethany C. Prudner
  • Hans Iwenofu
  • Anne M. Strohecker
  • Raphael E. PollockEmail author
Review

Abstract

Liposarcoma (LPS) is the most common soft tissue sarcoma and accounts for approximately 20 % of all adult sarcomas. Current treatment modalities (surgery, chemotherapy, and radiotherapy) all have limitations; therefore, molecularly driven studies are needed to improve the identification and increased understanding of genetic and epigenetic deregulations in LPS if we are to successfully target specific tumorigenic drivers. It can be anticipated that such biology-driven therapeutics will improve treatments by selectively deleting cancer cells while sparing normal tissues. This review will focus on several therapeutically actionable molecular markers identified in well-differentiated LPS and dedifferentiated LPS, highlighting their potential clinical applicability.

Keywords

Dedifferentiated liposarcoma Biomarker miRNAs MDM2 Exosome 12q13–15 amplicons Molecular-cytogenetic analysis 

Notes

Acknowledgments

The authors would like to acknowledge Dr. Julie Bridge from the Department of Pathology, University of Nebraska who graciously provided the Fluorescence In Situ Hybridization (FISH) image.

Compliance with ethical standards

Funding

This review was supported by the NCI U54CA168512 to REP.

References

  1. 1.
    American Cancer Society (2015) Cancer facts & figures 2015. American Cancer Society, AtlantaGoogle Scholar
  2. 2.
    Fletcher CDM, Bridge J, Hogendoorn P et al (2013) World Health Organization Classification of tumours pathology and genetics of tumours of soft tissue and bone, 4th edn. IARC Press, LyonGoogle Scholar
  3. 3.
    Doyle LA (2014) Sarcoma classification: an update based on the 2013 World Health Organization Classification of tumors of soft tissue and bone. Cancer 120:1763–1774. doi: 10.1002/cncr.28657 CrossRefPubMedGoogle Scholar
  4. 4.
    Dalal KM, Kattan MW, Antonescu CR et al (2006) Subtype specific prognostic nomogram for patients with primary liposarcoma of the retroperitoneum, extremity, or trunk. Ann Surg 244:381–391. doi: 10.1097/01.sla.0000234795.98607.00 PubMedPubMedCentralGoogle Scholar
  5. 5.
    Bonvalot S, Rivoire M, Castaing M et al (2009) Primary retroperitoneal sarcomas: a multivariate analysis of surgical factors associated with local control. J Clin Oncol 27:31–37. doi: 10.1200/JCO.2008.18.0802 CrossRefGoogle Scholar
  6. 6.
    Dei Tos AP (2000) Liposarcoma: new entities and evolving concepts. Ann Diagn Pathol 4:252–266. doi: 10.1053/adpa.2000.8133 CrossRefGoogle Scholar
  7. 7.
    Lahat G, Anaya DA, Wang X et al (2008) Resectable well-differentiated versus dedifferentiated liposarcomas: two different diseases possibly requiring different treatment approaches. Ann Surg Oncol 15:1585–1593. doi: 10.1245/s10434-007-9805-x CrossRefPubMedGoogle Scholar
  8. 8.
    Azumi N, Curtis J, Kempson RL, Hendrickson MR (1987) Atypical and malignant neoplasms showing lipomatous differentiation. A study of 111 cases. Am J Surg Pathol 11:161–183CrossRefPubMedGoogle Scholar
  9. 9.
    Keung EZ, Hornick JL, Bertagnolli MM et al (2014) Predictors of outcomes in patients with primary retroperitoneal dedifferentiated liposarcoma undergoing surgery. J Am Coll Surg 218:206–217. doi: 10.1016/j.jamcollsurg.2013.10.009 CrossRefPubMedGoogle Scholar
  10. 10.
    Fabre-Guillevin E, Coindre J-M, de Saint Aubain Somerhausen N et al (2006) Retroperitoneal liposarcomas: follow-up analysis of dedifferentiation after clinicopathologic reexamination of 86 liposarcomas and malignant fibrous histiocytomas. Cancer 106:2725–2733CrossRefPubMedGoogle Scholar
  11. 11.
    Singer S, Antonescu CR, Riedel E, Brennan MF (2003) Histologic subtype and margin of resection predict pattern of recurrence and survival for retroperitoneal liposarcoma. Ann Surg 238:358–70. doi: 10.1097/01.sla.0000086542.11899.38 (Discussion 370–371)
  12. 12.
    Evans HL (1979) Liposarcoma: a study of 55 cases with a reassessment of its classification. Am J Surg Pathol 3:507–523CrossRefPubMedGoogle Scholar
  13. 13.
    Ghadimi MP, Al-Zaid T, Madewell J et al (2011) Diagnosis, management, and outcome of patients with dedifferentiated liposarcoma systemic metastasis. Ann Surg Oncol 18:3762–3770. doi: 10.1245/s10434-011-1794-0 CrossRefGoogle Scholar
  14. 14.
    Evans HL, Khurana KK, Kemp BL, Ayala AG (1994) Heterologous elements in the dedifferentiated component of dedifferentiated liposarcoma. Am J Surg Pathol 18:1150–1157CrossRefPubMedGoogle Scholar
  15. 15.
    Henricks WH, Chu YC, Goldblum JR, Weiss SW (1997) Dedifferentiated liposarcoma: a clinicopathological analysis of 155 cases with a proposal for an expanded definition of dedifferentiation. Am J Surg Pathol 21:271–281CrossRefPubMedGoogle Scholar
  16. 16.
    Tseng WW, Madewell JE, Wei W et al (2014) Locoregional disease patterns in well-differentiated and dedifferentiated retroperitoneal liposarcoma: implications for the extent of resection? Ann Surg Oncol 21:2136–2143. doi: 10.1245/s10434-014-3643-4 CrossRefPubMedGoogle Scholar
  17. 17.
    Thway K, Jones RL, Noujaim J et al (2016) Dedifferentiated Liposarcoma: updates on morphology, genetics, and therapeutic strategies. Adv Anat Pathol 23:30–40. doi: 10.1097/PAP.0000000000000101 CrossRefPubMedGoogle Scholar
  18. 18.
    Evans HL (1979) Liposarcoma a study of 55 cases with a reassessment of its classification. Am J Surg Pathol 3(6):507–523CrossRefPubMedGoogle Scholar
  19. 19.
    Henricks WH, Chu YC, Goldblum JR, Weiss SW (1997) Dedifferentiated Liposarcoma: a clinicopathological analysis of 155 cases with a proposal for an expanded definition of dedifferentiation. Am J Clin Pathol 21:271–281Google Scholar
  20. 20.
    Evans HL, Khurana KK, Kemp BL, Ayala AG (1994) Heterologous elements in the dedifferentiated components of dedifferentiated liposarcoma. Am J Clin Pathol 18:1077–1182Google Scholar
  21. 21.
    Mariño-Enríquez A, Fletcher CDM, Dal Cin P, Hornick JL (2010) Dedifferentiated liposarcoma with “homologous” lipoblastic (pleomorphic liposarcoma-like) differentiation: clinicopathologic and molecular analysis of a series suggesting revised diagnostic criteria. Am J Surg Pathol 34:1122–1131. doi: 10.1097/PAS.0b013e3181e5dc49 CrossRefPubMedGoogle Scholar
  22. 22.
    Boland JM, Weiss SW, Oliveira AM et al (2010) Liposarcomas with mixed well-differentiated and pleomorphic features: a clinicopathologic study of 12 cases. Am J Surg Pathol 34:837–843. doi: 10.1097/PAS.0b013e3181dbf2f7 CrossRefPubMedGoogle Scholar
  23. 23.
    Mandahl N, Höglund M, Mertens F et al (1994) Cytogenetic aberrations in 188 benign and borderline adipose tissue tumors. Genes Chromosomes Cancer 9:207–215CrossRefPubMedGoogle Scholar
  24. 24.
    Szymanska J, Virolainen M, Tarkkanen M et al (1997) Overrepresentation of 1q21–23 and 12q13–21 in lipoma-like liposarcomas but not in benign lipomas: a comparative genomic hybridization study. Cancer Genet Cytogenet 99:14–18CrossRefPubMedGoogle Scholar
  25. 25.
    Crago AM, Singer S (2011) Clinical and molecular approaches to well differentiated and dedifferentiated liposarcoma. Curr Opin Oncol 23:373–378. doi: 10.1097/CCO.0b013e32834796e6 CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Italiano A, Bianchini L, Gjernes E et al (2009) Clinical and biological significance of CDK4 amplification in well-differentiated and dedifferentiated liposarcomas. Clin Cancer Res 15:5696–5703. doi: 10.1158/1078-0432.CCR-08-3185 CrossRefPubMedGoogle Scholar
  27. 27.
    Pilotti S, Della Torre G, Lavarino C et al (1998) Molecular abnormalities in liposarcoma: role of MDM2 and CDK4-containing amplicons at 12q13–22. J Pathol 185:188–190. doi: 10.1002/(SICI)1096-9896(199806)185:2<188:AID-PATH53>3.0.CO;2-2 CrossRefPubMedGoogle Scholar
  28. 28.
    Dei Tos AP, Doglioni C, Piccinin S et al (2000) Coordinated expression and amplification of the MDM2, CDK4, and HMGI-C genes in atypical lipomatous tumours. J Pathol 190:531–536CrossRefPubMedGoogle Scholar
  29. 29.
    Segura-Sánchez J, González-Cámpora R, Pareja-Megia MJ et al (2006) Chromosome-12 copy number alterations and MDM2, CDK4 and TP53 expression in soft tissue liposarcoma. Anticancer Res 26:4937–4942PubMedGoogle Scholar
  30. 30.
    Shimoji T, Kanda H, Kitagawa T et al (2004) Clinico-molecular study of dedifferentiation in well-differentiated liposarcoma. Biochem Biophys Res Commun 314:1133–1140CrossRefPubMedGoogle Scholar
  31. 31.
    Matushansky I, Hernando E, Socci ND et al (2008) A developmental model of sarcomagenesis defines a differentiation-based classification for liposarcomas. Am J Pathol 172:1069–1080. doi: 10.2353/ajpath.2008.070284 CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Kollár A, Benson C (2014) Current management options for liposarcoma and challenges for the future. Expert Rev Anticancer Ther 14:297–306. doi: 10.1586/14737140.2014.869173 CrossRefPubMedGoogle Scholar
  33. 33.
    Bill KLJ, Garnett J, Meaux I et al (2016) SAR405838: a novel and potent inhibitor of the MDM2:p53 axis for the treatment of dedifferentiated liposarcoma. Clin Cancer Res 22:1150–1160. doi: 10.1158/1078-0432.CCR-15-1522 CrossRefPubMedGoogle Scholar
  34. 34.
    Zhang Y-X, Sicinska E, Czaplinski JT et al (2014) Antiproliferative Effects of CDK4/6 inhibition in CDK4-amplified human liposarcoma in vitro and in vivo. Mol Cancer Ther 13:2184–2193. doi: 10.1158/1535-7163.MCT-14-0387 CrossRefPubMedGoogle Scholar
  35. 35.
    Sandberg AA (2004) Updates on the cytogenetics and molecular genetics of bone and soft tissue tumors: liposarcoma. Cancer Genet Cytogenet 155:1–24. doi: 10.1016/j.cancergencyto.2004.08.005 CrossRefPubMedGoogle Scholar
  36. 36.
    Wang X, Asmann YW, Erickson-johnson MR et al (2011) High-resolution genomic mapping reveals consistent amplification of the fibroblast growth factor receptor substrate 2 gene in well-differentiated and dedifferentiated liposarcoma. Genes Chromosomes Cancer 858:849–858. doi: 10.1002/gcc CrossRefGoogle Scholar
  37. 37.
    Haluska FG, Huebner K, Isobe M et al (1988) Localization of the human JUN protooncogene to chromosome region 1p31-32. Proc Natl Acad Sci USA 85:2215–2218CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Mariani O, Brennetot C, Coindre J-M et al (2007) JUN oncogene amplification and overexpression block adipocytic differentiation in highly aggressive sarcomas. Cancer Cell 11:361–374. doi: 10.1016/j.ccr.2007.02.007 CrossRefPubMedGoogle Scholar
  39. 39.
    Snyder EL, Sandstrom DJ, Law K et al (2009) c-Jun amplification and overexpression are oncogenic in liposarcoma but not always sufficient to inhibit the adipocytic differentiation programme. J Pathol 218:292–300. doi: 10.1002/path.2564 CrossRefPubMedGoogle Scholar
  40. 40.
    Chibon F, Mariani O, Derré J et al (2004) ASK1 (MAP3K5) as a potential therapeutic target in malignant fibrous histiocytomas with 12q14–q15 and 6q23 amplifications. Genes Chromosomes Cancer 40:32–37. doi: 10.1002/gcc.20012 CrossRefPubMedGoogle Scholar
  41. 41.
    Schmidt H, Bartel F, Kappler M et al (2005) Gains of 13q are correlated with a poor prognosis in liposarcoma. Mod Pathol 18:638–644. doi: 10.1038/modpathol.3800326 CrossRefPubMedGoogle Scholar
  42. 42.
    Wisdom R, Johnson RS, Moore C (1999) c-Jun regulates cell cycle progression and apoptosis by distinct mechanisms. EMBO J 18:188–197. doi: 10.1093/emboj/18.1.188 CrossRefPubMedGoogle Scholar
  43. 43.
    Cortner J, Vande Woude GF, Rong S (1995) The Met-HGF/SF autocrine signaling mechanism is involved in sarcomagenesis. EXS 74:89–121PubMedGoogle Scholar
  44. 44.
    Rong S, Jeffers M, Resau JH et al (1993) Met Expression and sarcoma tumorigenicity. Cancer Res 53:5355–5360PubMedGoogle Scholar
  45. 45.
    Ferracini R, Olivero M, Di Renzo MF et al (1996) Retrogenic expression of the MET proto-oncogene correlates with the invasive phenotype of human rhabdomyosarcomas. Oncogene 12:1697–1705PubMedGoogle Scholar
  46. 46.
    Rao UN, Sonmez-Alpan E, Michalopoulos GK (1997) Hepatocyte growth factor and c-MET in benign and malignant peripheral nerve sheath tumors. Hum Pathol 28:1066–1070CrossRefPubMedGoogle Scholar
  47. 47.
    Torres KE, Zhu Q-S, Bill K et al (2011) Activated MET is a molecular prognosticator and potential therapeutic target for malignant peripheral nerve sheath tumors. Clin Cancer Res 17:3943–3955. doi: 10.1158/1078-0432.CCR-11-0193 CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Que W, Chen J (2011) Knockdown of c-Met inhibits cell proliferation and invasion and increases chemosensitivity to doxorubicin in human multiple myeloma U266 cells in vitro. Mol Med Rep 4:343–349. doi: 10.3892/mmr.2011.426 PubMedGoogle Scholar
  49. 49.
    Peng T, Zhang P, Liu J et al (2011) An experimental model for the study of well-differentiated and dedifferentiated liposarcoma; deregulation of targetable tyrosine kinase receptors. Lab Invest 91:392–403. doi: 10.1038/labinvest.2010.185 CrossRefPubMedGoogle Scholar
  50. 50.
    Bill KLJ, Garnett J, Ma X et al (2015) The hepatocyte growth factor receptor as a potential therapeutic target for dedifferentiated liposarcoma. Lab Investig 95:951–961. doi: 10.1038/labinvest.2015.62 CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Bill KLJ, Pollock RE, Chen J (2015) Sensitivity to doxorubicin and MDM2 inhibitors correlate with MDM2 levels in dedifferentiated liposarcoma (abstract). In: 20th Annual meeting Connective Tissue Oncology SocietyGoogle Scholar
  52. 52.
    Ugras S, Brill E, Jacobsen A et al (2011) Small RNA sequencing and functional characterization reveals microRNA-143 tumor suppressor activity in liposarcoma. Cancer Res 71:5659–5669. doi: 10.1158/0008-5472 CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Gits CMM, Van Kuijk PF, Jonkers MBE et al (2014) MicroRNA expression profiles distinguish liposarcoma subtypes and implicate miR-145 and miR-451 as tumor suppressors. Int J Cancer 135:348–361. doi: 10.1002/ijc.28694 CrossRefPubMedGoogle Scholar
  54. 54.
    Lee DH, Amanat S, Goff C et al (2013) Overexpression of miR-26a-2 in human liposarcoma is correlated with poor patient survival. Oncogenesis 2:e47. doi: 10.1038/oncsis.2013.10 CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Zhang P, Bill K, Liu J et al (2012) MiR-155 is a liposarcoma oncogene that targets casein kinase-1α and enhances β-catenin signaling. Cancer Res 72:1751–1762. doi: 10.1158/0008-5472.CAN-11-3027 CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Valadi H, Ekström K, Bossios A et al (2007) Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat Cell Biol 9:654–659. doi: 10.1038/ncb1596 CrossRefPubMedGoogle Scholar
  57. 57.
    Kinet V, Halkein J, Dirkx E, De Windt LJ (2013) Cardiovascular extracellular microRNAs: emerging diagnostic markers and mechanisms of cell-to-cell RNA communication. Front Genet 4:214. doi: 10.3389/fgene.2013.00214 CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Fabbri M, Paone A, Calore F et al (2012) MicroRNAs bind to Toll-like receptors to induce prometastatic inflammatory response. PNAS 109:2110–2116. doi:10.1073/pnas.1209414109/-/DCSupplemental.www.pnas.org/cgi/doi/10.1073/pnas.1209414109Google Scholar
  59. 59.
    Strimbu K, Tavel JA (2010) What are biomarkers? Curr Opin HIV AIDS 5:463–466. doi: 10.1097/COH.0b013e32833ed177 CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Panotopoulos J, Posch F, Alici B et al (2015) Hemoglobin, alkalic phosphatase, and C-reactive protein predict the outcome in patients with liposarcoma. J Orthop Res 33:765–770. doi: 10.1002/jor.22827 CrossRefPubMedGoogle Scholar
  61. 61.
    Panotopoulos J, Posch F, Funovics PT et al (2015) Elevated serum creatinine and low albumin are associated with poor outcomes in patients with liposarcoma. J Orthop Res. doi: 10.1002/jor.23002
  62. 62.
    Ballman KV (2015) Biomarker: predictive or prognostic? doi: 10.1200/JCO.2015.63.3651
  63. 63.
    Schwarzenbach H, Nishida N, Calin GA, Pantel K (2014) Clinical relevance of circulating cell-free microRNAs in cancer. Nat Rev Clin Oncol 11:145–156. doi: 10.1038/nrclinonc.2014.5 CrossRefPubMedGoogle Scholar
  64. 64.
    Subramanian S, Lui WO, Lee CH et al (2008) MicroRNA expression signature of human sarcomas. Oncogene 27:2015–2026. doi: 10.1038/sj.onc.1210836 CrossRefPubMedGoogle Scholar
  65. 65.
    Sarver AL, Phalak R, Thayanithy V, Subramanian S (2010) S-MED: sarcoma microRNA expression database. Lab Investig 90:753–761. doi: 10.1038/labinvest.2010.53 CrossRefPubMedGoogle Scholar
  66. 66.
    Renner M, Czwan E, Hartmann W et al (2012) MicroRNA profiling of primary high-grade soft tissue sarcomas. Genes Chromosomes Cancer 51:982–996. doi: 10.1002/gcc.21980 CrossRefPubMedGoogle Scholar
  67. 67.
    Zhou Y, Zhang Y, Huang Y et al (2014) Liposarcoma miRNA signatures identified from genome-wide miRNA expression profiling. Future Oncol 10:1373–1386. doi: 10.2217/fon.14.90 CrossRefGoogle Scholar
  68. 68.
    Taylor BS, DeCarolis PL, Angeles CV et al (2011) Frequent alterations and epigenetic silencing of differentiation pathway genes in structurally rearranged liposarcomas. Cancer Discov 1:587–597. doi: 10.1158/2159-8290.CD-11-0181 CrossRefPubMedPubMedCentralGoogle Scholar
  69. 69.
    Pichler M, Calin GA (2015) MicroRNAs in cancer: from developmental genes in worms to their clinical application in patients. Br J Cancer 113:1–5. doi: 10.1038/bjc.2015.253 CrossRefGoogle Scholar
  70. 70.
    Redis RS, Calin S, Yang Y et al (2012) Cell-to-cell miRNA transfer: from body homeostasis to therapy. Pharmacol Ther 136:169–174. doi: 10.1016/j.pharmthera.2012.08.003 CrossRefPubMedGoogle Scholar
  71. 71.
    Taylor DD, Gercel-Taylor C (2013) The origin, function, and diagnostic potential of RNA within extracellular vesicles present in human biological fluids. Front Genet 4:1–12. doi: 10.3389/fgene.2013.00142 CrossRefGoogle Scholar
  72. 72.
    Ma R, Jiang T, Kang X (2012) Circulating microRNAs in cancer: origin, function and application. J Exp Clin Cancer Res 31:38. doi: 10.1186/1756-9966-31-38 CrossRefPubMedPubMedCentralGoogle Scholar
  73. 73.
    Miyachi M, Tsuchiya K, Yoshida H et al (2010) Circulating muscle-specific microRNA, miR-206, as a potential diagnostic marker for rhabdomyosarcoma. Biochem Biophys Res Commun 400:89–93. doi: 10.1016/j.bbrc.2010.08.015 CrossRefPubMedGoogle Scholar
  74. 74.
    Weng Y, Chen Y, Chen J et al (2013) Identification of serum microRNAs in genome-wide serum microRNA expression profiles as novel noninvasive biomarkers for malignant peripheral nerve sheath tumor diagnosis. Med Oncol 30:531–536. doi: 10.1007/s12032-013-0531-x CrossRefPubMedGoogle Scholar
  75. 75.
    Fricke A, Ullrich PV, Heinz J et al (2015) Identification of a blood-borne miRNA signature of synovial sarcoma. Mol Cancer 14:151. doi: 10.1186/s12943-015-0424-z CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing 2016

Authors and Affiliations

  • Kate Lynn J. Bill
    • 1
    • 2
  • Lucia Casadei
    • 1
    • 2
  • Bethany C. Prudner
    • 1
    • 2
  • Hans Iwenofu
    • 1
    • 3
  • Anne M. Strohecker
    • 1
    • 2
    • 4
  • Raphael E. Pollock
    • 1
    • 2
    Email author
  1. 1.The James Comprehensive Cancer CenterThe Ohio State UniversityColumbusUSA
  2. 2.Division of Surgical Oncology, Department of Surgery, Wexner Medical CenterThe Ohio State UniversityColumbusUSA
  3. 3.Department of PathologyThe Ohio State UniversityColumbusUSA
  4. 4.Department of Molecular Virology, Immunology, and Medical GeneticsThe Ohio State UniversityColumbusUSA

Personalised recommendations