Cellular and Molecular Life Sciences

, Volume 73, Issue 21, pp 3971–3989 | Cite as

The third dimension: new developments in cell culture models for colorectal research

  • Joana F. S. Pereira
  • Nikhil T. Awatade
  • Cláudia A. Loureiro
  • Paulo Matos
  • Margarida D. Amaral
  • Peter Jordan


Cellular models are important tools in various research areas related to colorectal biology and associated diseases. Herein, we review the most widely used cell lines and the different techniques to grow them, either as cell monolayer, polarized two-dimensional epithelia on membrane filters, or as three-dimensional spheres in scaffold-free or matrix-supported culture conditions. Moreover, recent developments, such as gut-on-chip devices or the ex vivo growth of biopsy-derived organoids, are also discussed. We provide an overview on the potential applications but also on the limitations for each of these techniques, while evaluating their contribution to provide more reliable cellular models for research, diagnostic testing, or pharmacological validation related to colon physiology and pathophysiology.


3D culture Cell culture model Cell polarization Cell spheroids Colon Colorectal cancer Cystic fibrosis Epithelial chloride transport Inflammatory bowel disease Organoids Small intestine 



Cystic fibrosis


CF transmembrane conductance regulator


Inflammatory bowel disease


Extracellular matrix


Transepithelial electrical resistance


Tight junction

2D or 3D

Two- or three-dimensional



Work in the authors’ laboratories is supported by Fundação para a Ciência e Tecnologia (FCT) through center Grant UID/MULTI/04046/2013 (to BioISI), by research grants from FCT, Portugal (PTDC/BIM-MEC/2131/2014), CFF-Cystic Fibrosis Foundation, USA (AMARAL15XX0, AMARAL15XX1), Gilead GÉNESE-Portugal Programme (PGG/008/2015); CF Trust, UK (SRC 003) to MDA, and from Portuguese association for inflammatory bowel disease (GEDII 2013), Portuguese association Maratona da Saúde (Cancro 2014), Portugal to PJ. J.F.P. was supported by fellowships BRJ-DGH 2012_oncologia from Instituto Nacional de Saúde Doutor Ricardo Jorge (Lisbon, Portugal) and BD/109162/2015 from FCT.


  1. 1.
    Zhang K, Hornef MW, Dupont A (2015) The intestinal epithelium as guardian of gut barrier integrity: the epithelium as a barrier to infection. Cell Microbiol 17:1561–1569. doi: 10.1111/cmi.12501 PubMedCrossRefGoogle Scholar
  2. 2.
    Radtke F, Clevers H (2005) Self-renewal and cancer of the gut: two sides of a coin. Science 307:1904–1909. doi: 10.1126/science.1104815 PubMedCrossRefGoogle Scholar
  3. 3.
    Sambuy Y, De Angelis I, Ranaldi G et al (2005) The Caco-2 cell line as a model of the intestinal barrier: influence of cell and culture-related factors on Caco-2 cell functional characteristics. Cell Biol Toxicol 21:1–26. doi: 10.1007/s10565-005-0085-6 PubMedCrossRefGoogle Scholar
  4. 4.
    Liang GH, Weber CR (2014) Molecular aspects of tight junction barrier function. Curr Opin Pharmacol 19:84–89. doi: 10.1016/j.coph.2014.07.017 PubMedPubMedCentralCrossRefGoogle Scholar
  5. 5.
    Suzuki T (2013) Regulation of intestinal epithelial permeability by tight junctions. Cell Mol Life Sci CMLS 70:631–659. doi: 10.1007/s00018-012-1070-x PubMedCrossRefGoogle Scholar
  6. 6.
    De Bosscher K, Hill CS, Nicolás FJ (2004) Molecular and functional consequences of Smad4 C-terminal missense mutations in colorectal tumour cells. Biochem J 379:209–216. doi: 10.1042/BJ20031886 PubMedPubMedCentralCrossRefGoogle Scholar
  7. 7.
    Forbes SA, Bindal N, Bamford S et al (2011) COSMIC: mining complete cancer genomes in the Catalogue of Somatic Mutations in Cancer. Nucleic Acids Res 39:D945–D950. doi: 10.1093/nar/gkq929 PubMedCrossRefGoogle Scholar
  8. 8.
    Vachon PH, Beaulieu JF (1992) Transient mosaic patterns of morphological and functional differentiation in the Caco-2 cell line. Gastroenterology 103:414–423PubMedCrossRefGoogle Scholar
  9. 9.
    Vachon PH, Perreault N, Magny P, Beaulieu JF (1996) Uncoordinated, transient mosaic patterns of intestinal hydrolase expression in differentiating human enterocytes. J Cell Physiol 166:198–207. doi: 10.1002/(SICI)1097-4652(199601)166:1<198:AID-JCP21>3.0.CO;2-A PubMedCrossRefGoogle Scholar
  10. 10.
    Kim HJ, Ingber DE (2013) Gut-on-a-chip microenvironment induces human intestinal cells to undergo villus differentiation. Integr Biol Quant Biosci Nano Macro 5:1130–1140. doi: 10.1039/c3ib40126j Google Scholar
  11. 11.
    Meunier V, Bourrié M, Berger Y, Fabre G (1995) The human intestinal epithelial cell line Caco-2; pharmacological and pharmacokinetic applications. Cell Biol Toxicol 11:187–194PubMedCrossRefGoogle Scholar
  12. 12.
    Peterson MD, Mooseker MS (1992) Characterization of the enterocyte-like brush border cytoskeleton of the C2BBe clones of the human intestinal cell line, Caco-2. J Cell Sci 102(Pt 3):581–600PubMedGoogle Scholar
  13. 13.
    des Rieux A, Fievez V, Théate I et al (2007) An improved in vitro model of human intestinal follicle-associated epithelium to study nanoparticle transport by M cells. Eur J Pharm Sci Off J Eur Fed Pharm Sci 30:380–391. doi: 10.1016/j.ejps.2006.12.006 Google Scholar
  14. 14.
    Gullberg E, Leonard M, Karlsson J et al (2000) Expression of specific markers and particle transport in a new human intestinal M-cell model. Biochem Biophys Res Commun 279:808–813. doi: 10.1006/bbrc.2000.4038 PubMedCrossRefGoogle Scholar
  15. 15.
    Kerneis S (1997) Conversion by Peyer’s patch lymphocytes of human enterocytes into M cells that transport bacteria. Science 277:949–952. doi: 10.1126/science.277.5328.949 PubMedCrossRefGoogle Scholar
  16. 16.
    Corr SC, Gahan CCGM, Hill C (2008) M-cells: origin, morphology and role in mucosal immunity and microbial pathogenesis. FEMS Immunol Med Microbiol 52:2–12. doi: 10.1111/j.1574-695X.2007.00359.x PubMedCrossRefGoogle Scholar
  17. 17.
    Niedergang F, Kraehenbuhl JP (2000) Much ado about M cells. Trends Cell Biol 10:137–141PubMedCrossRefGoogle Scholar
  18. 18.
    Brayden DJ, Jepson MA, Baird AW (2005) Keynote review: intestinal Peyer’s patch M cells and oral vaccine targeting. Drug Discov Today 10:1145–1157. doi: 10.1016/S1359-6446(05)03536-1 PubMedCrossRefGoogle Scholar
  19. 19.
    Lai YH, D’Souza MJ (2008) Microparticle transport in the human intestinal M cell model. J Drug Target 16:36–42. doi: 10.1080/10611860701639848 PubMedCrossRefGoogle Scholar
  20. 20.
    Ahmed D, Eide PW, Eilertsen IA et al (2013) Epigenetic and genetic features of 24 colon cancer cell lines. Oncogenesis 2:e71. doi: 10.1038/oncsis.2013.35 PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Mouradov D, Sloggett C, Jorissen RN et al (2014) Colorectal cancer cell lines are representative models of the main molecular subtypes of primary cancer. Cancer Res 74:3238–3247. doi: 10.1158/0008-5472.CAN-14-0013 PubMedCrossRefGoogle Scholar
  22. 22.
    Chaudhuri O, Koshy ST, Branco da Cunha C et al (2014) Extracellular matrix stiffness and composition jointly regulate the induction of malignant phenotypes in mammary epithelium. Nat Mater 13:970–978. doi: 10.1038/nmat4009 PubMedCrossRefGoogle Scholar
  23. 23.
    Pickup MW, Mouw JK, Weaver VM (2014) The extracellular matrix modulates the hallmarks of cancer. EMBO Rep 15:1243–1253. doi: 10.15252/embr.201439246 PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Tung JC, Barnes JM, Desai SR et al (2015) Tumor mechanics and metabolic dysfunction. Free Radic Biol Med 79:269–280. doi: 10.1016/j.freeradbiomed.2014.11.020 PubMedCrossRefGoogle Scholar
  25. 25.
    Owen KA, Abshire MY, Tilghman RW et al (2011) FAK regulates intestinal epithelial cell survival and proliferation during mucosal wound healing. PLoS One 6:e23123. doi: 10.1371/journal.pone.0023123 PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Nukuda A, Sasaki C, Ishihara S et al (2015) Stiff substrates increase YAP-signaling-mediated matrix metalloproteinase-7 expression. Oncogenesis 4:e165. doi: 10.1038/oncsis.2015.24 PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Dolznig H, Rupp C, Puri C et al (2011) Modeling colon adenocarcinomas in vitro a 3D co-culture system induces cancer-relevant pathways upon tumor cell and stromal fibroblast interaction. Am J Pathol 179:487–501. doi: 10.1016/j.ajpath.2011.03.015 PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Goodwin TJ, Jessup JM, Wolf DA (1992) Morphologic differentiation of colon carcinoma cell lines HT-29 and HT-29KM in rotating-wall vessels. Vitro Cell Dev Biol J Tissue Cult Assoc 28A:47–60CrossRefGoogle Scholar
  29. 29.
    Paduch R, Kandefer-Szerszeń M, Piersiak T (2010) The importance of release of proinflammatory cytokines, ROS, and NO in different stages of colon carcinoma growth and metastasis after treatment with cytotoxic drugs. Oncol Res 18:419–436PubMedCrossRefGoogle Scholar
  30. 30.
    Straussman R, Morikawa T, Shee K et al (2012) Tumour micro-environment elicits innate resistance to RAF inhibitors through HGF secretion. Nature 487:500–504. doi: 10.1038/nature11183 PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Wilson TR, Fridlyand J, Yan Y et al (2012) Widespread potential for growth-factor-driven resistance to anticancer kinase inhibitors. Nature 487:505–509. doi: 10.1038/nature11249 PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Fath KR, Mamajiwalla SN, Burgess DR (1993) The cytoskeleton in development of epithelial cell polarity. J Cell Sci 1993:65–73. doi: 10.1242/jcs.1993.Supplement_17.10 CrossRefGoogle Scholar
  33. 33.
    Massey-Harroche D (2000) Epithelial cell polarity as reflected in enterocytes. Microsc Res Tech 49:353–362. doi: 10.1002/(SICI)1097-0029(20000515)49:4<353:AID-JEMT4>3.0.CO;2-8 PubMedCrossRefGoogle Scholar
  34. 34.
    Hidalgo IJ, Raub TJ, Borchardt RT (1989) Characterization of the human colon carcinoma cell line (Caco-2) as a model system for intestinal epithelial permeability. Gastroenterology 96:736–749PubMedCrossRefGoogle Scholar
  35. 35.
    Mellman I, Nelson WJ (2008) Coordinated protein sorting, targeting and distribution in polarized cells. Nat Rev Mol Cell Biol 9:833–845. doi: 10.1038/nrm2525 PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    Nelson WJ (2003) Adaptation of core mechanisms to generate cell polarity. Nature 422:766–774. doi: 10.1038/nature01602 PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    Srinivasan B, Kolli AR, Esch MB et al (2015) TEER measurement techniques for in vitro barrier model systems. J Lab Autom 20:107–126. doi: 10.1177/2211068214561025 PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Delie F, Rubas W (1997) A human colonic cell line sharing similarities with enterocytes as a model to examine oral absorption: advantages and limitations of the Caco-2 model. Crit Rev Ther Drug Carrier Syst 14:221–286PubMedCrossRefGoogle Scholar
  39. 39.
    Hirtz S, Gonska T, Seydewitz HH et al (2004) CFTR Cl channel function in native human colon correlates with the genotype and phenotype in cystic fibrosis. Gastroenterology 127:1085–1095PubMedCrossRefGoogle Scholar
  40. 40.
    Mall M, Wissner A, Seydewitz HH et al (2000) Defective cholinergic Cl(−) secretion and detection of K(+) secretion in rectal biopsies from cystic fibrosis patients. Am J Physiol Gastrointest Liver Physiol 278:G617–G624PubMedGoogle Scholar
  41. 41.
    Sousa M, Servidoni MF, Vinagre AM et al (2012) Measurements of CFTR-mediated Cl- secretion in human rectal biopsies constitute a robust biomarker for Cystic Fibrosis diagnosis and prognosis. PLoS One 7:e47708. doi: 10.1371/journal.pone.0047708 PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    Beekman JM, Sermet-Gaudelus I, de Boeck K et al (2014) CFTR functional measurements in human models for diagnosis, prognosis and personalized therapy. J Cyst Fibros 13:363–372. doi: 10.1016/j.jcf.2014.05.007 PubMedCrossRefGoogle Scholar
  43. 43.
    Botelho HM, Uliyakina I, Awatade NT et al (2015) Protein traffic disorders: an effective high-throughput fluorescence microscopy pipeline for drug discovery. Sci Rep 5:9038. doi: 10.1038/srep09038 PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    Duell BL, Cripps AW, Schembri MA, Ulett GC (2011) Epithelial cell coculture models for studying infectious diseases: benefits and limitations. J Biomed Biotechnol 2011:852419. doi: 10.1155/2011/852419 PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Benam KH, Dauth S, Hassell B et al (2015) Engineered in vitro disease models. Annu Rev Pathol Mech Dis 10:195–262. doi: 10.1146/annurev-pathol-012414-040418 CrossRefGoogle Scholar
  46. 46.
    Huh D, Kim HJ, Fraser JP et al (2013) Microfabrication of human organs-on-chips. Nat Protoc 8:2135–2157. doi: 10.1038/nprot.2013.137 PubMedCrossRefGoogle Scholar
  47. 47.
    Huh D, Hamilton GA, Ingber DE (2011) From 3D cell culture to organs-on-chips. Trends Cell Biol 21:745–754. doi: 10.1016/j.tcb.2011.09.005 PubMedPubMedCentralCrossRefGoogle Scholar
  48. 48.
    Kim HJ, Huh D, Hamilton G, Ingber DE (2012) Human gut-on-a-chip inhabited by microbial flora that experiences intestinal peristalsis-like motions and flow. Lab Chip 12:2165–2174. doi: 10.1039/c2lc40074j PubMedCrossRefGoogle Scholar
  49. 49.
    Sung JH, Esch MB, Prot J-M et al (2013) Microfabricated mammalian organ systems and their integration into models of whole animals and humans. Lab Chip 13:1201–1212. doi: 10.1039/c3lc41017j PubMedPubMedCentralCrossRefGoogle Scholar
  50. 50.
    Bellas E, Chen CS (2014) Forms, forces, and stem cell fate. Curr Opin Cell Biol 31:92–97. doi: 10.1016/ PubMedCrossRefGoogle Scholar
  51. 51.
    Gasparski AN, Beningo KA (2015) Mechanoreception at the cell membrane: more than the integrins. Arch Biochem Biophys 586:20–26. doi: 10.1016/ PubMedCrossRefGoogle Scholar
  52. 52.
    Humphrey JD, Dufresne ER, Schwartz MA (2014) Mechanotransduction and extracellular matrix homeostasis. Nat Rev Mol Cell Biol 15:802–812. doi: 10.1038/nrm3896 PubMedPubMedCentralCrossRefGoogle Scholar
  53. 53.
    Jansen KA, Donato DM, Balcioglu HE et al (2015) A guide to mechanobiology: where biology and physics meet. Biochim Biophys Acta. doi: 10.1016/j.bbamcr.2015.05.007 Google Scholar
  54. 54.
    Kim HJ, Li H, Collins JJ, Ingber DE (2016) Contributions of microbiome and mechanical deformation to intestinal bacterial overgrowth and inflammation in a human gut-on-a-chip. Proc Natl Acad Sci 113:E7–E15. doi: 10.1073/pnas.1522193112 PubMedCrossRefGoogle Scholar
  55. 55.
    Kim SH, Lee JW, Choi I et al (2013) A microfluidic device with 3-d hydrogel villi scaffold to simulate intestinal absorption. J Nanosci Nanotechnol 13:7220–7228PubMedCrossRefGoogle Scholar
  56. 56.
    Hickman JA, Graeser R, de Hoogt R et al (2014) Three-dimensional models of cancer for pharmacology and cancer cell biology: capturing tumor complexity in vitro/ex vivo. Biotechnol J 9:1115–1128. doi: 10.1002/biot.201300492 PubMedCrossRefGoogle Scholar
  57. 57.
    Hay M, Thomas DW, Craighead JL et al (2014) Clinical development success rates for investigational drugs. Nat Biotechnol 32:40–51. doi: 10.1038/nbt.2786 PubMedCrossRefGoogle Scholar
  58. 58.
    Hutchinson L, Kirk R (2011) High drug attrition rates—where are we going wrong? Nat Rev Clin Oncol 8:189–190. doi: 10.1038/nrclinonc.2011.34 PubMedCrossRefGoogle Scholar
  59. 59.
    Longati P, Jia X, Eimer J et al (2013) 3D pancreatic carcinoma spheroids induce a matrix-rich, chemoresistant phenotype offering a better model for drug testing. BMC Cancer 13:95. doi: 10.1186/1471-2407-13-95 PubMedPubMedCentralCrossRefGoogle Scholar
  60. 60.
    Thoma CR, Zimmermann M, Agarkova I et al (2014) 3D cell culture systems modeling tumor growth determinants in cancer target discovery. Adv Drug Deliv Rev 69–70:29–41. doi: 10.1016/j.addr.2014.03.001 PubMedCrossRefGoogle Scholar
  61. 61.
    Achilli T-M, Meyer J, Morgan JR (2012) Advances in the formation, use and understanding of multi-cellular spheroids. Expert Opin Biol Ther 12:1347–1360. doi: 10.1517/14712598.2012.707181 PubMedPubMedCentralCrossRefGoogle Scholar
  62. 62.
    Burdett E, Kasper FK, Mikos AG, Ludwig JA (2010) Engineering tumors: a tissue engineering perspective in cancer biology. Tissue Eng Part B Rev 16:351–359. doi: 10.1089/ten.TEB.2009.0676 PubMedCrossRefGoogle Scholar
  63. 63.
    Knight E, Przyborski S (2014) Advances in 3D cell culture technologies enabling tissue-like structures to be created in vitro. J Anat 227:746–756. doi: 10.1111/joa.12257 PubMedCrossRefGoogle Scholar
  64. 64.
    Wang C, Tang Z, Zhao Y et al (2014) Three-dimensional in vitro cancer models: a short review. Biofabrication 6:022001. doi: 10.1088/1758-5082/6/2/022001 PubMedCrossRefGoogle Scholar
  65. 65.
    Vermeulen L, Todaro M, de Sousa Mello F et al (2008) Single-cell cloning of colon cancer stem cells reveals a multi-lineage differentiation capacity. Proc Natl Acad Sci USA 105:13427–13432. doi: 10.1073/pnas.0805706105 PubMedPubMedCentralCrossRefGoogle Scholar
  66. 66.
    Fan X, Ouyang N, Teng H, Yao H (2011) Isolation and characterization of spheroid cells from the HT29 colon cancer cell line. Int J Colorectal Dis 26:1279–1285. doi: 10.1007/s00384-011-1248-y PubMedCrossRefGoogle Scholar
  67. 67.
    Fang DD, Kim YJ, Lee CN et al (2010) Expansion of CD133+ colon cancer cultures retaining stem cell properties to enable cancer stem cell target discovery. Br J Cancer 102:1265–1275. doi: 10.1038/sj.bjc.6605610 PubMedPubMedCentralCrossRefGoogle Scholar
  68. 68.
    Ashley N, Jones M, Ouaret D et al (2014) Rapidly derived colorectal cancer cultures recapitulate parental cancer characteristics and enable personalized therapeutic assays. J Pathol 234:34–45. doi: 10.1002/path.4371 PubMedCrossRefGoogle Scholar
  69. 69.
    Hirschhaeuser F, Menne H, Dittfeld C et al (2010) Multicellular tumor spheroids: an underestimated tool is catching up again. J Biotechnol 148:3–15. doi: 10.1016/j.jbiotec.2010.01.012 PubMedCrossRefGoogle Scholar
  70. 70.
    Ham SL, Atefi E, Fyffe D, Tavana H (2015) Robotic production of cancer cell spheroids with an aqueous two-phase system for drug testing. J Vis Exp JoVE. doi: 10.3791/52754 PubMedGoogle Scholar
  71. 71.
    Leung BM, Lesher-Perez SC, Matsuoka T et al (2015) Media additives to promote spheroid circularity and compactness in hanging drop platform. Biomater Sci 3:336–344. doi: 10.1039/c4bm00319e PubMedCrossRefGoogle Scholar
  72. 72.
    Friedrich J, Eder W, Castaneda J et al (2007) A reliable tool to determine cell viability in complex 3-D culture: the acid phosphatase assay. J Biomol Screen 12:925–937. doi: 10.1177/1087057107306839 PubMedCrossRefGoogle Scholar
  73. 73.
    Howes AL, Chiang GG, Lang ES et al (2007) The phosphatidylinositol 3-kinase inhibitor, PX-866, is a potent inhibitor of cancer cell motility and growth in three-dimensional cultures. Mol Cancer Ther 6:2505–2514. doi: 10.1158/1535-7163.MCT-06-0698 PubMedCrossRefGoogle Scholar
  74. 74.
    Wenzel C, Riefke B, Gründemann S et al (2014) 3D high-content screening for the identification of compounds that target cells in dormant tumor spheroid regions. Exp Cell Res 323:131–143. doi: 10.1016/j.yexcr.2014.01.017 PubMedCrossRefGoogle Scholar
  75. 75.
    Edmondson R, Broglie JJ, Adcock AF, Yang L (2014) Three-dimensional cell culture systems and their applications in drug discovery and cell-based biosensors. Assay Drug Dev Technol 12:207–218. doi: 10.1089/adt.2014.573 PubMedPubMedCentralCrossRefGoogle Scholar
  76. 76.
    Tibbitt MW, Anseth KS (2009) Hydrogels as extracellular matrix mimics for 3D cell culture. Biotechnol Bioeng 103:655–663. doi: 10.1002/bit.22361 PubMedPubMedCentralCrossRefGoogle Scholar
  77. 77.
    O’Keane JC, Kupchik HZ, Schroy PC et al (1990) A three-dimensional system for long-term culture of human colorectal adenomas. Am J Pathol 137:1539–1547PubMedPubMedCentralGoogle Scholar
  78. 78.
    Buhrmann C, Shayan P, Kraehe P et al (2015) Resveratrol induces chemosensitization to 5-fluorouracil through up-regulation of intercellular junctions, Epithelial-to-mesenchymal transition and apoptosis in colorectal cancer. Biochem Pharmacol 98:51–68. doi: 10.1016/j.bcp.2015.08.105 PubMedCrossRefGoogle Scholar
  79. 79.
    Shakibaei M, Kraehe P, Popper B et al (2015) Curcumin potentiates antitumor activity of 5-fluorouracil in a 3D alginate tumor microenvironment of colorectal cancer. BMC Cancer 15:250. doi: 10.1186/s12885-015-1291-0 PubMedPubMedCentralCrossRefGoogle Scholar
  80. 80.
    Rowley JA, Madlambayan G, Mooney DJ (1999) Alginate hydrogels as synthetic extracellular matrix materials. Biomaterials 20:45–53PubMedCrossRefGoogle Scholar
  81. 81.
    Bissell MJ, Kenny PA, Radisky DC (2005) Microenvironmental regulators of tissue structure and function also regulate tumor induction and progression: the role of extracellular matrix and its degrading enzymes. Cold Spring Harb Symp Quant Biol 70:343–356. doi: 10.1101/sqb.2005.70.013 PubMedPubMedCentralCrossRefGoogle Scholar
  82. 82.
    Bissell MJ, Hines WC (2011) Why don’t we get more cancer? A proposed role of the microenvironment in restraining cancer progression. Nat Med 17:320–329. doi: 10.1038/nm.2328 PubMedPubMedCentralCrossRefGoogle Scholar
  83. 83.
    Bellis AD, Bernabé BP, Weiss MS et al (2013) Dynamic transcription factor activity profiling in 2D and 3D cell cultures. Biotechnol Bioeng 110:563–572. doi: 10.1002/bit.24718 PubMedCrossRefGoogle Scholar
  84. 84.
    Correia AL, Bissell MJ (2012) The tumor microenvironment is a dominant force in multidrug resistance. Drug Resist Updat 15:39–49. doi: 10.1016/j.drup.2012.01.006 PubMedPubMedCentralCrossRefGoogle Scholar
  85. 85.
    Rubashkin MG, Ou G, Weaver VM (2014) Deconstructing signaling in three dimensions. Biochemistry (Mosc) 53:2078–2090. doi: 10.1021/bi401710d CrossRefGoogle Scholar
  86. 86.
    Magdeldin T, López-Dávila V, Villemant C et al (2014) The efficacy of cetuximab in a tissue-engineered three-dimensional in vitro model of colorectal cancer. J Tissue Eng 5:2041731414544183. doi: 10.1177/2041731414544183 PubMedPubMedCentralCrossRefGoogle Scholar
  87. 87.
    Nyga A, Loizidou M, Emberton M, Cheema U (2013) A novel tissue engineered three-dimensional in vitro colorectal cancer model. Acta Biomater 9:7917–7926. doi: 10.1016/j.actbio.2013.04.028 PubMedPubMedCentralCrossRefGoogle Scholar
  88. 88.
    Del Buono R, Pignatelli M, Bodmer WF, Wright NA (1991) The role of the arginine-glycine-aspartic acid-directed cellular binding to type I collagen and rat mesenchymal cells in colorectal tumour differentiation. Differ Res Biol Divers 46:97–103CrossRefGoogle Scholar
  89. 89.
    Yamamoto (1998) Overexpression of MT1-MMP is insufficient to increase experimental liver metastasis of human colon cancer cells. Int J Mol Med 22:757–761. doi: 10.3892/ijmm_00000082 Google Scholar
  90. 90.
    Ponta H, Sherman L, Herrlich PA (2003) CD44: from adhesion molecules to signalling regulators. Nat Rev Mol Cell Biol 4:33–45. doi: 10.1038/nrm1004 PubMedCrossRefGoogle Scholar
  91. 91.
    Kassim YL, Tawil EAL, Lecerf D, Couteau J, Simon T, Buquet C, Vannier JP, Demange E (2014) Biomimetic three dimensional cell culturing: colorectal cancer micro-tissue engineering. J Clin Exp Oncol 3:2. doi: 10.4172/2324-9110.1000123 Google Scholar
  92. 92.
    Sung JH, Yu J, Luo D et al (2011) Microscale 3-D hydrogel scaffold for biomimetic gastrointestinal (GI) tract model. Lab Chip 11:389–392. doi: 10.1039/C0LC00273A PubMedCrossRefGoogle Scholar
  93. 93.
    Wang Y, Ahmad AA, Sims CE et al (2014) In vitro generation of colonic epithelium from primary cells guided by microstructures. Lab Chip 14:1622–1631. doi: 10.1039/c3lc51353j PubMedPubMedCentralCrossRefGoogle Scholar
  94. 94.
    Benton G, Arnaoutova I, George J et al (2014) Matrigel: from discovery and ECM mimicry to assays and models for cancer research. Adv Drug Deliv Rev 79–80:3–18. doi: 10.1016/j.addr.2014.06.005 PubMedCrossRefGoogle Scholar
  95. 95.
    Benton G, George J, Kleinman HK, Arnaoutova IP (2009) Advancing science and technology via 3D culture on basement membrane matrix. J Cell Physiol 221:18–25. doi: 10.1002/jcp.21832 PubMedCrossRefGoogle Scholar
  96. 96.
    Hughes CS, Postovit LM, Lajoie GA (2010) Matrigel: a complex protein mixture required for optimal growth of cell culture. Proteomics 10:1886–1890. doi: 10.1002/pmic.200900758 PubMedCrossRefGoogle Scholar
  97. 97.
    Hoffman MP, Kibbey MC, Letterio JJ, Kleinman HK (1996) Role of laminin-1 and TGF-beta 3 in acinar differentiation of a human submandibular gland cell line (HSG). J Cell Sci 109(Pt 8):2013–2021PubMedGoogle Scholar
  98. 98.
    Weaver VM, Petersen OW, Wang F et al (1997) Reversion of the malignant phenotype of human breast cells in three-dimensional culture and in vivo by integrin blocking antibodies. J Cell Biol 137:231–245PubMedPubMedCentralCrossRefGoogle Scholar
  99. 99.
    Kubota Y, Kleinman HK, Martin GR, Lawley TJ (1988) Role of laminin and basement membrane in the morphological differentiation of human endothelial cells into capillary-like structures. J Cell Biol 107:1589–1598PubMedCrossRefGoogle Scholar
  100. 100.
    Ludwig K, Tse ES, Wang JY (2013) Colon cancer cells adopt an invasive phenotype without mesenchymal transition in 3-D but not 2-D culture upon combined stimulation with EGF and crypt growth factors. BMC Cancer 13:221. doi: 10.1186/1471-2407-13-221 PubMedPubMedCentralCrossRefGoogle Scholar
  101. 101.
    Pereira B, Sousa S, Barros R et al (2013) CDX2 regulation by the RNA-binding protein MEX3A: impact on intestinal differentiation and stemness. Nucleic Acids Res 41:3986–3999. doi: 10.1093/nar/gkt087 PubMedPubMedCentralCrossRefGoogle Scholar
  102. 102.
    Datta A, Bryant DM, Mostov KE (2011) Molecular regulation of lumen morphogenesis. Curr Biol CB 21:R126–R136. doi: 10.1016/j.cub.2010.12.003 PubMedCrossRefGoogle Scholar
  103. 103.
    Yeung TM, Gandhi SC, Wilding JL et al (2010) Cancer stem cells from colorectal cancer-derived cell lines. Proc Natl Acad Sci USA 107:3722–3727. doi: 10.1073/pnas.0915135107 PubMedPubMedCentralCrossRefGoogle Scholar
  104. 104.
    Luca AC, Mersch S, Deenen R et al (2013) Impact of the 3D microenvironment on phenotype, gene expression, and EGFR inhibition of colorectal cancer cell lines. PLoS One 8:e59689. doi: 10.1371/journal.pone.0059689 PubMedPubMedCentralCrossRefGoogle Scholar
  105. 105.
    Guruswamy S, Swamy MV, Choi C-I et al (2008) S-Adenosyl l-methionine inhibits azoxymethane-induced colonic aberrant crypt foci in F344 rats and suppresses human colon cancer Caco-2 cell growth in 3D culture. Int J Cancer J Int Cancer 122:25–30. doi: 10.1002/ijc.23031 CrossRefGoogle Scholar
  106. 106.
    Mah AT, Van Landeghem L, Gavin HE et al (2014) Impact of diet-induced obesity on intestinal stem cells: hyperproliferation but impaired intrinsic function that requires insulin/IGF1. Endocrinology 155:3302–3314. doi: 10.1210/en.2014-1112 PubMedPubMedCentralCrossRefGoogle Scholar
  107. 107.
    Pereira C, Araújo F, Barrias CC et al (2015) Dissecting stromal-epithelial interactions in a 3D in vitro cellularized intestinal model for permeability studies. Biomaterials 56:36–45. doi: 10.1016/j.biomaterials.2015.03.054 PubMedCrossRefGoogle Scholar
  108. 108.
    Cukierman E, Pankov R, Stevens DR, Yamada KM (2001) Taking cell-matrix adhesions to the third dimension. Science 294:1708–1712. doi: 10.1126/science.1064829 PubMedCrossRefGoogle Scholar
  109. 109.
    Totonelli G, Maghsoudlou P, Garriboli M et al (2012) A rat decellularized small bowel scaffold that preserves villus-crypt architecture for intestinal regeneration. Biomaterials 33:3401–3410. doi: 10.1016/j.biomaterials.2012.01.012 PubMedPubMedCentralCrossRefGoogle Scholar
  110. 110.
    Genovese L, Zawada L, Tosoni A et al (2014) Cellular localization, invasion, and turnover are differently influenced by healthy and tumor-derived extracellular matrix. Tissue Eng Part A 20:2005–2018. doi: 10.1089/ten.TEA.2013.0588 PubMedPubMedCentralCrossRefGoogle Scholar
  111. 111.
    Lowe SB, Tan VTG, Soeriyadi AH et al (2014) Synthesis and high-throughput processing of polymeric hydrogels for 3D cell culture. Bioconjug Chem 25:1581–1601. doi: 10.1021/bc500310v PubMedCrossRefGoogle Scholar
  112. 112.
    Trappmann B, Chen CS (2013) How cells sense extracellular matrix stiffness: a material’s perspective. Curr Opin Biotechnol 24:948–953. doi: 10.1016/j.copbio.2013.03.020 PubMedPubMedCentralCrossRefGoogle Scholar
  113. 113.
    Worthington P, Pochan DJ, Langhans SA (2015) Peptide hydrogels—versatile matrices for 3D cell culture in cancer medicine. Front Oncol 5:92. doi: 10.3389/fonc.2015.00092 PubMedPubMedCentralCrossRefGoogle Scholar
  114. 114.
    Lee J, Cuddihy MJ, Kotov NA (2008) Three-dimensional cell culture matrices: state of the art. Tissue Eng Part B Rev 14:61–86. doi: 10.1089/teb.2007.0150 PubMedCrossRefGoogle Scholar
  115. 115.
    Barker N (2014) Adult intestinal stem cells: critical drivers of epithelial homeostasis and regeneration. Nat Rev Mol Cell Biol 15:19–33. doi: 10.1038/nrm3721 PubMedCrossRefGoogle Scholar
  116. 116.
    Barker N, van Es JH, Kuipers J et al (2007) Identification of stem cells in small intestine and colon by marker gene Lgr5. Nature 449:1003–1007. doi: 10.1038/nature06196 PubMedCrossRefGoogle Scholar
  117. 117.
    Jung P, Sato T, Merlos-Suárez A et al (2011) Isolation and in vitro expansion of human colonic stem cells. Nat Med 17:1225–1227. doi: 10.1038/nm.2470 PubMedCrossRefGoogle Scholar
  118. 118.
    Sato T, Vries RG, Snippert HJ et al (2009) Single Lgr5 stem cells build crypt-villus structures in vitro without a mesenchymal niche. Nature 459:262–265. doi: 10.1038/nature07935 PubMedCrossRefGoogle Scholar
  119. 119.
    Sato T, Clevers H (2013) Growing self-organizing mini-guts from a single intestinal stem cell: mechanism and applications. Science 340:1190–1194. doi: 10.1126/science.1234852 PubMedCrossRefGoogle Scholar
  120. 120.
    Dekkers JF, Wiegerinck CL, de Jonge HR et al (2013) A functional CFTR assay using primary cystic fibrosis intestinal organoids. Nat Med 19:939–945. doi: 10.1038/nm.3201 PubMedCrossRefGoogle Scholar
  121. 121.
    Finkbeiner SR, Hill DR, Altheim CH et al (2015) Transcriptome-wide analysis reveals hallmarks of human intestine development and maturation in vitro and in vivo. Stem Cell Rep 4:1140–1155. doi: 10.1016/j.stemcr.2015.04.010 CrossRefGoogle Scholar
  122. 122.
    Foulke-Abel J, In J, Yin J et al (2016) Human enteroids as a model of upper small intestinal ion transport physiology and pathophysiology. Gastroenterology. doi: 10.1053/j.gastro.2015.11.047 (in press) PubMedGoogle Scholar
  123. 123.
    Onuma K, Ochiai M, Orihashi K et al (2013) Genetic reconstitution of tumorigenesis in primary intestinal cells. Proc Natl Acad Sci 110:11127–11132. doi: 10.1073/pnas.1221926110 PubMedPubMedCentralCrossRefGoogle Scholar
  124. 124.
    Walker NM, Liu J, Stein SR et al (2015) Cellular chloride and bicarbonate retention alters intracellular pH regulation in Cftr KO crypt epithelium. Am J Physiol Gastrointest Liver Physiol 310:G70–G80. doi: 10.1152/ajpgi.00236.2015 PubMedCrossRefGoogle Scholar
  125. 125.
    Drost J, van Jaarsveld RH, Ponsioen B et al (2015) Sequential cancer mutations in cultured human intestinal stem cells. Nature 521:43–47. doi: 10.1038/nature14415 PubMedCrossRefGoogle Scholar
  126. 126.
    Fujii M, Matano M, Nanki K, Sato T (2015) Efficient genetic engineering of human intestinal organoids using electroporation. Nat Protoc 10:1474–1485. doi: 10.1038/nprot.2015.088 PubMedCrossRefGoogle Scholar
  127. 127.
    Sato T, Stange DE, Ferrante M et al (2011) Long-term expansion of epithelial organoids from human colon, adenoma, adenocarcinoma, and Barrett’s epithelium. Gastroenterology 141:1762–1772. doi: 10.1053/j.gastro.2011.07.050 PubMedCrossRefGoogle Scholar
  128. 128.
    Schwank G, Koo B-K, Sasselli V et al (2013) Functional repair of CFTR by CRISPR/Cas9 in intestinal stem cell organoids of cystic fibrosis patients. Cell Stem Cell 13:653–658. doi: 10.1016/j.stem.2013.11.002 PubMedCrossRefGoogle Scholar
  129. 129.
    Caponigro G, Sellers WR (2011) Advances in the preclinical testing of cancer therapeutic hypotheses. Nat Rev Drug Discov 10:179–187. doi: 10.1038/nrd3385 PubMedCrossRefGoogle Scholar
  130. 130.
    Sachs N, Clevers H (2014) Organoid cultures for the analysis of cancer phenotypes. Curr Opin Genet Dev 24:68–73. doi: 10.1016/j.gde.2013.11.012 PubMedCrossRefGoogle Scholar
  131. 131.
    van de Wetering M, Francies HE, Francis JM et al (2015) Prospective derivation of a living organoid biobank of colorectal cancer patients. Cell 161:933–945. doi: 10.1016/j.cell.2015.03.053 PubMedCrossRefGoogle Scholar
  132. 132.
    Spence JR, Mayhew CN, Rankin SA et al (2011) Directed differentiation of human pluripotent stem cells into intestinal tissue in vitro. Nature 470:105–109. doi: 10.1038/nature09691 PubMedCrossRefGoogle Scholar
  133. 133.
    Zachos NC, Kovbasnjuk O, Foulke-Abel J et al (2016) Human enteroids/colonoids and intestinal organoids functionally recapitulate normal intestinal physiology and pathophysiology. J Biol Chem. doi: 10.1074/jbc.R114.635995 (in press) PubMedGoogle Scholar
  134. 134.
    Stange DE, Clevers H (2013) Concise review: the Yin and Yang of intestinal (cancer) stem cells and their progenitors: intestinal (Cancer) stem cells and their progenitors. Stem Cells 31:2287–2295. doi: 10.1002/stem.1475 PubMedCrossRefGoogle Scholar
  135. 135.
    Kuo W-T, Lee T-C, Yang H-Y et al (2015) LPS receptor subunits have antagonistic roles in epithelial apoptosis and colonic carcinogenesis. Cell Death Differ 22:1590–1604. doi: 10.1038/cdd.2014.240 PubMedCrossRefGoogle Scholar
  136. 136.
    Abbott Chalew TE, Schwab KJ (2013) Toxicity of commercially available engineered nanoparticles to Caco-2 and SW480 human intestinal epithelial cells. Cell Biol Toxicol 29:101–116. doi: 10.1007/s10565-013-9241-6 PubMedCrossRefGoogle Scholar
  137. 137.
    Freeman TJ, Smith JJ, Chen X et al (2012) Smad4-mediated signaling inhibits intestinal neoplasia by Inhibiting expression of β-catenin. Gastroenterology 142(562–571):e2. doi: 10.1053/j.gastro.2011.11.026 PubMedGoogle Scholar
  138. 138.
    Hirsch D, Barker N, McNeil N et al (2014) LGR5 positivity defines stem-like cells in colorectal cancer. Carcinogenesis 35:849–858. doi: 10.1093/carcin/bgt377 PubMedCrossRefGoogle Scholar
  139. 139.
    Elimrani I, Dionne S, Saragosti D et al (2015) Acetylcarnitine potentiates the anticarcinogenic effects of butyrate on SW480 colon cancer cells. Int J Oncol. doi: 10.3892/ijo.2015.3029 PubMedGoogle Scholar
  140. 140.
    Matsuda Y, Miura K, Yamane J et al (2016) SERPINI1 regulates the epithelial-mesenchymal transition in an orthotopic implantation model of colorectal cancer. Cancer Sci. doi: 10.1111/cas.12909 Google Scholar
  141. 141.
    Barrett KE (1993) Positive and negative regulation of chloride secretion in T84 cells. Am J Physiol 265:C859–C868PubMedGoogle Scholar
  142. 142.
    Dharmsathaphorn K, McRoberts JA, Mandel KG et al (1984) A human colonic tumor cell line that maintains vectorial electrolyte transport. Am J Physiol 246:G204–G208PubMedGoogle Scholar
  143. 143.
    Lee WY, Chin AC, Voss S, Parkos CA (2006) In vitro neutrophil transepithelial migration. Methods Mol Biol Clifton NJ 341:205–215. doi: 10.1385/1-59745-113-4:205 Google Scholar
  144. 144.
    McCool DJ, Marcon MA, Forstner JF, Forstner GG (1990) The T84 human colonic adenocarcinoma cell line produces mucin in culture and releases it in response to various secretagogues. Biochem J 267:491–500PubMedPubMedCentralCrossRefGoogle Scholar
  145. 145.
    Nataro JP, Hicks S, Phillips AD et al (1996) T84 cells in culture as a model for enteroaggregative Escherichia coli pathogenesis. Infect Immun 64:4761–4768PubMedPubMedCentralGoogle Scholar
  146. 146.
    Bu X-D, Li N, Tian X-Q, Huang P-L (2011) Caco-2 and LS174T cell lines provide different models for studying mucin expression in colon cancer. Tissue Cell 43:201–206. doi: 10.1016/j.tice.2011.03.002 PubMedCrossRefGoogle Scholar
  147. 147.
    Mologni L, Brussolo S, Ceccon M, Gambacorti-Passerini C (2012) Synergistic effects of combined Wnt/KRAS inhibition in colorectal cancer cells. PLoS One 7:e51449. doi: 10.1371/journal.pone.0051449 PubMedPubMedCentralCrossRefGoogle Scholar
  148. 148.
    van Klinken BJ, Oussoren E, Weenink JJ et al (1996) The human intestinal cell lines Caco-2 and LS174T as models to study cell-type specific mucin expression. Glycoconj J 13:757–768PubMedCrossRefGoogle Scholar
  149. 149.
    Basu I, Mitra R, Saha PK et al (1999) Morphological and cytoskeletal changes caused by non-membrane damaging cytotoxin of Vibrio cholerae on int 407 and HeLa cells. FEMS Microbiol Lett 179:255–263PubMedCrossRefGoogle Scholar
  150. 150.
    Canonico B, Campana R, Luchetti F et al (2014) Campylobacter jejuni cell lysates differently target mitochondria and lysosomes on HeLa cells. Apoptosis Int J Program Cell Death 19:1225–1242. doi: 10.1007/s10495-014-1005-0 CrossRefGoogle Scholar
  151. 151.
    Henle G, Deinhardt F (1957) The establishment of strains of human cells in tissue culture. J Immunol Baltim Md 1950 79:54–59Google Scholar
  152. 152.
    Lacroix M (2008) Persistent use of “false” cell lines. Int J Cancer 122:1–4. doi: 10.1002/ijc.23233 PubMedCrossRefGoogle Scholar
  153. 153.
    Sarem F, Sarem-Damerdji LO, Nicolas JP (1996) Comparison of the adherence of three Lactobacillus strains to Caco-2 and Int-407 human intestinal cell lines. Lett Appl Microbiol 22:439–442PubMedCrossRefGoogle Scholar
  154. 154.
    Antunes F, Andrade F, Araújo F et al (2013) Establishment of a triple co-culture in vitro cell models to study intestinal absorption of peptide drugs. Eur J Pharm Biopharm 83:427–435. doi: 10.1016/j.ejpb.2012.10.003 PubMedCrossRefGoogle Scholar
  155. 155.
    Béduneau A, Tempesta C, Fimbel S et al (2014) A tunable Caco-2/HT29-MTX co-culture model mimicking variable permeabilities of the human intestine obtained by an original seeding procedure. Eur J Pharm Biopharm 87:290–298. doi: 10.1016/j.ejpb.2014.03.017 PubMedCrossRefGoogle Scholar
  156. 156.
    Chen X-M, Elisia I, Kitts DD (2010) Defining conditions for the co-culture of Caco-2 and HT29-MTX cells using Taguchi design. J Pharmacol Toxicol Methods 61:334–342. doi: 10.1016/j.vascn.2010.02.004 PubMedCrossRefGoogle Scholar
  157. 157.
    Hilgendorf C, Spahn-Langguth H, Regårdh CG et al (2000) Caco-2 versus caco-2/HT29-MTX co-cultured cell lines: permeabilities via diffusion, inside- and outside-directed carrier-mediated transport. J Pharm Sci 89:63–75. doi: 10.1002/(SICI)1520-6017(200001)89:1<63:AID-JPS7>3.0.CO;2-6 PubMedCrossRefGoogle Scholar
  158. 158.
    Johansson MEV, Ambort D, Pelaseyed T et al (2011) Composition and functional role of the mucus layers in the intestine. Cell Mol Life Sci 68:3635–3641. doi: 10.1007/s00018-011-0822-3 PubMedCrossRefGoogle Scholar
  159. 159.
    Navabi N, McGuckin MA, Lindén SK (2013) Gastrointestinal cell lines form polarized epithelia with an adherent mucus layer when cultured in semi-wet interfaces with mechanical stimulation. PLoS One 8:e68761. doi: 10.1371/journal.pone.0068761 PubMedPubMedCentralCrossRefGoogle Scholar
  160. 160.
    Pontier C, Pachot J, Botham R et al (2001) HT29-MTX and Caco-2/TC7 monolayers as predictive models for human intestinal absorption: role of the mucus layer. J Pharm Sci 90:1608–1619PubMedCrossRefGoogle Scholar
  161. 161.
    Walter E, Janich S, Roessler BJ et al (1996) HT29-MTX/Caco-2 cocultures as an in vitro model for the intestinal epithelium: in vitro-in vivo correlation with permeability data from rats and humans. J Pharm Sci 85:1070–1076. doi: 10.1021/js960110x PubMedCrossRefGoogle Scholar
  162. 162.
    Lesuffleur T, Porchet N, Aubert JP et al (1993) Differential expression of the human mucin genes MUC1 to MUC5 in relation to growth and differentiation of different mucus-secreting HT-29 cell subpopulations. J Cell Sci 106(Pt 3):771–783PubMedGoogle Scholar
  163. 163.
    Alcarraz-Vizán G, Sánchez-Tena S, Moyer MP, Cascante M (2014) Validation of NCM460 cell model as control in antitumor strategies targeting colon adenocarcinoma metabolic reprogramming: trichostatin A as a case study. Biochim Biophys Acta BBA Gen Subj 1840:1634–1639. doi: 10.1016/j.bbagen.2013.12.024 CrossRefGoogle Scholar
  164. 164.
    Henriques A, Barros P, Moyer MP et al (2015) Expression of tumour-related Rac1b antagonizes B-Raf-induced senescence in colorectal cells. Cancer Lett 369:368–375. doi: 10.1016/j.canlet.2015.08.027 PubMedCrossRefGoogle Scholar
  165. 165.
    Lea MA, Ibeh C, Shah N, Moyer MP (2007) Induction of differentiation of colon cancer cells by combined inhibition of kinases and histone deacetylase. Anticancer Res 27:741–748PubMedGoogle Scholar
  166. 166.
    Liu Z, Kang L, Li C et al (2014) Knockout of MIMP protein in lactobacillus plantarum lost its regulation of intestinal permeability on NCM460 epithelial cells through the zonulin pathway. BMC Gastroenterol 14:171. doi: 10.1186/1471-230X-14-171 PubMedPubMedCentralCrossRefGoogle Scholar
  167. 167.
    Liu Z, Shen T, Chen H et al (2011) Functional characterization of MIMP for its adhesion to the intestinal epithelium. Front Biosci Landmark Ed 16:2106–2127PubMedCrossRefGoogle Scholar
  168. 168.
    Matos P, Kotelevets L, Goncalves V et al (2013) Ibuprofen inhibits colitis-induced overexpression of tumor-related Rac1b. Neoplasia 15:102–111PubMedPubMedCentralCrossRefGoogle Scholar
  169. 169.
    Minoo P, Moyer MP, Jass JR (2007) Role of BRAF-V600E in the serrated pathway of colorectal tumourigenesis. J Pathol 212:124–133. doi: 10.1002/path.2160 PubMedCrossRefGoogle Scholar
  170. 170.
    Moyer MP, Manzano LA, Merriman RL et al (1996) NCM460, a normal human colon mucosal epithelial cell line. In Vitro Cell Dev Biol Anim 32:315–317PubMedCrossRefGoogle Scholar
  171. 171.
    Sahi J, Nataraja SG, Layden TJ et al (1998) Cl- transport in an immortalized human epithelial cell line (NCM460) derived from the normal transverse colon. Am J Physiol 275:C1048–C1057PubMedGoogle Scholar
  172. 172.
    Schäfer H, Struck B, Feldmann E-M et al (2013) TGF-β1-dependent L1CAM expression has an essential role in macrophage-induced apoptosis resistance and cell migration of human intestinal epithelial cells. Oncogene 32:180–189. doi: 10.1038/onc.2012.44 PubMedCrossRefGoogle Scholar
  173. 173.
    Zhao D, Keates AC, Kuhnt-Moore S et al (2001) Signal transduction pathways mediating neurotensin-stimulated interleukin-8 expression in human colonocytes. J Biol Chem 276:44464–44471. doi: 10.1074/jbc.M104942200 PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing 2016

Authors and Affiliations

  1. 1.Departamento de Genética HumanaInstituto Nacional de Saúde Doutor Ricardo JorgeLisbonPortugal
  2. 2.BioISI-Biosystems and Integrative Sciences Institute, Faculty of SciencesUniversity of LisbonLisbonPortugal

Personalised recommendations