Cellular and Molecular Life Sciences

, Volume 73, Issue 23, pp 4531–4545 | Cite as

The growth determinants and transport properties of tunneling nanotube networks between B lymphocytes

  • Anikó Osteikoetxea-Molnár
  • Edina Szabó-Meleg
  • Eszter Angéla Tóth
  • Ádám Oszvald
  • Emese Izsépi
  • Mariann Kremlitzka
  • Beáta Biri
  • László Nyitray
  • Tamás Bozó
  • Péter Németh
  • Miklós Kellermayer
  • Miklós Nyitrai
  • Janos MatkoEmail author
Original Article


Tunneling nanotubes (TNTs) are long intercellular connecting structures providing a special transport route between two neighboring cells. To date TNTs have been reported in different cell types including immune cells such as T-, NK, dendritic cells, or macrophages. Here we report that mature, but not immature, B cells spontaneously form extensive TNT networks under conditions resembling the physiological environment. Live-cell fluorescence, structured illumination, and atomic force microscopic imaging provide new insights into the structure and dynamics of B cell TNTs. Importantly, the selective interaction of cell surface integrins with fibronectin or laminin extracellular matrix proteins proved to be essential for initiating TNT growth in B cells. These TNTs display diversity in length and thickness and contain not only F-actin, but their majority also contain microtubules, which were found, however, not essential for TNT formation. Furthermore, we demonstrate that Ca2+-dependent cortical actin dynamics exert a fundamental control over TNT growth-retraction equilibrium, suggesting that actin filaments form the TNT skeleton. Non-muscle myosin 2 motor activity was shown to provide a negative control limiting the uncontrolled outgrowth of membranous protrusions. Moreover, we also show that spontaneous growth of TNTs is either reduced or increased by B cell receptor- or LPS-mediated activation signals, respectively, thus supporting the critical role of cytoplasmic Ca2+ in regulation of TNT formation. Finally, we observed transport of various GM1/GM3 + vesicles, lysosomes, and mitochondria inside TNTs, as well as intercellular exchange of MHC-II and B7-2 (CD86) molecules which may represent novel pathways of intercellular communication and immunoregulation.


Membrane nanotubes Intercellular matter transport Trogocytosis Membrane protrusion Superresolution microscopy Fluorescence imaging 



This work was supported by grants T 104971 (to JM), NN 107776 and K112794 (to MN), K108437 (to LN) and K109480 (to MK) sponsored by the Hungarian National Science Fund (OTKA) and partly by MedinProt Project (Hungarian Academy of Sciences) to JM. We thank National Development Agency (NFU) and the European Social Fund for partly supporting this project by Grant Agreement TÁMOP 4.2.1./B-09/1/KMR-2010-0003. The authors are grateful to Drs. András Málnási-Csizmadia, Boglárka Várkuti, Miklós Képíró, Mihály Kovács, Judit Ovádi, Andrea Balogh, Glória László, and Imre Derényi for valuable advice and discussions throughout this work and to Ms. Márta Pásztor and Árpád Mikesy for their skillful technical assistance. The authors are very grateful to Xabier Osteikoetxea for careful reading and for the English language revisions of the manuscript, as well as, for the valuable discussions.

Supplementary material

18_2016_2233_MOESM1_ESM.eps (3.4 mb)
Figure S1: a Flow cytometric histograms show the presence of α6 (black: isotype control antibody; grey: anti6 antibody), b and the lack of β4 (black: isotype control antibody; grey: anti- β4 antibody) integrin chains on A20 mature murine B cells. c Representative fluorescent live cell confocal image of A20 B cells stained with DiI dye and incubated for 1 h on laminin. d A20 B cell NT growth frequency was found dependent on the interaction between laminin and both of its integrin receptor subunits (α6β1); significantly reduced number of NT growing cells was found upon blocking of β1 chains with the respective antibody. Blocking α6 chain alone or the two chains simultaneously almost fully suppressed NT formation. Mean and SD values for TNT forming cell  % were derived from three independent experiments, from approximately 500 cells/sample (*: p ≤ 0.05, **: p ≤ 0.01) (EPS 3495 kb)

Movie S1: Movement of vesicles within thick membrane nanotubes of A488-CTX-B stained A20 mature murine B cells as visualized by structured illumination microscopy (SIM) in real time for 280 s (MP4 209 kb)

Movie S2: Prototypical trajectories of vesicles (see blue and green lines) tracked from a section within a nanotube for 280 s illustrating bidirectional traffic of microvesicles within thick membrane nanotubes of A20 B cells. Position of the tracked microvesicles at the beginning of the process is indicated by purple circles. ImageJ/TrackMate plugin was used to identify and then track vesicles on a frame-by-frame basis. ( Time-lapse movie was acquired by SIM using 5 grid rotations. (MP4 461 kb)

18_2016_2233_MOESM4_ESM.mp4 (335 kb)
Movie S3: Movement of mitochondria stained with MitoTracker between two adjacent A20 mature B cells via nanotube as shown by a time lapse movie generated from LC-CLSM image series recorded in real time for 96 s (MP4 334 kb)
18_2016_2233_MOESM5_ESM.mp4 (2.1 mb)
Movie S4: Retraction of an already existing nanotube (see white arrow) upon ionomycin administration (Ca2+-influx) within 11 s following addition of ionomycin as shown by a time lapse movie of DIC images of A20 B cells recorded in real time (MP4 2119 kb)
18_2016_2233_MOESM6_ESM.eps (1.2 mb)
Figure S2: Flow cytometric dot plots show that addition of ionomycin to A20 B cells did not have in itself cytotoxic effects. Annexin V (early apoptosis marker) and propidium iodide (PI) (late apoptosis and necrosis marker) were used to verifying the viability of cells. The percentage of Annexin V positive and Annexin V + PI double positive cells in control, untreated sample (a) and in control cells cultured for 1 h without ionomycin (c) were low. These percentages did not change significantly in the sample treated with 1 µg/ml ionomycin for 5 min (b) or in samples treated with 1 µg/ml ionomycin for 5 min, followed by a wash and culturing for 1 h (d) (EPS 1248 kb)


  1. 1.
    Rustom A, Saffrich R, Markovic I, Walther P, Gerdes HH (2004) Nanotubular highways for intercellular organelle transport. Science 303(5660):1007–1010. doi: 10.1126/science.1093133 CrossRefPubMedGoogle Scholar
  2. 2.
    Onfelt B, Nedvetzki S, Yanagi K, Davis DM (2004) Cutting edge: membrane nanotubes connect immune cells. J Immunol 173(3):1511–1513CrossRefPubMedGoogle Scholar
  3. 3.
    Davis DM, Sowinski S (2008) Membrane nanotubes: dynamic long-distance connections between animal cells. Nat Rev Mol Cell Biol 9(6):431–436. doi: 10.1038/nrm2399 CrossRefPubMedGoogle Scholar
  4. 4.
    Gurke S, Barroso JF, Gerdes HH (2008) The art of cellular communication: tunneling nanotubes bridge the divide. Histochem Cell Biol 129(5):539–550. doi: 10.1007/s00418-008-0412-0 CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Gerdes HH, Carvalho RN (2008) Intercellular transfer mediated by tunneling nanotubes. Curr Opin Cell Biol 20(4):470–475. doi: 10.1016/ CrossRefPubMedGoogle Scholar
  6. 6.
    Onfelt B, Nedvetzki S, Benninger RK, Purbhoo MA, Sowinski S, Hume AN, Seabra MC, Neil MA, French PM, Davis DM (2006) Structurally distinct membrane nanotubes between human macrophages support long-distance vesicular traffic or surfing of bacteria. J Immunol 177(12):8476–8483CrossRefPubMedGoogle Scholar
  7. 7.
    Gerdes HH, Bukoreshtliev NV, Barroso JF (2007) Tunneling nanotubes: a new route for the exchange of components between animal cells. FEBS Lett 581(11):2194–2201. doi: 10.1016/j.febslet.2007.03.071 CrossRefPubMedGoogle Scholar
  8. 8.
    Gousset K, Schiff E, Langevin C, Marijanovic Z, Caputo A, Browman DT, Chenouard N, de Chaumont F, Martino A, Enninga J, Olivo-Marin JC, Mannel D, Zurzolo C (2009) Prions hijack tunnelling nanotubes for intercellular spread. Nat Cell Biol 11(3):328–336. doi: 10.1038/ncb1841 CrossRefPubMedGoogle Scholar
  9. 9.
    Smith IF, Shuai J, Parker I (2011) Active generation and propagation of Ca2+ signals within tunneling membrane nanotubes. Biophys J 100(8):L37–L39. doi: 10.1016/j.bpj.2011.03.007 CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    He K, Luo W, Zhang Y, Liu F, Liu D, Xu L, Qin L, Xiong C, Lu Z, Fang X (2010) Intercellular transportation of quantum dots mediated by membrane nanotubes. ACS Nano 4(6):3015–3022. doi: 10.1021/nn1002198 CrossRefPubMedGoogle Scholar
  11. 11.
    Wang X, Bukoreshtliev NV, Gerdes HH (2012) Developing neurons form transient nanotubes facilitating electrical coupling and calcium signaling with distant astrocytes. PLoS One 7(10):e47429. doi: 10.1371/journal.pone.0047429 CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Wang X (1818) Gerdes HH (2012) Long-distance electrical coupling via tunneling nanotubes. Biochim Biophys Acta 8:2082–2086. doi: 10.1016/j.bbamem.2011.09.002 Google Scholar
  13. 13.
    Wang X, Veruki ML, Bukoreshtliev NV, Hartveit E, Gerdes HH (2010) Animal cells connected by nanotubes can be electrically coupled through interposed gap-junction channels. Proc Natl Acad Sci USA 107(40):17194–17199. doi: 10.1073/pnas.1006785107 CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Ranzinger J, Rustom A, Abel M, Leyh J, Kihm L, Witkowski M, Scheurich P, Zeier M, Schwenger V (2011) Nanotube action between human mesothelial cells reveals novel aspects of inflammatory responses. PLoS One 6(12):e29537. doi: 10.1371/journal.pone.0029537 CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Austefjord MW, Gerdes HH, Wang X (2014) Tunneling nanotubes: diversity in morphology and structure. Commun Integr Biol 7(1):e27934. doi: 10.4161/cib.27934 CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Van den Broeke C, Radu M, Deruelle M, Nauwynck H, Hofmann C, Jaffer ZM, Chernoff J, Favoreel HW (2009) Alphaherpesvirus US3-mediated reorganization of the actin cytoskeleton is mediated by group A p21-activated kinases. Proc Natl Acad Sci USA 106(21):8707–8712. doi: 10.1073/pnas.0900436106 CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Chinnery HR, Pearlman E, McMenamin PG (2008) Cutting edge: membrane nanotubes in vivo: a feature of MHC class II + cells in the mouse cornea. J Immunol 180(9):5779–5783CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Seyed-Razavi Y, Hickey MJ, Kuffova L, McMenamin PG, Chinnery HR (2013) Membrane nanotubes in myeloid cells in the adult mouse cornea represent a novel mode of immune cell interaction. Immunol Cell Biol 91(1):89–95. doi: 10.1038/icb.2012.52 CrossRefPubMedGoogle Scholar
  19. 19.
    Teddy JM, Kulesa PM (2004) In vivo evidence for short- and long-range cell communication in cranial neural crest cells. Development 131(24):6141–6151. doi: 10.1242/dev.01534 CrossRefPubMedGoogle Scholar
  20. 20.
    Caneparo L, Pantazis P, Dempsey W, Fraser SE (2011) Intercellular bridges in vertebrate gastrulation. PLoS One 6(5):e20230. doi: 10.1371/journal.pone.0020230 CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Pyrgaki C, Trainor P, Hadjantonakis AK, Niswander L (2010) Dynamic imaging of mammalian neural tube closure. Dev Biol 344(2):941–947. doi: 10.1016/j.ydbio.2010.06.010 CrossRefPubMedGoogle Scholar
  22. 22.
    Derenyi I, Julicher F, Prost J (2002) Formation and interaction of membrane tubes. Phys Rev Lett 88(23):238101CrossRefPubMedGoogle Scholar
  23. 23.
    Derényi I et al (2007) Membrane Nanotubes. Lecture Notes Physics, 711. In: Controlled Nanoscale Motion: Nobel Symposium, vol. 131, pp 141–159Google Scholar
  24. 24.
    Cuvelier D, Derenyi I, Bassereau P, Nassoy P (2005) Coalescence of membrane tethers: experiments, theory, and applications. Biophys J 88(4):2714–2726. doi: 10.1529/biophysj.104.056473 CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Roux A, Cuvelier D, Nassoy P, Prost J, Bassereau P, Goud B (2005) Role of curvature and phase transition in lipid sorting and fission of membrane tubules. EMBO J 24(8):1537–1545. doi: 10.1038/sj.emboj.7600631 CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Veranic P, Lokar M, Schutz GJ, Weghuber J, Wieser S, Hagerstrand H, Kralj-Iglic V, Iglic A (2008) Different types of cell-to-cell connections mediated by nanotubular structures. Biophys J 95(9):4416–4425. doi: 10.1529/biophysj.108.131375 CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Lokar M, Kabaso D, Resnik N, Sepcic K, Kralj-Iglic V, Veranic P, Zorec R, Iglic A (2012) The role of cholesterol-sphingomyelin membrane nanodomains in the stability of intercellular membrane nanotubes. Int J Nanomed 7:1891–1902. doi: 10.2147/IJN.S28723 Google Scholar
  28. 28.
    Thery C, Ostrowski M, Segura E (2009) Membrane vesicles as conveyors of immune responses. Nat Rev Immunol 9(8):581–593. doi: 10.1038/nri2567 CrossRefPubMedGoogle Scholar
  29. 29.
    Gyorgy B, Szabo TG, Pasztoi M, Pal Z, Misjak P, Aradi B, Laszlo V, Pallinger E, Pap E, Kittel A, Nagy G, Falus A, Buzas EI (2011) Membrane vesicles, current state-of-the-art: emerging role of extracellular vesicles. Cell Mol Life Sci CMLS 68(16):2667–2688. doi: 10.1007/s00018-011-0689-3 CrossRefPubMedGoogle Scholar
  30. 30.
    Osteikoetxea X, Nemeth A, Sodar BW, Vukman KV, Buzas EI (2016) Extracellular vesicles in cardiovascular diseases, are they Jedi or Sith? J Physiol. doi: 10.1113/JP271336 PubMedGoogle Scholar
  31. 31.
    Davis DM (2009) Mechanisms and functions for the duration of intercellular contacts made by lymphocytes. Nat Rev Immunol 9(8):543–555. doi: 10.1038/nri2602 CrossRefPubMedGoogle Scholar
  32. 32.
    Marzo L, Gousset K, Zurzolo C (2012) Multifaceted roles of tunneling nanotubes in intercellular communication. Front Physiol 3:72. doi: 10.3389/fphys.2012.00072 CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Rainy N, Chetrit D, Rouger V, Vernitsky H, Rechavi O, Marguet D, Goldstein I, Ehrlich M, Kloog Y (2013) H-Ras transfers from B to T cells via tunneling nanotubes. Cell Death Dis 4:e726. doi: 10.1038/cddis.2013.245 CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Polak R, de Rooij B, Pieters R, den Boer ML (2015) B-cell precursor acute lymphoblastic leukemia cells use tunneling nanotubes to orchestrate their microenvironment. Blood 126(21):2404–2414. doi: 10.1182/blood-2015-03-634238 CrossRefPubMedGoogle Scholar
  35. 35.
    Maus M, Medgyesi D, Kiss E, Schneider AE, Enyedi A, Szilagyi N, Matko J, Sarmay G (2013) B cell receptor-induced Ca2+ mobilization mediates F-actin rearrangements and is indispensable for adhesion and spreading of B lymphocytes. J Leukoc Biol 93(4):537–547. doi: 10.1189/jlb.0312169 CrossRefPubMedGoogle Scholar
  36. 36.
    Maloney DG, Kaminski MS, Burowski D, Haimovich J, Levy R (1985) Monoclonal anti-idiotype antibodies against the murine B cell lymphoma 38C13: characterization and use as probes for the biology of the tumor in vivo and in vitro. Hybridoma 4(3):191–209CrossRefPubMedGoogle Scholar
  37. 37.
    Hathcock KS, Laszlo G, Dickler HB, Bradshaw J, Linsley P, Hodes RJ (1993) Identification of an alternative CTLA-4 ligand costimulatory for T cell activation. Science 262(5135):905–907CrossRefPubMedGoogle Scholar
  38. 38.
    Gungor B, Gombos I, Crul T, Ayaydin F, Szabo L, Torok Z, Mates L, Vigh L, Horvath I (2014) Rac1 participates in thermally induced alterations of the cytoskeleton, cell morphology and lipid rafts, and regulates the expression of heat shock proteins in B16F10 melanoma cells. PLoS One 9(2):e89136. doi: 10.1371/journal.pone.0089136 CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Kellermayer MS, Karsai A, Kengyel A, Nagy A, Bianco P, Huber T, Kulcsar A, Niedetzky C, Proksch R, Grama L (2006) Spatially and temporally synchronized atomic force and total internal reflection fluorescence microscopy for imaging and manipulating cells and biomolecules. Biophys J 91(7):2665–2677. doi: 10.1529/biophysj.106.085456 CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Sowinski S, Jolly C, Berninghausen O, Purbhoo MA, Chauveau A, Kohler K, Oddos S, Eissmann P, Brodsky FM, Hopkins C, Onfelt B, Sattentau Q, Davis DM (2008) Membrane nanotubes physically connect T cells over long distances presenting a novel route for HIV-1 transmission. Nat Cell Biol 10(2):211–219. doi: 10.1038/ncb1682 CrossRefPubMedGoogle Scholar
  41. 41.
    Puklin-Faucher E, Gao M, Schulten K, Vogel V (2006) How the headpiece hinge angle is opened: new insights into the dynamics of integrin activation. J Cell Biol 175(2):349–360. doi: 10.1083/jcb.200602071 CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Ambrose HE, Wagner SD (2004) α6-Integrin is expressed on germinal center B cells and modifies growth of a B-cell line. Immunology 111:400–406. doi: 10.1111/j.1365-2567.2004.01824.x CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Chen L, Vicente-Manzanares M, Potvin-Trottier L, Wiseman PW, Horwitz AR (2012) The integrin-ligand interaction regulates adhesion and migration through a molecular clutch. PLoS One 7(7):e40202. doi: 10.1371/journal.pone.0040202 CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Danen EH, Sonneveld P, Brakebusch C, Fassler R, Sonnenberg A (2002) The fibronectin-binding integrins alpha5beta1 and alphavbeta3 differentially modulate RhoA-GTP loading, organization of cell matrix adhesions, and fibronectin fibrillogenesis. J Cell Biol 159(6):1071–1086. doi: 10.1083/jcb.200205014 CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Osteikoetxea X, Balogh A, Szabo-Taylor K, Nemeth A, Szabo TG, Paloczi K, Sodar B, Kittel A, Gyorgy B, Pallinger E, Matko J, Buzas EI (2015) Improved characterization of EV preparations based on protein to lipid ratio and lipid properties. PLoS One 10(3):e0121184. doi: 10.1371/journal.pone.0121184 CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Babich A, Burkhardt JK (2013) Coordinate control of cytoskeletal remodeling and calcium mobilization during T-cell activation. Immunol Rev 256(1):80–94. doi: 10.1111/imr.12123 CrossRefPubMedGoogle Scholar
  47. 47.
    Sayyad WA, Amin L, Fabris P, Ercolini E, Torre V (2015) The role of myosin-II in force generation of DRG filopodia and lamellipodia. Sci Rep 5:7842. doi: 10.1038/srep07842 CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Ilani T, Vasiliver-Shamis G, Vardhana S, Bretscher A, Dustin ML (2009) T cell antigen receptor signaling and immunological synapse stability require myosin IIA. Nat Immunol 10(5):531–539. doi: 10.1038/ni.1723 CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Kumari S, Vardhana S, Cammer M, Curado S, Santos L, Sheetz MP, Dustin ML (2012) T lymphocyte myosin IIA is required for maturation of the immunological synapse. Front Immunol 3:230. doi: 10.3389/fimmu.2012.00230 CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Manes TD, Pober JS (2013) TCR-driven transendothelial migration of human effector memory CD4 T cells involves Vav, Rac, and myosin IIA. J Immunol 190(7):3079–3088. doi: 10.4049/jimmunol.1201817 CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Kepiro M, Varkuti BH, Vegner L, Voros G, Hegyi G, Varga M, Malnasi-Csizmadia A (2014) Para-nitroblebbistatin, the non-cytotoxic and photostable myosin II inhibitor. Angew Chem Int Ed Engl 53(31):8211–8215. doi: 10.1002/anie.201403540 CrossRefPubMedGoogle Scholar
  52. 52.
    Vicente-Manzanares M, Ma X, Adelstein RS, Horwitz AR (2009) Non-muscle myosin II takes centre stage in cell adhesion and migration. Nat Rev Mol Cell Biol 10(11):778–790. doi: 10.1038/nrm2786 CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Obermajer N, Jevnikar Z, Doljak B, Sadaghiani AM, Bogyo M, Kos J (2009) Cathepsin X-mediated beta2 integrin activation results in nanotube outgrowth. Cell Mol Life Sci CMLS 66(6):1126–1134. doi: 10.1007/s00018-009-8829-8 CrossRefPubMedGoogle Scholar
  54. 54.
    Sa S, Wong L, McCloskey KE (2014) Combinatorial fibronectin and laminin signaling promote hoghly efficient cardiac differentiation of human embryonic stem cells. Biores Open Access 3(4):150–161. doi: 10.1089/biores.2014.0018 CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Ramos Gde O, Bernardi L, Lauxen I, Sant’Ana Filho M, Horwitz AR, Lamers ML (2016) Fibronectin modulates cell adhesion and signaling to promote single cell migration of highly invasive oral squamous cell carcinoma. PLoS One 11(3):e0151338. doi: 10.1371/journal.pone.0151338 CrossRefPubMedGoogle Scholar
  56. 56.
    Yarwood SJ, Woodgett JR (2001) Extracellular matrix composition determines the transcriptional response to epidermal growth factor receptor activation. Proc Natl Acad Sci USA 98:4472–4477. doi: 10.1073/pnas.081069098 CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Borland G, Cushley W (2004) Positioning the immune system: unexpected roles for α6-integrins. Immunology 111:381–383. doi: 10.1111/j.1365-2567.2004.01838.x CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Thayanithy V, Babatunde V, Dickson EL, Wong P, Oh S, Ke X, Barlas A, Fujisawa S, Romin Y, Moreira AL, Downey RJ, Steer CJ, Subramanian S, Manova-Todorova K, Moore MA, Lou E (2014) Tumor exosomes induce tunneling nanotubes in lipid raft-enriched regions of human mesothelioma cells. Exp Cell Res 323(1):178–188. doi: 10.1016/j.yexcr.2014.01.014 CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Gombos I, Detre C, Vamosi G, Matko J (2004) Rafting MHC-II domains in the APC (presynaptic) plasma membrane and the thresholds for T-cell activation and immunological synapse formation. Immunol Lett 92(1–2):117–124. doi: 10.1016/j.imlet.2003.11.022 CrossRefPubMedGoogle Scholar
  60. 60.
    Anderson HA, Hiltbold EM, Roche PA (2000) Concentration of MHC class II molecules in lipid rafts facilitates antigen presentation. Nat Immunol 1(2):156–162. doi: 10.1038/77842 CrossRefPubMedGoogle Scholar
  61. 61.
    Gurke S, Barroso JF, Hodneland E, Bukoreshtliev NV, Schlicker O, Gerdes HH (2008) Tunneling nanotube (TNT)-like structures facilitate a constitutive, actomyosin-dependent exchange of endocytic organelles between normal rat kidney cells. Exp Cell Res 314(20):3669–3683. doi: 10.1016/j.yexcr.2008.08.022 CrossRefPubMedGoogle Scholar
  62. 62.
    Wang X, Gerdes HH (2015) Transfer of mitochondria via tunneling nanotubes rescues apoptotic PC12 cells. Cell Death Differ 22(7):1181–1191. doi: 10.1038/cdd.2014.211 CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    Poupot M, Fournie JJ (2003) Spontaneous membrane transfer through homotypic synapses between lymphoma cells. J Immunol 171(5):2517–2523CrossRefPubMedGoogle Scholar
  64. 64.
    Quah BJ, Barlow VP, McPhun V, Matthaei KI, Hulett MD, Parish CR (2008) Bystander B cells rapidly acquire antigen receptors from activated B cells by membrane transfer. Proc Natl Acad Sci USA 105(11):4259–4264. doi: 10.1073/pnas.0800259105 CrossRefPubMedPubMedCentralGoogle Scholar
  65. 65.
    Bukoreshtliev NV, Wang X, Hodneland E, Gurke S, Barroso JF, Gerdes HH (2009) Selective block of tunneling nanotube (TNT) formation inhibits intercellular organelle transfer between PC12 cells. FEBS Lett 583(9):1481–1488. doi: 10.1016/j.febslet.2009.03.065 CrossRefPubMedGoogle Scholar
  66. 66.
    Zhu D, Tan KS, Zhang X, Sun AY, Sun GY, Lee JC (2005) Hydrogen peroxide alters membrane and cytoskeleton properties and increases intercellular connections in astrocytes. J Cell Sci 118(Pt 16):3695–3703. doi: 10.1242/jcs.02507 CrossRefPubMedGoogle Scholar
  67. 67.
    Kiss E, Sarmay G, Matko J (2006) Ceramide modulation of antigen- triggered Ca2 + signals and cell fate: diversity in the responses of various immunocytes. Ann N Y Acad Sci 1090:161–167. doi: 10.1196/annals.1378.017 CrossRefPubMedGoogle Scholar
  68. 68.
    Monroe JG, Cambier JC (1983) B cell activation. III. B cell plasma membrane depolarization and hyper-Ia antigen expression induced by receptor immunoglobulin cross-linking are coupled. J Exp Med 158(5):1589–1599CrossRefPubMedGoogle Scholar
  69. 69.
    Brown J, Wang H, Hajishengallis GN, Martin M (2011) TLR-signaling networks: an integration of adaptor molecules, kinases, and cross-talk. J Dent Res 90(4):417–427. doi: 10.1177/0022034510381264 CrossRefPubMedPubMedCentralGoogle Scholar
  70. 70.
    Samstag Y, Eibert SM, Klemke M, Wabnitz GH (2003) Actin cytoskeletal dynamics in T lymphocyte activation and migration. J Leukoc Biol 73(1):30–48CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing 2016

Authors and Affiliations

  • Anikó Osteikoetxea-Molnár
    • 1
  • Edina Szabó-Meleg
    • 2
    • 3
  • Eszter Angéla Tóth
    • 1
  • Ádám Oszvald
    • 1
  • Emese Izsépi
    • 1
  • Mariann Kremlitzka
    • 1
  • Beáta Biri
    • 4
  • László Nyitray
    • 4
  • Tamás Bozó
    • 5
  • Péter Németh
    • 6
  • Miklós Kellermayer
    • 5
    • 7
  • Miklós Nyitrai
    • 2
    • 3
  • Janos Matko
    • 1
    Email author
  1. 1.Department of ImmunologyEötvös Loránd UniversityBudapestHungary
  2. 2.Department of Biophysics, Medical FacultyUniversity of PécsPecsHungary
  3. 3.MTA-PTE Nuclear-Mitochondrial Interactions Research GroupPecsHungary
  4. 4.Department of BiochemistryEötvös Loránd UniversityBudapestHungary
  5. 5.Department of Biophysics and Radiation BiologySemmelweis UniversityBudapestHungary
  6. 6.Environmental Chemistry Research GroupResearch Centre for Natural SciencesBudapestHungary
  7. 7.MTA-SE Molecular Biophysics Research GroupBudapestHungary

Personalised recommendations