Advertisement

Cellular and Molecular Life Sciences

, Volume 73, Issue 10, pp 2041–2051 | Cite as

Contribution of MicroRNAs to autoimmune diseases

  • Lucien P. Garo
  • Gopal Murugaiyan
Review

Abstract

MicroRNAs are a class of evolutionarily conserved, short non-coding RNAs that post-transcriptionally modulate the expression of multiple target genes. They are implicated in almost every biological process, including pathways involved in immune homeostasis, such as immune cell development, central and peripheral tolerance, and T helper cell differentiation. Alterations in miRNA expression and function can lead to major dysfunction of the immune system and mediate susceptibility to autoimmune disease. Here, we discuss the role of miRNAs in the maintenance of immune tolerance to self-antigens and the gain or loss of miRNA functions on tissue inflammation and autoimmunity.

Keywords

Th17 Experimental Autoimmune Encephalomyelitis (EAE) Multiple sclerosis (MS) MicroRNA therapeutics Immune tolerance Dendritic cells miR-155 miR-21 miR-146a 

Notes

Acknowledgments

This work was supported by the Grants from the National Multiple Sclerosis Society (RG 4904A2/1) and the Harvard NeuroDiscovery Center.

References

  1. 1.
    Lee RC, Feinbaum RL, Ambros V (1993) The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 75:843–854PubMedCrossRefGoogle Scholar
  2. 2.
    Ambros V (2004) The functions of animal microRNAs. Nature 431:350–355PubMedCrossRefGoogle Scholar
  3. 3.
    Baltimore D, Boldin MP, O’Connell RM, Rao DS, Taganov KD (2008) MicroRNAs: new regulators of immune cell development and function. Nat Immunol 9:839–845PubMedCrossRefGoogle Scholar
  4. 4.
    O’Connell RM, Rao DS, Chaudhuri AA, Baltimore D (2010) Physiological and pathological roles for microRNAs in the immune system. Nat Rev Immunol 10:111–122PubMedCrossRefGoogle Scholar
  5. 5.
    Simpson LJ, Ansel KM (2015) MicroRNA regulation of lymphocyte tolerance and autoimmunity. J Clin Invest 125:2242–2249PubMedCrossRefGoogle Scholar
  6. 6.
    Xiao C, Srinivasan L, Calado DP, Patterson HC, Zhang B, Wang J, Henderson JM, Kutok JL, Rajewsky K (2008) Lymphoproliferative disease and autoimmunity in mice with increased miR-17-92 expression in lymphocytes. Nat Immunol 9:405–414PubMedPubMedCentralCrossRefGoogle Scholar
  7. 7.
    Boldin MP, Taganov KD, Rao DS, Yang L, Zhao JL, Kalwani M, Garcia-Flores Y, Luong M, Devrekanli A, Xu J, Sun G, Tay J, Linsley PS, Baltimore D (2011) miR-146a is a significant brake on autoimmunity, myeloproliferation, and cancer in mice. J Exp Med 208:1189–1201PubMedPubMedCentralCrossRefGoogle Scholar
  8. 8.
    Thamilarasan M, Koczan D, Hecker M, Paap B, Zettl UK (2012) MicroRNAs in multiple sclerosis and experimental autoimmune encephalomyelitis. Autoimmun Rev 11:174–179PubMedCrossRefGoogle Scholar
  9. 9.
    Junker A (2011) Pathophysiology of translational regulation by microRNAs in multiple sclerosis. FEBS Lett 585:3738–3746PubMedCrossRefGoogle Scholar
  10. 10.
    Paraboschi EM, Soldà G, Gemmati D, Orioli E, Zeri G, Benedetti MD, Salviati A, Barizzone N, Leone M, Duga S, Asselta R (2011) Genetic association and altered gene expression of mir-155 in multiple sclerosis patients. Int J Mol Sci 12:8695–8712PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    Murugaiyan G, Beynon V, Mittal A, Joller N, Weiner HL (2011) Silencing microRNA-155 ameliorates experimental autoimmune encephalomyelitis. J Immunol 187:2213–2221PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    Kurowska-Stolarska M, Alivernini S, Ballantine LE, Asquith DL, Millar NL, Gilchrist DS, Reilly J, Ierna M, Fraser AR, Stolarski B, McSharry C, Hueber AJ, Baxter D, Hunter J, Gay S, Liew FY, McInnes IB (2011) MicroRNA-155 as a proinflammatory regulator in clinical and experimental arthritis. Proc Natl Acad Sci USA 108:11193–11198PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    Chatzikyriakidou A, Voulgari PV, Georgiou I, Drosos AA (2010) A polymorphism in the 3′-UTR of interleukin-1 receptor-associated kinase (IRAK1), a target gene of miR-146a, is associated with rheumatoid arthritis susceptibility. Joint Bone Spine 77:411–413PubMedCrossRefGoogle Scholar
  14. 14.
    Chatzikyriakidou A, Voulgari PV, Georgiou I, Drosos AA (2012) miRNAs and related polymorphisms in rheumatoid arthritis susceptibility. Autoimmun Rev 11:636–641PubMedCrossRefGoogle Scholar
  15. 15.
    Luo X, Yang W, Ye DQ, Cui H, Zhang Y, Hirankarn N, Qian X, Tang Y, Lau YL, de Vries N, Tak PP, Tsao BP, Shen N (2011) A functional variant in microRNA-146a promoter modulates its expression and confers disease risk for systemic lupus erythematosus. PLoS Genet 7:e1002128PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Yu D, Tan AH, Hu X, Athanasopoulos V, Simpson N, Silva DG, Hutloff A, Giles KM, Leedman PJ, Lam KP, Goodnow CC, Vinuesa CG (2007) Roquin represses autoimmunity by limiting inducible T-cell co-stimulator messenger RNA. Nature 450:299–303PubMedCrossRefGoogle Scholar
  17. 17.
    Bluestone JA (2011) Mechanisms of tolerance. Immunol Rev 241:5–19PubMedCrossRefGoogle Scholar
  18. 18.
    Li QJ, Chau J, Ebert PJ, Sylvester G, Min H, Liu G, Braich R, Manoharan M, Soutschek J, Skare P, Klein LO, Davis MM, Chen CZ (2007) miR-181a is an intrinsic modulator of T cell sensitivity and selection. Cell 129:147–161PubMedCrossRefGoogle Scholar
  19. 19.
    Ebert PJ, Jiang S, Xie J, Li QJ, Davis MM (2009) An endogenous positively selecting peptide enhances mature T cell responses and becomes an autoantigen in the absence of microRNA miR-181a. Nat Immunol 10:1162–1169PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Li G, Yu M, Lee WW, Tsang M, Krishnan E, Weyand CM, Goronzy JJ (2012) Decline in miR-181a expression with age impairs T cell receptor sensitivity by increasing DUSP6 activity. Nat Med 18:1518–1524PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Schaffert SA, Loh C, Wang S, Arnold CP, Axtell RC, Newell EW, Nolan G, Ansel KM, Davis MM, Steinman L, Chen CZ (2015) mir-181a-1/b-1 Modulates Tolerance through Opposing Activities in Selection and Peripheral T Cell Function. J Immunol 195:1470–1479PubMedCrossRefGoogle Scholar
  22. 22.
    Koralov SB, Muljo SA, Galler GR, Krek A, Chakraborty T, Kanellopoulou C, Jensen K, Cobb BS, Merkenschlager M, Rajewsky N, Rajewsky K (2008) Dicer ablation affects antibody diversity and cell survival in the B lymphocyte lineage. Cell 132:860–874PubMedCrossRefGoogle Scholar
  23. 23.
    Belver L, de Yébenes VG, Ramiro AR (2010) MicroRNAs prevent the generation of autoreactive antibodies. Immunity 33:713–722PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Johnson JG, Jenkins MK (1994) The role of anergy in peripheral T cell unresponsiveness. Life Sci 55:1767–1780PubMedCrossRefGoogle Scholar
  25. 25.
    Marcais A, Blevins R, Graumann J, Feytout A, Dharmalingam G, Carroll T, Amado IF, Bruno L, Lee K, Walzer T, Mann M, Freitas AA, Boothby M, Fisher AG, Merkenschlager M (2014) microRNA-mediated regulation of mTOR complex components facilitates discrimination between activation and anergy in CD4 T cells. J Exp Med 211:2281–2295PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Zheng Y, Collins SL, Lutz MA, Allen AN, Kole TP, Zarek PE, Powell JD (2007) A role for mammalian target of rapamycin in regulating T cell activation versus anergy. J Immunol 178:2163–2170PubMedCrossRefGoogle Scholar
  27. 27.
    Pucella JN, Yen WF, Kim MV, van der Veeken J, Luo CT, Socci ND, Naito Y, Li MO, Iwai N, Chaudhuri J (2015) miR-182 is largely dispensable for adaptive immunity: lack of correlation between expression and function. J Immunol 194:2635–2642PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Stittrich AB, Haftmann C, Sgouroudis E, Kühl AA, Hegazy AN, Panse I, Riedel R, Flossdorf M, Dong J, Fuhrmann F, Heinz GA, Fang Z, Li N, Bissels U, Hatam F, Jahn A, Hammoud B, Matz M, Schulze FM, Baumgrass R, Bosio A, Mollenkopf HJ, Grün J, Thiel A, Chen W, Höfer T, Loddenkemper C, Löhning M, Chang HD, Rajewsky N, Radbruch A, Mashreghi MF (2010) The microRNA miR-182 is induced by IL-2 and promotes clonal expansion of activated helper T lymphocytes. Nat Immunol 11:1057–1062PubMedCrossRefGoogle Scholar
  29. 29.
    Wing K, Sakaguchi S (2010) Regulatory T cells exert checks and balances on self tolerance and autoimmunity. Nat Immunol 11:7–13PubMedCrossRefGoogle Scholar
  30. 30.
    Hori S, Nomura T, Sakaguchi S (2003) Control of regulatory T cell development by the transcription factor Foxp3. Science 299:1057–1061PubMedCrossRefGoogle Scholar
  31. 31.
    Zhou X, Jeker LT, Fife BT, Zhu S, Anderson MS, McManus MT, Bluestone JA (2008) Selective miRNA disruption in T reg cells leads to uncontrolled autoimmunity. J Exp Med 205:1983–1991PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Liston A, Lu LF, O’Carroll D, Tarakhovsky A, Rudensky AY (2008) Dicer-dependent microRNA pathway safeguards regulatory T cell function. J Exp Med 205:1993–2004PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Turner ML, Schnorfeil FM, Brocker T (2011) MicroRNAs regulate dendritic cell differentiation and function. J Immunol 187:3911–3917PubMedCrossRefGoogle Scholar
  34. 34.
    O’Connell RM, Taganov KD, Boldin MP, Cheng G, Baltimore D (2007) MicroRNA-155 is induced during the macrophage inflammatory response. Proc Natl Acad Sci USA 104:1604–1609PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    O’Connell RM, Kahn D, Gibson WS, Round JL, Scholz RL, Chaudhuri AA, Kahn ME, Rao DS (2010) Baltimore D (2010) MicroRNA-155 promotes autoimmune inflammation by enhancing inflammatory T cell development. Immunity 33:607–619PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    O’Connell RM, Chaudhuri AA, Rao DS, Baltimore D (2009) Inositol phosphatase SHIP1 is a primary target of miR-155. Proc Natl Acad Sci USA 106:7113–7118PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    Kinjyo I, Hanada T, Inagaki-Ohara K, Mori H, Aki D, Ohishi M, Yoshida H, Kubo M, Yoshimura A (2002) SOCS1/JAB is a negative regulator of LPS-induced macrophage activation. Immunity 17:583–591PubMedCrossRefGoogle Scholar
  38. 38.
    Sly LM, Rauh MJ, Kalesnikoff J, Song CH, Krystal G (2004) LPS-induced upregulation of SHIP is essential for endotoxin tolerance. Immunity 21:227–239PubMedCrossRefGoogle Scholar
  39. 39.
    Tili E, Michaille JJ, Cimino A, Costinean S, Dumitru CD, Adair B, Fabbri M, Alder H, Liu CG, Calin GA, Croce CM (2007) Modulation of miR-155 and miR-125b levels following lipopolysaccharide/TNF-alpha stimulation and their possible roles in regulating the response to endotoxin shock. J Immunol 179:5082–5089PubMedCrossRefGoogle Scholar
  40. 40.
    Lu LF, Thai TH, Calado DP, Chaudhry A, Kubo M, Tanaka K, Loeb GB, Lee H, Yoshimura A, Rajewsky K, Rudensky AY (2009) Foxp3-dependent microRNA155 confers competitive fitness to regulatory T cells by targeting SOCS1 protein. Immunity 30(1):80–91PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Kohlhaas S, Garden OA, Scudamore C, Turner M, Okkenhaug K, Vigorito E (2009) Cutting edge: the Foxp3 target miR-155 contributes to the development of regulatory T cells. J Immunol 182:2578–2582PubMedCrossRefGoogle Scholar
  42. 42.
    Hu R, Huffaker TB, Kagele DA, Runtsch MC, Bake E, Chaudhuri AA, Round JL, O’Connell RM (2013) MicroRNA-155 confers encephalogenic potential to Th17 cells by promoting effector gene expression. J Immunol 190:5972–5980PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Escobar TM, Kanellopoulou C, Kugler DG, Kilaru G, Nguyen CK, Nagarajan V, Bhairavabhotla RK, Northrup D, Zahr R, Burr P, Liu X, Zhao K, Sher A, Jankovic D, Zhu J, Muljo SA (2014) miR-155 activates cytokine gene expression in Th17 cells by regulating the DNA-binding protein Jarid2 to relieve polycomb-mediated repression. Immunity 40:865–879PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    Rodriguez A, Vigorito E, Clare S, Warren MV, Couttet P, Soond DR, van Dongen S, Grocock RJ, Das PP, Miska EA, Vetrie D, Okkenhaug K, Enright AJ, Dougan G, Turner M, Bradley A (2007) Requirement of bic/microRNA-155 for normal immune function. Science 316:608–611PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Thai TH, Calado DP, Casola S, Ansel KM, Xiao C, Xue Y, Murphy A, Frendewey D, Valenzuela D, Kutok JL, Schmidt-Supprian M, Rajewsky N, Yancopoulos G, Rao A, Rajewsky K (2007) Regulation of the germinal center response by microRNA-155. Science 316(5824):604–608PubMedCrossRefGoogle Scholar
  46. 46.
    Vigorito E, Perks KL, Abreu-Goodger C, Bunting S, Xiang Z, Kohlhaas S, Das PP, Miska EA, Rodriguez A, Bradley A, Smith KG, Rada C, Enright AJ, Toellner KM, Maclennan IC, Turner M (2007) microRNA-155 regulates the generation of immunoglobulin class-switched plasma cells. Immunity 27:847–859PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    Teng G, Hakimpour P, Landgraf P, Rice A, Tuschl T, Casellas R, Papavasiliou FN (2008) MicroRNA-155 is a negative regulator of activation-induced cytidine deaminase. Immunity 28:621–629PubMedPubMedCentralCrossRefGoogle Scholar
  48. 48.
    Zeng FR, Tang LJ, He Y, Garcia RC (2015) An update on the role of miRNA-155 in pathogenic microbial infections. Microb Infect 17:613–621CrossRefGoogle Scholar
  49. 49.
    Junker A, Krumbholz M, Eisele S, Mohan H, Augstein F, Bittner R, Lassmann H, Wekerle H, Hohlfeld R, Meinl E (2009) MicroRNA profiling of multiple sclerosis lesions identifies modulators of the regulatory protein CD47. Brain 132:3342–3352PubMedCrossRefGoogle Scholar
  50. 50.
    Malmhäll C, Alawieh S, Lu Y, Sjöstrand M, Bossios A, Eldh M, Rådinger M (2014) MicroRNA-155 is essential for T(H)2-mediated allergen-induced eosinophilic inflammation in the lung. J Allergy Clin Immunol 133:1429–38, 1438.e1–1438.e7Google Scholar
  51. 51.
    Okoye IS, Czieso S, Ktistaki E, Roderick K, Coomes SM, Pelly VS, Kannan Y, Perez-Lloret J, Zhao JL, Baltimore D, Langhorne J, Wilson MS (2014) Transcriptomics identified a critical role for Th2 cell-intrinsic miR-155 in mediating allergy and antihelminth immunity. Proc Natl Acad Sci USA 111:E3081–E3090PubMedPubMedCentralCrossRefGoogle Scholar
  52. 52.
    Singh UP, Murphy AE, Enos RT, Shamran HA, Singh NP, Guan H, Hegde VL, Fan D, Price RL, Taub DD, Mishra MK, Nagarkatti M, Nagarkatti PS (2014) miR-155 deficiency protects mice from experimental colitis by reducing T helper type 1/type 17 responses. Immunology 143:478–489PubMedPubMedCentralCrossRefGoogle Scholar
  53. 53.
    Min M, Peng L, Yang Y, Guo M, Wang W, Sun G (2014) MicroRNA-155 is involved in the pathogenesis of ulcerative colitis by targeting FOXO3a. Inflamm Bowel Dis 20:652–659PubMedCrossRefGoogle Scholar
  54. 54.
    Suojalehto H, Toskala E, Kilpeläinen M, Majuri ML, Mitts C, Lindström I, Puustinen A, Plosila T, Sipilä J, Wolff H, Alenius H (2013) MicroRNA profiles in nasal mucosa of patients with allergic and nonallergic rhinitis and asthma. Int Forum Allergy Rhinol 3:612–620PubMedCrossRefGoogle Scholar
  55. 55.
    Xin Q, Li J, Dang J, Bian X, Shan S, Yuan J, Qian Y, Liu Z, Liu G, Yuan Q, Liu N, Ma X, Gao F, Gong Y, Liu Q (2015) miR-155 Deficiency Ameliorates Autoimmune Inflammation of Systemic Lupus Erythematosus by Targeting S1pr1 in Faslpr/lpr Mice. J Immunol 194:5437–5445PubMedCrossRefGoogle Scholar
  56. 56.
    Liu F, Fan H, Ren D, Dong G, Hu E, Ji J, Hou Y (2015) TLR9-induced miR-155 and Ets-1 decrease expression of CD1d on B cells in SLE. Eur J Immunol 45:1934–1945PubMedCrossRefGoogle Scholar
  57. 57.
    Wang G, Tam LS, Kwan BC, Li EK, Chow KM, Luk CC, Li PK, Szeto CC (2012) Expression of miR-146a and miR-155 in the urinary sediment of systemic lupus erythematosus. Clin Rheumatol 31:435–440PubMedCrossRefGoogle Scholar
  58. 58.
    Sheedy FJ, Palsson-McDermott E, Hennessy EJ, Martin C, O’Leary JJ, Ruan Q, Johnson DS, Chen Y, O’Neill LA (2010) Negative regulation of TLR4 via targeting of the proinflammatory tumor suppressor PDCD4 by the microRNA miR-21. Nat Immunol 11:141–147PubMedCrossRefGoogle Scholar
  59. 59.
    Wang Z, Brandt S, Medeiros A, Wang S, Wu H, Dent A, Serezani CH (2015) MicroRNA 21 is a homeostatic regulator of macrophage polarization and prevents prostaglandin E2-mediated M2 generation. PLoS One 10:e0115855PubMedPubMedCentralCrossRefGoogle Scholar
  60. 60.
    Murugaiyan G, Garo LP, Weiner HL (2015) MicroRNA-21, T helper lineage and autoimmunity. Oncotarget 6:9644–9645PubMedPubMedCentralCrossRefGoogle Scholar
  61. 61.
    Lu TX, Munitz A, Rothenberg ME (2009) MicroRNA-21 is up-regulated in allergic airway inflammation and regulates IL-12p35 expression. J Immunol 182:4994–5002PubMedPubMedCentralCrossRefGoogle Scholar
  62. 62.
    Lu TX, Hartner J, Lim EJ, Fabry V, Mingler MK, Cole ET, Orkin SH, Aronow BJ, Rothenberg ME (2011) MicroRNA-21 limits in vivo immune response-mediated activation of the IL-12/IFN-gamma pathway, Th1 polarization, and the severity of delayed-type hypersensitivity. J Immunol 187:3362–3373PubMedPubMedCentralCrossRefGoogle Scholar
  63. 63.
    Sawant DV, Wu H, Kaplan MH, Dent AL (2013) The Bcl6 target gene microRNA-21 promotes Th2 differentiation by a T cell intrinsic pathway. Mol Immunol 54:435–442PubMedPubMedCentralCrossRefGoogle Scholar
  64. 64.
    Murugaiyan G, da Cunha AP, Ajay AK, Joller N, Garo LP, Kumaradevan S, Yosef N, Vaidya VS, Weiner HL (2015) MicroRNA-21 promotes Th17 differentiation and mediates experimental autoimmune encephalomyelitis. J Clin Invest 125:1069–1080PubMedPubMedCentralCrossRefGoogle Scholar
  65. 65.
    Rebane A (2015) microRNA and allergy. Adv Exp Med Biol 888:331–352PubMedCrossRefGoogle Scholar
  66. 66.
    Fenoglio C, Cantoni C, De Riz M, Ridolfi E, Cortini F, Serpente M, Villa C, Comi C, Monaco F, Mellesi L, Valzelli S, Bresolin N, Galimberti D, Scarpini E (2011) Expression and genetic analysis of miRNAs involved in CD4+ cell activation in patients with multiple sclerosis. Neurosci Lett 504:9–12PubMedCrossRefGoogle Scholar
  67. 67.
    Liu YL, Wu W, Xue Y, Gao M, Yan Y, Kong Q, Pang Y, Yang F (2013) MicroRNA-21 and -146b are involved in the pathogenesis of murine viral myocarditis by regulating TH-17 differentiation. Arch Virol 158:1953–1963PubMedCrossRefGoogle Scholar
  68. 68.
    Garchow B, Kiriakidou M (2016) MicroRNA-21 deficiency protects from lupus-like autoimmunity in the chronic graft-versus-host disease model of systemic lupus erythematosus. Clin Immunol 162:100–106PubMedCrossRefGoogle Scholar
  69. 69.
    Garchow BG, Bartulos Encinas O, Leung YT, Tsao PY, Eisenberg RA, Caricchio R, Obad S, Petri A, Kauppinen S, Kiriakidou M (2011) Silencing of microRNA-21 in vivo ameliorates autoimmune splenomegaly in lupus mice. EMBO Mol Med 3:605–615PubMedPubMedCentralCrossRefGoogle Scholar
  70. 70.
    Stagakis E, Bertsias G, Verginis P, Nakou M, Hatziapostolou M, Kritikos H, Iliopoulos D, Boumpas DT (2011) Identification of novel microRNA signatures linked to human lupus disease activity and pathogenesis: miR-21 regulates aberrant T cell responses through regulation of PDCD4 expression. Ann Rheum Dis 70:1496–1506PubMedCrossRefGoogle Scholar
  71. 71.
    Meisgen F, Xu N, Wei T, Janson PC, Obad S, Broom O, Nagy N, Kauppinen S, Kemény L, Ståhle M, Pivarcsi A, Sonkoly E (2012) MiR-21 is up-regulated in psoriasis and suppresses T cell apoptosis. Exp Dermatol 21:312–314PubMedCrossRefGoogle Scholar
  72. 72.
    Paraskevi A, Theodoropoulos G, Papaconstantinou I, Mantzaris G, Nikiteas N, Gazouli M (2012) Circulating MicroRNA in inflammatory bowel disease. J Crohns Colitis 6:900–904PubMedCrossRefGoogle Scholar
  73. 73.
    Shi C, Liang Y, Yang J, Xia Y, Chen H, Han H, Yang Y, Wu W, Gao R, Qin H (2013) MicroRNA-21 knockout improve the survival rate in DSS induced fatal colitis through protecting against inflammation and tissue injury. PLoS One 8:e66814PubMedPubMedCentralCrossRefGoogle Scholar
  74. 74.
    Shi C, Yang Y, Xia Y, Okugawa Y, Yang J, Liang Y, Chen H, Zhang P, Wang F, Han H, Wu W, Gao R, Gasche C, Qin H, Ma Y, Goel A (2015) Novel evidence for an oncogenic role of microRNA-21 in colitis-associated colorectal cancer. Gut [Epub ahead of print] Google Scholar
  75. 75.
    Taganov KD, Boldin MP, Chang KJ, Baltimore D (2006) NF-kappaB-dependent induction of microRNA miR-146, an inhibitor targeted to signaling proteins of innate immune responses. Proc Natl Acad Sci USA 103:12481–12486PubMedPubMedCentralCrossRefGoogle Scholar
  76. 76.
    Nahid MA, Pauley KM, Satoh M, Chan EK (2009) miR-146a is critical for endotoxin-induced tolerance: iMPLICATION IN INNATE IMMUNITY. J Biol Chem 284:34590–34599PubMedPubMedCentralCrossRefGoogle Scholar
  77. 77.
    Cheng HS, Sivachandran N, Lau A, Boudreau E, Zhao JL, Baltimore D, Delgado-Olguin P, Cybulsky MI, Fish JE (2013) MicroRNA-146 represses endothelial activation by inhibiting pro-inflammatory pathways. EMBO Mol Med 5:949–966PubMedPubMedCentralCrossRefGoogle Scholar
  78. 78.
    Nahid MA, Yao B, Dominguez-Gutierrez PR, Kesavalu L, Satoh M, Chan EK (2013) Regulation of TLR2-mediated tolerance and cross-tolerance through IRAK4 modulation by miR-132 and miR-212. J Immunol 190:1250–1263PubMedPubMedCentralCrossRefGoogle Scholar
  79. 79.
    Chassin C, Kocur M, Pott J, Duerr CU, Gütle D, Lotz M, Hornef MW (2010) miR-146a mediates protective innate immune tolerance in the neonate intestine. Cell Host Microbe 8:358–368PubMedCrossRefGoogle Scholar
  80. 80.
    Yang L, Boldin MP, Yu Y, Liu CS, Ea CK, Ramakrishnan P, Taganov KD, Zhao JL, Baltimore D (2012) miR-146a controls the resolution of T cell responses in mice. J Exp Med 209:1655–1670PubMedPubMedCentralCrossRefGoogle Scholar
  81. 81.
    Lu LF, Boldin MP, Chaudhry A, Lin LL, Taganov KD, Hanada T, Yoshimura A, Baltimore D, Rudensky AY (2010) Function of miR-146a in controlling Treg cell-mediated regulation of Th1 responses. Cell 142:914–929PubMedPubMedCentralCrossRefGoogle Scholar
  82. 82.
    Pratama A, Srivastava M, Williams NJ, Papa I, Lee SK, Dinh XT, Hutloff A, Jordan MA, Zhao JL, Casellas R, Athanasopoulos V, Vinuesa CG (2015) MicroRNA-146a regulates ICOS-ICOSL signalling to limit accumulation of T follicular helper cells and germinal centres. Nat Commun 6:6436PubMedPubMedCentralCrossRefGoogle Scholar
  83. 83.
    Maitra U, Davis S, Reilly CM, Li L (2009) Differential regulation of Foxp3 and IL-17 expression in CD4 T helper cells by IRAK-1. J Immunol 182:5763–5769PubMedPubMedCentralCrossRefGoogle Scholar
  84. 84.
    Zhou J, Chaudhry H, Zhong Y, Ali MM, Perkins LA, Owens WB, Morales JE, McGuire FR, Zumbrun EE, Zhang J, Nagarkatti PS, Nagarkatti M (2015) Dysregulation in microRNA expression in peripheral blood mononuclear cells of sepsis patients is associated with immunopathology. Cytokine 71:89–100PubMedPubMedCentralCrossRefGoogle Scholar
  85. 85.
    Shao Y, Li J, Cai Y, Xie Y, Ma G, Li Y, Chen Y, Liu G, Zhao B, Cui L, Li K (2014) The functional polymorphisms of miR-146a are associated with susceptibility to severe sepsis in the Chinese population. Mediators Inflamm 2014:916202PubMedPubMedCentralCrossRefGoogle Scholar
  86. 86.
    Gao M, Wang X, Zhang X, Ha T, Ma H, Liu L, Kalbfleisch JH, Gao X, Kao RL, Williams DL, Li C (2015) Attenuation of cardiac dysfunction in polymicrobial sepsis by microRNA-146a is mediated via targeting of IRAK1 and TRAF6 expression. J Immunol 195:672–682PubMedCrossRefGoogle Scholar
  87. 87.
    Yang M, Ye L, Wang B, Gao J, Liu R, Hong J, Wang W, Gu W, Ning G (2015) Decreased miR-146 expression in peripheral blood mononuclear cells is correlated with ongoing islet autoimmunity in type 1 diabetes patients 1miR-146. J Diabetes 7:158–165PubMedCrossRefGoogle Scholar
  88. 88.
    Tang Y, Luo X, Cui H, Ni X, Yuan M, Guo Y, Huang X, Zhou H, de Vries N, Tak PP, Chen S, Shen N (2009) MicroRNA-146A contributes to abnormal activation of the type I interferon pathway in human lupus by targeting the key signaling proteins. Arthritis Rheum 60:1065–1075PubMedCrossRefGoogle Scholar
  89. 89.
    Li Y, Du C, Wang W, Ma G, Cui L, Zhou H, Tao H, Yao L, Zhao B, Li K (2015) Genetic association of MiR-146a with multiple sclerosis susceptibility in the Chinese population. Cell Physiol Biochem 35:281–291PubMedCrossRefGoogle Scholar
  90. 90.
    Singh S, Rai G, Aggarwal A (2014) Association of microRNA-146a and its target gene IRAK1 polymorphism with enthesitis related arthritis category of juvenile idiopathic arthritis. Rheumatol Int 34:1395–1400PubMedCrossRefGoogle Scholar
  91. 91.
    Chatzikyriakidou A, Voulgari PV, Georgiou I, Drosos AA (2010) A polymorphism in the 3′-UTR of interleukin-1 receptor-associated kinase (IRAK1), a target gene of miR-146a, is associated with rheumatoid arthritis susceptibility. Joint Bone Spine 77:411–413PubMedCrossRefGoogle Scholar
  92. 92.
    Kin K, Miyagawa S, Fukushima S, Shirakawa Y, Torikai K, Shimamura K, Daimon T, Kawahara Y, Kuratani T, Sawa Y (2012) Tissue- and plasma-specific MicroRNA signatures for atherosclerotic abdominal aortic aneurysm. J Am Heart Assoc 1:e000745PubMedPubMedCentralCrossRefGoogle Scholar
  93. 93.
    Raitoharju E, Lyytikäinen LP, Levula M, Oksala N, Mennander A, Tarkka M, Klopp N, Illig T, Kähönen M, Karhunen PJ, Laaksonen R, Lehtimäki T (2011) miR-21, miR-210, miR-34a, and miR-146a/b are up-regulated in human atherosclerotic plaques in the Tampere Vascular Study. Atherosclerosis 219:211–217PubMedCrossRefGoogle Scholar
  94. 94.
    Baldeón RL, Weigelt K, de Wit H, Ozcan B, van Oudenaren A, Sempértegui F, Sijbrands E, Grosse L, Freire W, Drexhage HA, Leenen PJ (2014) Decreased serum level of miR-146a as sign of chronic inflammation in type 2 diabetic patients. PLoS One 9:e115209CrossRefGoogle Scholar
  95. 95.
    Balasubramanyam M, Aravind S, Gokulakrishnan K, Prabu P, Sathishkumar C, Ranjani H, Mohan V (2011) Impaired miR-146a expression links subclinical inflammation and insulin resistance in Type 2 diabetes. Mol Cell Biochem 351:197–205PubMedCrossRefGoogle Scholar
  96. 96.
    Chae YS, Kim JG, Lee SJ, Kang BW, Lee YJ, Park JY, Jeon HS, Park JS, Choi GS (2013) A miR-146a polymorphism (rs2910164) predicts risk of and survival from colorectal cancer. Anticancer Res 33:3233–3239PubMedGoogle Scholar
  97. 97.
    Li Y, Xu Y, Yu C, Zuo W (2015) Associations of miR-146a and miR-146b expression and breast cancer in very young women. Cancer Biomark 15:881–887PubMedCrossRefGoogle Scholar
  98. 98.
    Du C, Liu C, Kang J, Zhao G, Ye Z, Huang S, Li Z, Wu Z, Pei G (2009) MicroRNA miR-326 regulates TH-17 differentiation and is associated with the pathogenesis of multiple sclerosis. Nat Immunol 10:1252–1259PubMedCrossRefGoogle Scholar
  99. 99.
    Sebastiani G, Grieco FA, Spagnuolo I, Galleri L, Cataldo D, Dotta F (2011) Increased expression of microRNA miR-326 in type 1 diabetic patients with ongoing islet autoimmunity. Diabetes Metab Res Rev 27:862–866PubMedCrossRefGoogle Scholar
  100. 100.
    Mycko MP, Cichalewska M, Machlanska A, Cwiklinska H, Mariasiewicz M, Selmaj KW (2012) MicroRNA-301a regulation of a T-helper 17 immune response controls autoimmune demyelination. Proc Natl Acad Sci USA 109:E1248–E1257PubMedPubMedCentralCrossRefGoogle Scholar
  101. 101.
    Nakahama T, Hanieh H, Nguyen NT, Chinen I, Ripley B, Millrine D, Lee S, Nyati KK, Dubey PK, Chowdhury K, Kawahara Y, Kishimoto T (2013) Aryl hydrocarbon receptor-mediated induction of the microRNA-132/212 cluster promotes interleukin-17-producing T-helper cell differentiation. Proc Natl Acad Sci USA 110:11964–11969PubMedPubMedCentralCrossRefGoogle Scholar
  102. 102.
    Liu SQ, Jiang S, Li C, Zhang B, Li QJ (2014) miR-17-92 cluster targets phosphatase and tensin homology and Ikaros Family Zinc Finger 4 to promote TH17-mediated inflammation. J Biol Chem 289:12446–12456PubMedPubMedCentralCrossRefGoogle Scholar
  103. 103.
    Simpson LJ, Patel S, Bhakta NR, Choy DF, Brightbill HD, Ren X, Wang Y, Pua HH, Baumjohann D, Montoya MM, Panduro M, Remedios KA, Huang X, Fahy JV, Arron JR, Woodruff PG, Ansel KM (2014) A microRNA upregulated in asthma airway T cells promotes TH2 cytokine production. Nat Immunol 15:1162–1170PubMedPubMedCentralCrossRefGoogle Scholar
  104. 104.
    Zhu S, Pan W, Song X, Liu Y, Shao X, Tang Y, Liang D, He D, Wang H, Liu W, Shi Y, Harley JB, Shen N, Qian Y (2012) The microRNA miR-23b suppresses IL-17-associated autoimmune inflammation by targeting TAB2, TAB3 and IKK-α. Nat Med 18:1077–1086PubMedCrossRefGoogle Scholar
  105. 105.
    Wang H, Flach H, Onizawa M, Wei L, McManus MT, Weiss A (2014) Negative regulation of Hif1a expression and TH17 differentiation by the hypoxia-regulated microRNA miR-210. Nat Immunol 15:393–401PubMedPubMedCentralCrossRefGoogle Scholar
  106. 106.
    Takahashi H, Kanno T, Nakayamada S, Hirahara K, Sciumè G, Muljo SA, Kuchen S, Casellas R, Wei L, Kanno Y, O’Shea JJ (2012) TGF-β and retinoic acid induce the microRNA miR-10a, which targets Bcl-6 and constrains the plasticity of helper T cells. Nat Immunol 13:587–595PubMedPubMedCentralCrossRefGoogle Scholar
  107. 107.
    Jeker LT, Zhou X, Gershberg K, de Kouchkovsky D, Morar MM, Stadthagen G, Lund AH, Bluestone JA (2012) MicroRNA 10a marks regulatory T cells. PLoS One 7:e36684PubMedPubMedCentralCrossRefGoogle Scholar
  108. 108.
    van Rooij E, Purcell AL, Levin AA (2012) Developing microRNA therapeutics. Circ Res 110:496–507PubMedCrossRefGoogle Scholar
  109. 109.
    Garzon R, Marcucci G, Croce CM (2010) Targeting microRNAs in cancer: rationale, strategies and challenges. Nat Rev Drug Discov 9:775–789PubMedPubMedCentralCrossRefGoogle Scholar
  110. 110.
    Chen Y, Zhu X, Zhang X, Liu B, Huang L (2010) Nanoparticles modified with tumor-targeting scFv deliver siRNA and miRNA for cancer therapy. Mol Ther 18:1650–1656PubMedPubMedCentralCrossRefGoogle Scholar
  111. 111.
    Wu Y, Crawford M, Mao Y, Lee RJ, Davis IC, Elton TS, Lee LJ, Nana-Sinkam SP (2013) Therapeutic delivery of microRNA-29b by cationic lipoplexes for lung cancer. Mol Ther Nucleic Acids 2:e84PubMedPubMedCentralCrossRefGoogle Scholar
  112. 112.
    Huang X, Schwind S, Yu B, Santhanam R, Wang H, Hoellerbauer P, Mims A, Klisovic R, Walker AR, Chan KK, Blum W, Perrotti D, Byrd JC, Bloomfield CD, Caligiuri MA, Lee RJ, Garzon R, Muthusamy N, Lee LJ, Marcucci G (2013) Targeted delivery of microRNA-29b by transferrin-conjugated anionic lipopolyplex nanoparticles: a novel therapeutic strategy in acute myeloid leukemia. Clin Cancer Res 19:2355–2367PubMedPubMedCentralGoogle Scholar
  113. 113.
    Babar IA, Cheng CJ, Booth CJ, Liang X, Weidhaas JB, Saltzman WM, Slack FJ (2012) Nanoparticle-based therapy in an in vivo microRNA-155 (miR-155)-dependent mouse model of lymphoma. Proc Natl Acad Sci USA 109:E1695–E1704PubMedPubMedCentralCrossRefGoogle Scholar
  114. 114.
    Cheng CJ, Bahal R, Babar IA, Pincus Z, Barrera F, Liu C, Svoronos A, Braddock DT, Glazer PM, Engelman DM, Saltzman WM, Slack FJ (2015) MicroRNA silencing for cancer therapy targeted to the tumour microenvironment. Nature 518:107–110PubMedPubMedCentralCrossRefGoogle Scholar
  115. 115.
    Zhang J, Cheng Y, Cui W, Li M, Li B, Guo L (2014) MicroRNA-155 modulates Th1 and Th17 cell differentiation and is associated with multiple sclerosis and experimental autoimmune encephalomyelitis. J Neuroimmunol 266:56–63PubMedCrossRefGoogle Scholar
  116. 116.
    Mattes J, Collison A, Plank M, Phipps S, Foster PS (2009) Antagonism of microRNA-126 suppresses the effector function of TH2 cells and the development of allergic airways disease. Proc Natl Acad Sci USA 106:18704–18709PubMedPubMedCentralCrossRefGoogle Scholar
  117. 117.
    Zhang J, Jia G, Liu Q, Hu J, Yan M, Yang B, Yang H, Zhou W, Li J (2015) Silencing miR-146a influences B cells and ameliorates experimental autoimmune myasthenia gravis. Immunology 144:56–67PubMedPubMedCentralCrossRefGoogle Scholar
  118. 118.
    Wang YZ, Tian FF, Yan M, Zhang JM, Liu Q, Lu JY, Zhou WB, Yang H, Li J (2014) Delivery of an miR155 inhibitor by anti-CD20 single-chain antibody into B cells reduces the acetylcholine receptor-specific autoantibodies and ameliorates experimental autoimmune myasthenia gravis. Clin Exp Immunol 176:207–221PubMedPubMedCentralCrossRefGoogle Scholar
  119. 119.
    Janssen HL, Reesink HW, Lawitz EJ, Zeuzem S, Rodriguez-Torres M, Patel K, van der Meer AJ, Patick AK, Chen A, Zhou Y, Persson R, King BD, Kauppinen S, Levin AA, Hodges MR (2013) Treatment of HCV infection by targeting microRNA. N Engl J Med 368:1685–1694PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing 2016

Authors and Affiliations

  1. 1.Ann Romney Center for Neurologic DiseasesBrigham and Women’s Hospital and Harvard Medical SchoolBostonUSA

Personalised recommendations