Cellular and Molecular Life Sciences

, Volume 73, Issue 9, pp 1859–1870 | Cite as

Neurotrophin signaling in cancer stem cells

  • Valérie Chopin
  • Chann Lagadec
  • Robert-Alain Toillon
  • Xuefen Le Bourhis


Cancer stem cells (CSCs), are thought to be at the origin of tumor development and resistance to therapies. Thus, a better understanding of the molecular mechanisms involved in the control of CSC stemness is essential to the design of more effective therapies for cancer patients. Cancer cell stemness and the subsequent expansion of CSCs are regulated by micro-environmental signals including neurotrophins. Over the years, the roles of neurotrophins in tumor development have been well established and regularly reviewed. Especially, nerve growth factor (NGF) and brain-derived neurotrophic factor (BDNF) are reported to stimulate tumor cell proliferation, survival, migration and/or invasion, and favors tumor angiogenesis. More recently, neurotrophins have been reported to regulate CSCs. This review briefly presents neurotrophins and their receptors, summarizes their roles in different cancers, and discusses the emerging evidence of neurotrophins-induced enrichment of CSCs as well as the involved signaling pathways.


Tumor initiating cells TrkA TrkB P75NTR Signaling pathways Epithelial-mesenchymal transition 


Compliance with ethical standards


This research was supported by the Institut National de la Santé et de la Recherche Médicale (INSERM), the University of Lille, the Institut National du Cancer (ARC_INCa_LNCC_8068) and the SIRIC ONCOLille.


  1. 1.
    Al-Hajj M, Wicha MS, Benito-Hernandez A et al (2003) Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci USA 100:3983–3988. doi: 10.1073/pnas.0530291100 PubMedPubMedCentralCrossRefGoogle Scholar
  2. 2.
    Singh SK, Hawkins C, Clarke ID et al (2004) Identification of human brain tumour initiating cells. Nature 432:396–401. doi: 10.1038/nature03128 PubMedCrossRefGoogle Scholar
  3. 3.
    Curley MD, Therrien VA, Cummings CL et al (2009) CD133 expression defines a tumor initiating cell population in primary human ovarian cancer. Stem Cells 27:2875–2883. doi: 10.1002/stem.236 PubMedGoogle Scholar
  4. 4.
    O’Brien CA, Pollett A, Gallinger S, Dick JE (2007) A human colon cancer cell capable of initiating tumour growth in immunodeficient mice. Nature 445:106–110. doi: 10.1038/nature05372 PubMedCrossRefGoogle Scholar
  5. 5.
    Schepers AG, Snippert HJ, Stange DE et al (2012) Lineage tracing reveals Lgr5+ stem cell activity in mouse intestinal adenomas. Science 337:730–735. doi: 10.1126/science.1224676 PubMedCrossRefGoogle Scholar
  6. 6.
    Chen J, Li Y, Yu T-SS et al (2012) A restricted cell population propagates glioblastoma growth after chemotherapy. Nature 488:522–526. doi: 10.1038/nature11287 PubMedPubMedCentralCrossRefGoogle Scholar
  7. 7.
    Driessens G, Beck B, Caauwe A et al (2012) Defining the mode of tumour growth by clonal analysis. Nature 488:527–530. doi: 10.1038/nature11344 PubMedCrossRefGoogle Scholar
  8. 8.
    Eppert K, Takenaka K, Lechman ER et al (2011) Stem cell gene expression programs influence clinical outcome in human leukemia. Nat Med 17:1086–1093. doi: 10.1038/nm.2415 PubMedCrossRefGoogle Scholar
  9. 9.
    Liu S, Liu C, Min X et al (2013) Prognostic value of cancer stem cell marker aldehyde dehydrogenase in ovarian cancer: a meta-analysis. PLoS One 8:e81050. doi: 10.1371/journal.pone.0081050 PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    Balbous A, Cortes U, Guilloteau K et al (2014) A mesenchymal glioma stem cell profile is related to clinical outcome. Oncogenesis 3:e91. doi: 10.1038/oncsis.2014.5 PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    Wicha MS (2012) Migratory gene expression signature predicts poor patient outcome: are cancer stem cells to blame? Breast Cancer Res 14:114. doi: 10.1186/bcr3338 PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    Tang DG (2012) Understanding cancer stem cell heterogeneity and plasticity. Cell Res 22:457–472. doi: 10.1038/cr.2012.13 PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    Pece S, Tosoni D, Confalonieri S et al (2010) Biological and molecular heterogeneity of breast cancers correlates with their cancer stem cell content. Cell 140:62–73. doi: 10.1016/j.cell.2009.12.007 PubMedCrossRefGoogle Scholar
  14. 14.
    Hope KJ, Jin L, Dick JE (2004) Acute myeloid leukemia originates from a hierarchy of leukemic stem cell classes that differ in self-renewal capacity. Nat Immunol 5:738–743. doi: 10.1038/ni1080 PubMedCrossRefGoogle Scholar
  15. 15.
    Plaks V, Kong N, Werb Z (2015) The cancer stem cell niche: how essential is the niche in regulating stemness of tumor cells? Cell Stem Cell 16:225–238. doi: 10.1016/j.stem.2015.02.015 PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Bresnahan PA, Leduc R, Thomas L et al (1990) Human fur gene encodes a yeast KEX2-like endoprotease that cleaves pro-beta-NGF in vivo. J Cell Biol 111:2851–2859PubMedCrossRefGoogle Scholar
  17. 17.
    Seidah NG, Benjannet S, Pareek S et al (1996) Cellular processing of the nerve growth factor precursor by the mammalian pro-protein convertases. Biochem J 314(Pt 3):951–960PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    Chao MV (2003) Neurotrophins and their receptors: a convergence point for many signalling pathways. Nat Rev Neurosci 4:299–309. doi: 10.1038/nrn1078 PubMedCrossRefGoogle Scholar
  19. 19.
    Aubert L, Guilbert M, Corbet C et al (2015) NGF-induced TrkA/CD44 association is involved in tumor aggressiveness and resistance to lestaurtinib. Oncotarget 6:9807–9819PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Hecht M, Schulte JH, Eggert A et al (2005) The neurotrophin receptor TrkB cooperates with c-Met in enhancing neuroblastoma invasiveness. Carcinogenesis 26:2105–2115. doi: 10.1093/carcin/bgi192 PubMedCrossRefGoogle Scholar
  21. 21.
    Skeldal S, Matusica D, Nykjaer A, Coulson EJ (2011) Proteolytic processing of the p75 neurotrophin receptor: a prerequisite for signalling?: Neuronal life, growth and death signalling are crucially regulated by intra-membrane proteolysis and trafficking of p75(NTR). BioEssays 33:614–625. doi: 10.1002/bies.201100036 PubMedCrossRefGoogle Scholar
  22. 22.
    Esposito D, Patel P, Stephens RM et al (2001) The cytoplasmic and transmembrane domains of the p75 and Trk A receptors regulate high affinity binding to nerve growth factor. J Biol Chem 276:32687–32695. doi: 10.1074/jbc.M011674200 PubMedCrossRefGoogle Scholar
  23. 23.
    Iacaruso MFF, Galli S, Martí M et al (2011) Structural model for p75(NTR)-TrkA intracellular domain interaction: a combined FRET and bioinformatics study. J Mol Biol 414:681–698. doi: 10.1016/j.jmb.2011.09.022 PubMedCrossRefGoogle Scholar
  24. 24.
    Lu B, Pang PT, Woo NH (2005) The yin and yang of neurotrophin action. Nat Rev Neurosci 6:603–614. doi: 10.1038/nrn1726 PubMedCrossRefGoogle Scholar
  25. 25.
    Dang C, Zhang Y, Ma Q, Shimahara Y (2006) Expression of nerve growth factor receptors is correlated with progression and prognosis of human pancreatic cancer. J Gastroenterol Hepatol 21:850–858. doi: 10.1111/j.1440-1746.2006.04074.x PubMedCrossRefGoogle Scholar
  26. 26.
    Ma J, Jiang Y, Jiang Y et al (2008) Expression of nerve growth factor and tyrosine kinase receptor A and correlation with perineural invasion in pancreatic cancer. J Gastroenterol Hepatol 23:1852–1859. doi: 10.1111/j.1440-1746.2008.05579.x PubMedCrossRefGoogle Scholar
  27. 27.
    Kolokythas A, Cox DP, Dekker N, Schmidt BL (2010) Nerve growth factor and tyrosine kinase A receptor in oral squamous cell carcinoma: is there an association with perineural invasion? J Oral Maxillofac Surg 68:1290–1295. doi: 10.1016/j.joms.2010.01.006 PubMedCrossRefGoogle Scholar
  28. 28.
    Kobayashi K, Ando M, Saito Y et al (2015) Nerve growth factor signals as possible pathogenic biomarkers for perineural invasion in adenoid cystic carcinoma. Otolaryngol Head Neck Surg 153:218–224. doi: 10.1177/0194599815584762 PubMedCrossRefGoogle Scholar
  29. 29.
    Davidson B, Reich R, Lazarovici P et al (2003) Expression and activation of the nerve growth factor receptor TrkA in serous ovarian carcinoma. Clin Cancer Res 9:2248–2259PubMedGoogle Scholar
  30. 30.
    Davidson B, Konstantinovsky S, Nielsen S et al (2004) Altered expression of metastasis-associated and regulatory molecules in effusions from breast cancer patients: a novel model for tumor progression. Clin Cancer Res 10:7335–7346. doi: 10.1158/1078-0432.CCR-04-0183 PubMedCrossRefGoogle Scholar
  31. 31.
    Zhang Y, Dang C, Ma Q, Shimahara Y (2005) Expression of nerve growth factor receptors and their prognostic value in human pancreatic cancer. Oncol Rep 14:161–171PubMedGoogle Scholar
  32. 32.
    Adriaenssens E, Vanhecke E, Saule P et al (2008) Nerve growth factor is a potential therapeutic target in breast cancer. Cancer Res 68:346–351. doi: 10.1158/0008-5472.CAN-07-1183 PubMedCrossRefGoogle Scholar
  33. 33.
    Lagadec C, Meignan S, Adriaenssens E et al (2009) TrkA overexpression enhances growth and metastasis of breast cancer cells. Oncogene 28:1960–1970. doi: 10.1038/onc.2009.61 PubMedCrossRefGoogle Scholar
  34. 34.
    Lagadec C, Romon R, Tastet C et al (2010) Ku86 is important for TrkA overexpression-induced breast cancer cell invasion. Proteomics Clin Appl 4:580–590. doi: 10.1002/prca.200900148 PubMedCrossRefGoogle Scholar
  35. 35.
    Romon R, Adriaenssens E, Lagadec C et al (2010) Nerve growth factor promotes breast cancer angiogenesis by activating multiple pathways. Mol Cancer 9:157. doi: 10.1186/1476-4598-9-157 PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    Nico B, Mangieri D, Benagiano V et al (2008) Nerve growth factor as an angiogenic factor. Microvasc Res 75:135–141. doi: 10.1016/j.mvr.2007.07.004 PubMedCrossRefGoogle Scholar
  37. 37.
    Nakagawara A, Arima M, Azar CG et al (1992) Inverse relationship between trk expression and N-myc amplification in human neuroblastomas. Cancer Res 52:1364–1368PubMedGoogle Scholar
  38. 38.
    Nakagawara A, Arima-Nakagawara M, Scavarda NJ et al (1993) Association between high levels of expression of the TRK gene and favorable outcome in human neuroblastoma. N Engl J Med 328:847–854. doi: 10.1056/NEJM199303253281205 PubMedCrossRefGoogle Scholar
  39. 39.
    Suzuki T, Bogenmann E, Shimada H et al (1993) Lack of high-affinity nerve growth factor receptors in aggressive neuroblastomas. J Natl Cancer Inst 85:377–384PubMedCrossRefGoogle Scholar
  40. 40.
    Ho R, Minturn JE, Simpson AM et al (2011) The effect of P75 on Trk receptors in neuroblastomas. Cancer Lett 305:76–85. doi: 10.1016/j.canlet.2011.02.029 PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Tacconelli A, Farina AR, Cappabianca L et al (2004) TrkA alternative splicing: a regulated tumor-promoting switch in human neuroblastoma. Cancer Cell 6:347–360. doi: 10.1016/j.ccr.2004.09.011 PubMedCrossRefGoogle Scholar
  42. 42.
    Schramm A, Schowe B, Fielitz K et al (2012) Exon-level expression analyses identify MYCN and NTRK1 as major determinants of alternative exon usage and robustly predict primary neuroblastoma outcome. Br J Cancer 107:1409–1417. doi: 10.1038/bjc.2012.391 PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Barker PA, Lomen-Hoerth C, Gensch EM et al (1993) Tissue-specific alternative splicing generates two isoforms of the trkA receptor. J Biol Chem 268:15150–15157PubMedGoogle Scholar
  44. 44.
    Farina AR, Tacconelli A, Cappabianca L et al (2009) The alternative TrkAIII splice variant targets the centrosome and promotes genetic instability. Mol Cell Biol 29:4812–4830. doi: 10.1128/MCB.00352-09 PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Sasahira T, Ueda N, Yamamoto K et al (2013) Trks are novel oncogenes involved in the induction of neovascularization, tumor progression, and nodal metastasis in oral squamous cell carcinoma. Clin Exp Metastasis 30:165–176. doi: 10.1007/s10585-012-9525-x PubMedCrossRefGoogle Scholar
  46. 46.
    Sinkevicius KW, Kriegel C, Bellaria KJ et al (2014) Neurotrophin receptor TrkB promotes lung adenocarcinoma metastasis. Proc Natl Acad Sci USA 111:10299–10304. doi: 10.1073/pnas.1404399111 PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    Vanhecke E, Adriaenssens E, Verbeke S et al (2011) Brain-derived neurotrophic factor and neurotrophin-4/5 are expressed in breast cancer and can be targeted to inhibit tumor cell survival. Clin Cancer Res 17:1741–1752. doi: 10.1158/1078-0432.CCR-10-1890 PubMedCrossRefGoogle Scholar
  48. 48.
    Okugawa Y, Tanaka K, Inoue Y et al (2013) Brain-derived neurotrophic factor/tropomyosin-related kinase B pathway in gastric cancer. Br J Cancer 108:121–130. doi: 10.1038/bjc.2012.499 PubMedPubMedCentralCrossRefGoogle Scholar
  49. 49.
    Tanaka K, Okugawa Y, Toiyama Y et al (2014) Brain-derived neurotrophic factor (BDNF)-induced tropomyosin-related kinase B (Trk B) signaling is a potential therapeutic target for peritoneal carcinomatosis arising from colorectal cancer. PLoS One 9:e96410. doi: 10.1371/journal.pone.0096410 PubMedPubMedCentralCrossRefGoogle Scholar
  50. 50.
    Segal RA, Goumnerova LC, Kwon YK et al (1994) Expression of the neurotrophin receptor TrkC is linked to a favorable outcome in medulloblastoma. Proc Natl Acad Sci USA 91:12867–12871PubMedPubMedCentralCrossRefGoogle Scholar
  51. 51.
    Eggert A, Grotzer MA, Ikegaki N et al (2001) Expression of the neurotrophin receptor TrkB is associated with unfavorable outcome in Wilms’ tumor. J Clin Oncol 19:689–696PubMedGoogle Scholar
  52. 52.
    Sclabas GM, Fujioka S, Schmidt C et al (2005) Overexpression of tropomysin-related kinase B in metastatic human pancreatic cancer cells. Clin Cancer Res 11:440–449PubMedGoogle Scholar
  53. 53.
    Kawamura K, Kawamura N, Okamoto N, Manabe M (2013) Suppression of choriocarcinoma invasion and metastasis following blockade of BDNF/TrkB signaling. Cancer Med 2:849–861. doi: 10.1002/cam4.158 PubMedPubMedCentralCrossRefGoogle Scholar
  54. 54.
    Eggert A, Grotzer MA, Ikegaki N et al (2002) Expression of the neurotrophin receptor TrkA down-regulates expression and function of angiogenic stimulators in SH-SY5Y neuroblastoma cells. Cancer Res 62:1802–1808PubMedGoogle Scholar
  55. 55.
    Lucarelli E, Kaplan D, Thiele CJ (1997) Activation of trk-A but not trk-B signal transduction pathway inhibits growth of neuroblastoma cells. Eur J Cancer 33:2068–2070PubMedCrossRefGoogle Scholar
  56. 56.
    Kawamura K, Kawamura N, Okamoto N et al (2013) Suppression of choriocarcinoma invasion and metastasis following blockade of BDNF/TrkB signaling. Cancer Med 2(6):849–861. doi: 10.1002/cam4.158 PubMedPubMedCentralCrossRefGoogle Scholar
  57. 57.
    Kermani P, Rafii D, Jin DK et al (2005) Neurotrophins promote revascularization by local recruitment of TrkB+ endothelial cells and systemic mobilization of hematopoietic progenitors. J Clin Invest. 115(3):653–663PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    Jin H, Pan Y, Zhao L et al (2007) p75 neurotrophin receptor suppresses the proliferation of human gastric cancer cells. Neoplasia 9(6):471–478PubMedPubMedCentralCrossRefGoogle Scholar
  59. 59.
    Tabassum A, Khwaja F, Djakiew D (2003) The p75(NTR) tumor suppressor induces caspase-mediated apoptosis in bladder tumor cells. Int J Cancer 105(1):47–52PubMedCrossRefGoogle Scholar
  60. 60.
    Khwaja F, Tabassum A, Allen J, Djakiew D (2006) The p75(NTR) tumor suppressor induces cell cycle arrest facilitating caspase mediated apoptosis in prostate tumor cells. Biochem Biophys Res Commun 341(4):1184–1192PubMedCrossRefGoogle Scholar
  61. 61.
    Verbeke S, Meignan S, Lagadec C et al (2010) Overexpression of p75(NTR) increases survival of breast cancer cells through p21(waf1). Cell Signal 22:1864–1873. doi: 10.1016/j.cellsig.2010.07.014 PubMedCrossRefGoogle Scholar
  62. 62.
    Johnston AL, Lun X, Rahn JJ et al (2007) The p75 neurotrophin receptor is a central regulator of glioma invasion. PLoS Biol 5(8):e212PubMedPubMedCentralCrossRefGoogle Scholar
  63. 63.
    Truzzi F, Marconi A, Lotti R et al (2008) Neurotrophins and their receptors stimulate melanoma cell proliferation and migration. J Invest Dermatol 128(8):2031–2040. doi: 10.1038/jid.2008.21 PubMedCrossRefGoogle Scholar
  64. 64.
    Denkins Y, Reiland J, Roy M et al (2004) Brain metastases in melanoma: roles of neurotrophins. Neuro Oncol 6(2):154–165PubMedPubMedCentralCrossRefGoogle Scholar
  65. 65.
    Marchetti D, McQuillan DJ, Spohn WC et al (1996) Neurotrophin stimulation of human melanoma cell invasion: selected enhancement of heparanase activity and heparanase degradation of specific heparan sulfate subpopulations. Cancer Res 56(12):2856–2863PubMedGoogle Scholar
  66. 66.
    Civenni G, Walter A, Kobert N et al (2011) Human CD271-positive melanoma stem cells associated with metastasis establish tumor heterogeneity and long-term growth. Cancer Res 71(8):3098–3109. doi: 10.1158/0008-5472.CAN-10-3997 PubMedCrossRefGoogle Scholar
  67. 67.
    Kiyosue T, Kawano S, Matsubara R et al (2013) Immunohistochemical location of the p75 neurotrophin receptor (p75NTR) in oral leukoplakia and oral squamous cell carcinoma. Int J Clin Oncol 18(1):154–163. doi: 10.1007/s10147-011-0358-4 PubMedCrossRefGoogle Scholar
  68. 68.
    Lewis Kelso R, Colome-Grimmer MI, Uchida T et al (2006) p75(NGFR) immunostaining for the detection of perineural invasion by cutaneous squamous cell carcinoma. Dermatol Surg 32(2):177–183PubMedGoogle Scholar
  69. 69.
    Tomellini E, Lagadec C, Polakowska R, Le Bourhis X (2014) Role of p75 neurotrophin receptor in stem cell biology: more than just a marker. Cell Mol Life Sci 71(13):2467–2481. doi: 10.1007/s00018-014-1564-9 PubMedCrossRefGoogle Scholar
  70. 70.
    Xiong J, Zhou LI, Lim Y et al (2015) Mature brain-derived neurotrophic factor and its receptor TrkB are upregulated in human glioma tissues. Oncol Lett 10(1):223–227PubMedPubMedCentralGoogle Scholar
  71. 71.
    Xiong J, Zhou L, Lim Y et al (2013) Mature BDNF promotes the growth of glioma cells in vitro. Oncol Rep 30(6):2719–2724. doi: 10.3892/or.2013.2746 PubMedGoogle Scholar
  72. 72.
    Lawn S, Krishna N, Pisklakova A et al (2015) Neurotrophin signaling via TrkB and TrkC receptors promotes the growth of brain tumor-initiating cells. J Biol Chem 290(6):3814–3824. doi: 10.1074/jbc.M114.599373 PubMedPubMedCentralCrossRefGoogle Scholar
  73. 73.
    Wang L, Rahn JJ, Lun X et al (2008) Gamma-secretase represents a therapeutic target for the treatment of invasive glioma mediated by the p75 neurotrophin receptor. PLoS Biol 6(11):e289. doi: 10.1371/journal.pbio.0060289 PubMedPubMedCentralCrossRefGoogle Scholar
  74. 74.
    Ahn BY, Saldanha-Gama RF, Rahn JJ et al (2015) Glioma invasion mediated by the p75 neurotrophin receptor (p75NTR/CD271) requires regulated interaction with PDLIM1. Oncogene. doi: 10.1038/onc.2015.199 (Epub ahead of print) Google Scholar
  75. 75.
    Forsyth PA, Krishna N, Lawn S et al (2014) p75 neurotrophin receptor cleavage by α- and γ-secretases is required for neurotrophin-mediated proliferation of brain tumor-initiating cells. J Biol Chem 289(12):8067–8085. doi: 10.1074/jbc.M113.513762 PubMedPubMedCentralCrossRefGoogle Scholar
  76. 76.
    Scala S, Wosikowski K, Giannakakou P et al (1996) Brain-derived neurotrophic factor protects neuroblastoma cells from vinblastine toxicity. Cancer Res 56(16):3737–3742PubMedGoogle Scholar
  77. 77.
    Jaboin J, Kim CJ, Kaplan DR, Thiele CJ (2002) Brain-derived neurotrophic factor activation of TrkB protects neuroblastoma cells from chemotherapy-induced apoptosis via phosphatidylinositol 3′-kinase pathway. Cancer Res 62(22):6756–6763PubMedGoogle Scholar
  78. 78.
    Matsumoto K, Wada RK, Yamashiro JM et al (1995) Expression of brain-derived neurotrophic factor and p145TrkB affects survival, differentiation, and invasiveness of human neuroblastoma cells. Cancer Res 55(8):1798–1806PubMedGoogle Scholar
  79. 79.
    Li Z, Jaboin J, Dennis PA, Thiele CJ (2005) Genetic and pharmacologic identification of Akt as a mediator of brain-derived neurotrophic factor/TrkB rescue of neuroblastoma cells from chemotherapy-induced cell death. Cancer Res 65(6):2070–2075PubMedCrossRefGoogle Scholar
  80. 80.
    Li Z, Tan F, Thiele CJ (2007) Inactivation of glycogen synthase kinase-3beta contributes to brain-derived neutrophic factor/TrkB-induced resistance to chemotherapy in neuroblastoma cells. Mol Cancer Ther 6(12 Pt 1):3113–3121PubMedCrossRefGoogle Scholar
  81. 81.
    Yilmaz T, Jiffar T, de la Garza G et al (2010) Theraputic targeting of Trk supresses tumor proliferation and enhances cisplatin activity in HNSCC. Cancer Biol Ther 10(6):644–653. doi: 10.4161/cbt.10.6.12782 PubMedPubMedCentralCrossRefGoogle Scholar
  82. 82.
    Kupferman ME, Jiffar T, El-Naggar A et al (2010) TrkB induces EMT and has a key role in invasion of head and neck squamous cell carcinoma. Oncogene 29(14):2047–2059. doi: 10.1038/onc.2009.486 PubMedPubMedCentralCrossRefGoogle Scholar
  83. 83.
    Redmer T, Welte Y, Behrens D et al (2014) The nerve growth factor receptor CD271 is crucial to maintain tumorigenicity and stem-like properties of melanoma cells. PLoS One 9(5):e92596. doi: 10.1371/journal.pone.0092596 PubMedPubMedCentralCrossRefGoogle Scholar
  84. 84.
    Ricci A, De Vitis C, Noto A et al (2013) TrkB is responsible for EMT transition in malignant pleural effusions derived cultures from adenocarcinoma of the lung. Cell Cycle 12(11):1696–1703. doi: 10.4161/cc.24759 PubMedPubMedCentralCrossRefGoogle Scholar
  85. 85.
    Wang W, Zhao H, Zhang S et al (2009) Patterns of expression and function of the p75(NGFR) protein in pancreatic cancer cells and tumours. Eur J Surg Oncol 35(8):826–832. doi: 10.1016/j.ejso.2008.10.013 PubMedCrossRefGoogle Scholar
  86. 86.
    Davidson B, Reich R, Lazarovici P et al (2004) Altered expression and activation of the nerve growth factor receptors TrkA and p75 provide the first evidence of tumor progression to effusion in breast carcinoma. Breast Cancer Res Treat 83(2):119–128PubMedCrossRefGoogle Scholar
  87. 87.
    Descamps S, Toillon RA, Adriaenssens E et al (2001) Nerve growth factor stimulates proliferation and survival of human breast cancer cells through two distinct signaling pathways. J Biol Chem 276(21):17864–17870PubMedCrossRefGoogle Scholar
  88. 88.
    Tagliabue E, Castiglioni F, Ghirelli C et al (2000) Nerve growth factor cooperates with p185(HER2) in activating growth of human breast carcinoma cells. J Biol Chem 275(8):5388–5394PubMedCrossRefGoogle Scholar
  89. 89.
    Verbeke S, Tomellini E, Dhamani F et al (2013) Extracellular cleavage of the p75 neurotrophin receptor is implicated in its pro-survival effect in breast cancer cells. FEBS Lett 587(16):2591–2596. doi: 10.1016/j.febslet.2013.06.039 PubMedCrossRefGoogle Scholar
  90. 90.
    Yin B, Ma ZY, Zhou ZW et al (2015) The TrkB+ cancer stem cells contribute to post-chemotherapy recurrence of triple-negative breast cancers in an orthotopic mouse model. Oncogene 34(6):761–770. doi: 10.1038/onc.2014.8 PubMedCrossRefGoogle Scholar
  91. 91.
    Louie E, Chen XF, Coomes A et al (2013) Neurotrophin-3 modulates breast cancer cells and the microenvironment to promote the growth of breast cancer brain metastasis. Oncogene 32(35):4064–4077. doi: 10.1038/onc.2012.417 PubMedPubMedCentralCrossRefGoogle Scholar
  92. 92.
    Fujikawa H, Tanaka K, Toiyama Y et al (2012) High TrkB expression levels are associated with poor prognosis and EMT induction in colorectal cancer cells. J Gastroenterol 47(7):775–784. doi: 10.1007/s00535-012-0532-0 PubMedCrossRefGoogle Scholar
  93. 93.
    Sasahira T, Ueda N, Kurihara M et al (2013) Tropomyosin receptor kinases B and C are tumor progressive and metastatic marker in colorectal carcinoma. Hum Pathol 44(6):1098–1106. doi: 10.1016/j.humpath.2012.09.016 PubMedCrossRefGoogle Scholar
  94. 94.
    Ødegaard E, Staff AC, Abeler VM et al (2007) The activated nerve growth factor receptor p-TrkA is selectively expressed in advanced-stage ovarian carcinoma. Hum Pathol 38(1):140–146PubMedCrossRefGoogle Scholar
  95. 95.
    Matusica D, Skeldal S, Sykes AM et al (2013) An intracellular domain fragment of the p75 neurotrophin receptor (p75(NTR)) enhances tropomyosin receptor kinase A (TrkA) receptor function. J Biol Chem 288(16):11144–11154. doi: 10.1074/jbc.M112.436469 PubMedPubMedCentralCrossRefGoogle Scholar
  96. 96.
    Kommaddi RP, Thomas R, Ceni C et al (2011) Trk-dependent ADAM17 activation facilitates neurotrophin survival signaling. FASEB J 25(6):2061–2070. doi: 10.1096/fj.10-173740 PubMedCrossRefGoogle Scholar
  97. 97.
    Ceni C, Kommaddi RP, Thomas R et al (2010) The p75NTR intracellular domain generated by neurotrophin-induced receptor cleavage potentiates Trk signaling. J Cell Sci 123(Pt 13):2299–2307. doi: 10.1242/jcs.062612 PubMedCrossRefGoogle Scholar
  98. 98.
    Gallia GL, Tyler BM, Hann CL et al (2009) Inhibition of Akt inhibits growth of glioblastoma and glioblastoma stem-like cells. Mol Cancer Ther 8(2):386–393. doi: 10.1158/1535-7163.MCT-08-0680 PubMedPubMedCentralCrossRefGoogle Scholar
  99. 99.
    Eyler CE, Foo WC, LaFiura KM et al (2008) Brain cancer stem cells display preferential sensitivity to Akt inhibition. Stem Cells 26(12):3027–3036. doi: 10.1634/stemcells.2007-1073 PubMedPubMedCentralCrossRefGoogle Scholar
  100. 100.
    Reichardt LF (2006) Neurotrophin-regulated signalling pathways. Philos Trans R Soc Lond B Biol Sci 361(1473):1545–1564PubMedPubMedCentralCrossRefGoogle Scholar
  101. 101.
    Bonni A, Brunet A, West AE et al (1999) Cell survival promoted by the Ras-MAPK signaling pathway by transcription-dependent and -independent mechanisms. Science 286(5443):1358–1362PubMedCrossRefGoogle Scholar
  102. 102.
    Xing J, Kornhauser JM, Xia Z et al (1998) Nerve growth factor activates extracellular signal-regulated kinase and p38 mitogen-activated protein kinase pathways to stimulate CREB serine 133 phosphorylation. Mol Cell Biol 18(4):1946–1955PubMedPubMedCentralCrossRefGoogle Scholar
  103. 103.
    Atwal JK, Singh KK, Tessier-Lavigne M et al (2003) Semaphorin 3F antagonizes neurotrophin-induced phosphatidylinositol 3-kinase and mitogen-activated protein kinase kinase signaling: a mechanism for growth cone collapse. J Neurosci 23(20):7602–7609PubMedGoogle Scholar
  104. 104.
    Ruggeri P, Farina AR, Di Ianni N et al (2014) The TrkAIII oncoprotein inhibits mitochondrial free radical ROS-induced death of SH-SY5Y neuroblastoma cells by augmenting SOD2 expression and activity at the mitochondria, within the context of a tumour stem cell-like phenotype. PLoS One 9(4):e94568. doi: 10.1371/journal.pone.0094568 (eCollection 2014) PubMedPubMedCentralCrossRefGoogle Scholar
  105. 105.
    Murillo-Sauca O, Chung MK, Shin JH et al (2014) CD271 is a functional and targetable marker of tumor-initiating cells in head and neck squamous cell carcinoma. Oncotarget 5(16):6854–6866PubMedPubMedCentralCrossRefGoogle Scholar
  106. 106.
    Tomellini E, Touil Y, Lagadec C et al (2015) Nerve growth factor and proNGF simultaneously promote symmetric self-renewal, quiescence, and epithelial to mesenchymal transition to enlarge the breast cancer stem cell compartment. Stem Cells 33(2):342–353. doi: 10.1002/stem.1849 PubMedCrossRefGoogle Scholar
  107. 107.
    Morrison SJ, Kimble J (2006) Asymmetric and symmetric stem-cell divisions in development and cancer. Nature 441(7097):1068–1074PubMedCrossRefGoogle Scholar
  108. 108.
    Nykjaer A, Lee R, Teng KK et al (2004) Sortilin is essential for proNGF-induced neuronal cell death. Nature 427(6977):843–848PubMedCrossRefGoogle Scholar
  109. 109.
    Vaegter CB, Jansen P, Fjorback AW et al (2011) Sortilin associates with Trk receptors to enhance anterograde transport and neurotrophin signaling. Nat Neurosci 14(1):54–61. doi: 10.1038/nn.2689 PubMedCrossRefGoogle Scholar
  110. 110.
    Demont Y, Corbet C, Page A et al (2012) Pro-nerve growth factor induces autocrine stimulation of breast cancer cell invasion through tropomyosin-related kinase A (TrkA) and sortilin protein. J Biol Chem 287(3):1923–1931. doi: 10.1074/jbc.M110.211714 PubMedPubMedCentralCrossRefGoogle Scholar
  111. 111.
    Yan Y, Zuo X, Wei D (2015) Concise review: emerging role of CD44 in cancer stem cells: a promising biomarker and therapeutic target. Stem Cells Transl Med 4(9):1033–1043. doi: 10.5966/sctm.2015-0048 PubMedPubMedCentralCrossRefGoogle Scholar
  112. 112.
    Chanmee T, Ontong P, Kimata K, Itano N (2015) Key roles of hyaluronan and its CD44 receptor in the stemness and survival of cancer stem cells. Front Oncol 5:180. doi: 10.3389/fonc.2015.00180.eCollection PubMedPubMedCentralCrossRefGoogle Scholar
  113. 113.
    Zöller M (2011) CD44: can a cancer-initiating cell profit from an abundantly expressed molecule? Nat Rev Cancer 11(4):254–267. doi: 10.1038/nrc3023 PubMedCrossRefGoogle Scholar
  114. 114.
    Takahashi K, Yamanaka S (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126(4):663–676PubMedCrossRefGoogle Scholar
  115. 115.
    Park IH, Zhao R, West JA et al (2008) Reprogramming of human somatic cells to pluripotency with defined factors. Nature 451(7175):141–146PubMedCrossRefGoogle Scholar
  116. 116.
    Lamouille S, Xu J, Derynck R (2014) Molecular mechanisms of epithelial-mesenchymal transition. Nat Rev Mol Cell Biol 15(3):178–196. doi: 10.1038/nrm3758 PubMedPubMedCentralCrossRefGoogle Scholar
  117. 117.
    Chaffer CL, Marjanovic ND, Lee T et al (2013) Poised chromatin at the ZEB1 promoter enables breast cancer cell plasticity and enhances tumorigenicity. Cell 154(1):61–74. doi: 10.1016/j.cell.2013.06.005 PubMedPubMedCentralCrossRefGoogle Scholar
  118. 118.
    Herreros-Villanueva M, Zhang JS, Koenig A et al (2013) SOX2 promotes dedifferentiation and imparts stem cell-like features to pancreatic cancer cells. Oncogenesis 2:e61. doi: 10.1038/oncsis.2013.23 PubMedPubMedCentralCrossRefGoogle Scholar
  119. 119.
    Guo W, Keckesova Z, Donaher JL et al (2012) Slug and Sox9 cooperatively determine the mammary stem cell state. Cell 148(5):1015–1028. doi: 10.1016/j.cell.2012.02.008 PubMedPubMedCentralCrossRefGoogle Scholar
  120. 120.
    Ye X, Tam WL, Shibue T et al (2015) Distinct EMT programs control normal mammary stem cells and tumour-initiating cells. Nature 525(7568):256–260. doi: 10.1038/nature14897 PubMedPubMedCentralCrossRefGoogle Scholar
  121. 121.
    Götz R, Sendtner M (2014) Cooperation of tyrosine kinase receptor TrkB and epidermal growth factor receptor signaling enhances migration and dispersal of lung tumor cells. PLoS One 9(6):e100944. doi: 10.1371/journal.pone.0100944.eCollection PubMedPubMedCentralCrossRefGoogle Scholar
  122. 122.
    Bao W, Wang HH, Tian FJ et al (2013) A TrkB-STAT3-miR-204-5p regulatory circuitry controls proliferation and invasion of endometrial carcinoma cells. Mol Cancer 12:155. doi: 10.1186/1476-4598-12-155 PubMedPubMedCentralCrossRefGoogle Scholar
  123. 123.
    Bao W, Qiu H, Yang T et al (2013) Upregulation of TrkB promotes epithelial-mesenchymal transition and anoikis resistance in endometrial carcinoma. PLoS One 8(7):e70616. doi: 10.1371/journal.pone.0070616 PubMedPubMedCentralCrossRefGoogle Scholar
  124. 124.
    Howe EN, Cochrane DR, Richer JK (2011) Targets of miR-200c mediate suppression of cell motility and anoikis resistance. Breast Cancer Res 13(2):R45. doi: 10.1186/bcr2867 PubMedPubMedCentralCrossRefGoogle Scholar
  125. 125.
    Smit MA, Geiger TR, Song JY et al (2009) A twist-snail axis critical for TrkB-induced epithelial-mesenchymal transition-like transformation, anoikis resistance, and metastasis. Mol Cell Biol 29(13):3722–3737. doi: 10.1128/MCB.01164-08 PubMedPubMedCentralCrossRefGoogle Scholar
  126. 126.
    Smit MA, Peeper DS (2011) Zeb1 is required for TrkB-induced epithelial-mesenchymal transition, anoikis resistance and metastasis. Oncogene 30(35):3735–3744. doi: 10.1038/onc.2011.96 PubMedCrossRefGoogle Scholar
  127. 127.
    Ricci A, Mariotta S, Pompili E et al (2010) Neurotrophin system activation in pleural effusions. Growth Factors 28(4):221–231. doi: 10.3109/08977191003677402 PubMedCrossRefGoogle Scholar
  128. 128.
    Basak SK, Veena MS, Oh S et al (2009) The malignant pleural effusion as a model to investigate intratumoral heterogeneity in lung cancer. PLoS One 4(6):e5884. doi: 10.1371/journal.pone.0005884 PubMedPubMedCentralCrossRefGoogle Scholar
  129. 129.
    Mancini R, Giarnieri E, De Vitis C et al (2011) Spheres derived from lung adenocarcinoma pleural effusions: molecular characterization and tumor engraftment. PLoS One 6(7):e21320. doi: 10.1371/journal.pone.0021320 PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer International Publishing 2016

Authors and Affiliations

  • Valérie Chopin
    • 1
    • 2
  • Chann Lagadec
    • 1
  • Robert-Alain Toillon
    • 1
  • Xuefen Le Bourhis
    • 1
  1. 1.CPAC, Cell Plasticity and CancerUniv. Lille, INSERM U908Villeneuve d’AscqFrance
  2. 2.University of Picardie Jules VerneAmiensFrance

Personalised recommendations