Advertisement

Cellular and Molecular Life Sciences

, Volume 73, Issue 7, pp 1317–1332 | Cite as

Hedgehog signaling pathway: a novel model and molecular mechanisms of signal transduction

  • Tatiana GorojankinaEmail author
Visions and reflections

Abstract

The Hedgehog (Hh) signaling pathway has numerous roles in the control of cell proliferation, tissue patterning and stem cell maintenance. In spite of intensive study, the mechanisms of Hh signal transduction are not completely understood. Here I review published data and present a novel model of vertebrate Hh signaling suggesting that Smoothened (Smo) functions as a G-protein-coupled receptor in cilia. This is the first model to propose molecular mechanisms for the major steps of Hh signaling, including inhibition of Smo by Patched, Smo activation, and signal transduction from active Smo to Gli transcription factors. It also suggests a novel role for the negative pathway regulators Sufu and PKA in these processes.

Keywords

Smoothened Patched Gli Signal transduction PKA Sufu Crosstalk GPCR 7-DHC Oxysterol Primary cilium 

Notes

Acknowledgments

I thank Drs A. H. Monsoro-Burq and P. Thérond for critical reading of the manuscript. This work was supported by the French Centre National pour la Recherche Scientifique (CNRS), Association pour la Recherche contre le Cancer (ARC, PJA 20131200185) and Agence Nationale pour la Recherche, Programme Blanc.

Compliance with ethical standards

Conflict of interest

The author declares no competing or financial interests.

References

  1. 1.
    Ingham PW, Nakano Y, Seger C (2011) Mechanisms and functions of Hedgehog signalling across the metazoa. Nat Rev Genet 12(6):393–406PubMedCrossRefGoogle Scholar
  2. 2.
    Briscoe J, Thérond PP (2013) The mechanisms of Hedgehog signalling and its roles in development and disease. Nat Rev Mol Cell Biol 14(7):416–429PubMedCrossRefGoogle Scholar
  3. 3.
    McMahon AP, Ingham PW, Tabin CJ (2003) Developmental roles and clinical significance of hedgehog signaling. Curr Top Dev Biol 53:1–114PubMedCrossRefGoogle Scholar
  4. 4.
    Taipale J, Beachy PA (2001) The Hedgehog and Wnt signalling pathways in cancer. Nature 411(6835):349–354PubMedCrossRefGoogle Scholar
  5. 5.
    Toftgård R (2000) Hedgehog signalling in cancer. Cell Mol Life Sci 57(12):1720–1731PubMedCrossRefGoogle Scholar
  6. 6.
    Forbes AJ, Nakano Y, Taylor AM, Ingham PW (1993) Genetic analysis of hedgehog signalling in the Drosophila embryo. Dev Suppl 11:115–124Google Scholar
  7. 7.
    Ding Q, Motoyama J, Gasca S, Mo R, Sasaki H, Rossant J, Hui CC (1998) Diminished Sonic hedgehog signaling and lack of floor plate differentiation in Gli2 mutant mice. Development 125(14):2533–2543PubMedGoogle Scholar
  8. 8.
    Matise MP, Epstein DJ, Park HL, Platt KA, Joyner AL (1998) Gli2 is required for induction of floor plate and adjacent cells, but not most ventral neurons in the mouse central nervous system. Development 125(15):2759–2770PubMedGoogle Scholar
  9. 9.
    Corbit KC, Aanstad P, Singla V, Norman AR, Stainier DYR, Reiter JF (2005) Vertebrate Smoothened functions at the primary cilium. Nature 437(7061):1018–1021PubMedCrossRefGoogle Scholar
  10. 10.
    Goetz SC, Anderson KV (2010) The primary cilium: a signalling centre during vertebrate development. Nat Rev Genet 11(5):331–344PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    Marigo V, Davey RA, Zuo Y, Cunningham JM, Tabin CJ (1996) Biochemical evidence that patched is the Hedgehog receptor. Nature 384(6605):176–179PubMedCrossRefGoogle Scholar
  12. 12.
    van den Heuvel M, Ingham PW (1996) Smoothened encodes a receptor-like serpentine protein required for hedgehog signalling. Nature 382(6591):547–551PubMedCrossRefGoogle Scholar
  13. 13.
    Mukhopadhyay S, Wen X, Ratti N, Loktev A, Rangell L, Scales SJ, Jackson PK (2013) The ciliary G-protein-coupled receptor Gpr161 negatively regulates the Sonic hedgehog pathway via cAMP signaling. Cell 152(1–2):210–223PubMedCrossRefGoogle Scholar
  14. 14.
    Pan Y, Bai CB, Joyner AL, Wang B (2006) Sonic hedgehog signaling regulates Gli2 transcriptional activity by suppressing its processing and degradation. Mol Cell Biol 26(9):3365–3377PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Wang B, Li Y (2006) Evidence for the direct involvement of {beta}TrCP in Gli3 protein processing. Proc Natl Acad Sci USA 103(1):33–38PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Kovacs JJ, Whalen EJ, Liu R, Xiao K, Kim J, Chen M, Wang J, Chen W, Lefkowitz RJ (2008) Beta-arrestin-mediated localization of smoothened to the primary cilium. Science 320(5884):1777–1781Google Scholar
  17. 17.
    Dorn KV, Hughes CE, Rohatgi R (2012) A Smoothened-Evc2 complex transduces the Hedgehog signal at primary cilia. Dev Cell 23(4):823–835PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    Yang C, Chen W, Chen Y, Jiang J (2012) Smoothened transduces Hedgehog signal by forming a complex with Evc/Evc2. Cell Res 22(11):1593–1604PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    Tukachinsky H, Lopez LV, Salic A (2010) A mechanism for vertebrate Hedgehog signaling: recruitment to cilia and dissociation of SuFu-Gli protein complexes. J Cell Biol 191(2):415–428PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Humke EW, Dorn KV, Milenkovic L, Scott MP, Rohatgi R (2010) The output of Hedgehog signaling is controlled by the dynamic association between Suppressor of Fused and the Gli proteins. Genes Dev 24(7):670–682PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Mukhopadhyay S, Rohatgi R (2014) G-protein-coupled receptors, Hedgehog signaling and primary cilia. Semin Cell Dev Biol 33:63–72PubMedCrossRefGoogle Scholar
  22. 22.
    Tuson M, He M, Anderson KV (2011) Protein kinase A acts at the basal body of the primary cilium to prevent Gli2 activation and ventralization of the mouse neural tube. Development 138(22):4921–4930PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Cheung HOL, Zhang X, Ribeiro A, Mo R, Makino S, Puviindran V, Law KKL, Briscoe J, Hui CC (2009) The kinesin protein Kif7 is a critical regulator of Gli transcription factors in mammalian hedgehog signaling. Sci Signal 2(76):29Google Scholar
  24. 24.
    Endoh-Yamagami S, Evangelista M, Wilson D, Wen X, Theunissen J-W, Phamluong K, Davis M, Scales SJ, Solloway MJ, de Sauvage FJ, Peterson AS (2009) The mammalian Cos2 homolog Kif7 plays an essential role in modulating Hh signal transduction during development. Curr Biol CB 19(15):1320–1326PubMedCrossRefGoogle Scholar
  25. 25.
    Liem KF, He M, Ocbina PJR, Anderson KV (2009) Mouse Kif7/Costal2 is a cilia-associated protein that regulates Sonic hedgehog signaling. Proc Natl Acad Sci USA 106(32):13377–13382PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Tay SY, Ingham PW, Roy S (2005) A homologue of the Drosophila kinesin-like protein Costal2 regulates Hedgehog signal transduction in the vertebrate embryo. Development 132(4):625–634PubMedCrossRefGoogle Scholar
  27. 27.
    Beachy PA, Hymowitz SG, Lazarus RA, Leahy DJ, Siebold C (2010) Interactions between Hedgehog proteins and their binding partners come into view. Genes Dev 24(18):2001–2012PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Chen Y, Struhl G (1996) Dual roles for patched in sequestering and transducing Hedgehog. Cell 87(3):553–563PubMedCrossRefGoogle Scholar
  29. 29.
    Chuang PT, McMahon AP (1999) Vertebrate Hedgehog signalling modulated by induction of a Hedgehog-binding protein. Nature 397(6720):617–621PubMedCrossRefGoogle Scholar
  30. 30.
    Altaba AI, Mas C, Stecca B (2007) The Gli code: an information nexus regulating cell fate, stemness and cancer. Trends Cell Biol 17(9):438–447CrossRefGoogle Scholar
  31. 31.
    Dessaud E, McMahon AP, Briscoe J (2008) Pattern formation in the vertebrate neural tube: a sonic hedgehog morphogen-regulated transcriptional network. Development 135(15):2489–2503PubMedCrossRefGoogle Scholar
  32. 32.
    Brennan D, Chen X, Cheng L, Mahoney M, Riobo NA (2012) Noncanonical Hedgehog signaling. Vitam Horm 88:55–72PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Wang C, Wu H, Katritch V, Han GW, Huang X-P, Liu W, Siu FY, Roth BL, Cherezov V, Stevens RC (2013) Structure of the human smoothened receptor bound to an antitumour agent. Nature 497(7449):338–343PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Zhao Y, Tong C, Jiang J (2007) Hedgehog regulates smoothened activity by inducing a conformational switch. Nature 450(7167):252–258PubMedCrossRefGoogle Scholar
  35. 35.
    Alcedo J, Ayzenzon M, Von Ohlen T, Noll M, Hooper JE (1996) The Drosophila smoothened gene encodes a seven-pass membrane protein, a putative receptor for the hedgehog signal. Cell 86(2):221–232PubMedCrossRefGoogle Scholar
  36. 36.
    Myers BR, Sever N, Chong YC, Kim J, Belani JD, Rychnovsky S, Bazan JF, Beachy PA (2013) Hedgehog pathway modulation by multiple lipid binding sites on the smoothened effector of signal response. Dev Cell 26(4):346–357PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    Nachtergaele S, Whalen DM, Mydock LK, Zhao Z, Malinauskas T, Krishnan K, Ingham PW, Covey DF, Siebold C, Rohatgi R (2013) Structure and function of the Smoothened extracellular domain in vertebrate Hedgehog signaling. Elife 2:e01340PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Chen JK, Taipale J, Cooper MK, Beachy PA (2002) Inhibition of Hedgehog signaling by direct binding of cyclopamine to smoothened. Genes Dev 16(21):2743–2748PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    Frank-Kamenetsky M, Zhang XM, Bottega S, Guicherit O, Wichterle H, Dudek H, Bumcrot D, Wang FY, Jones S, Shulok J, Rubin LL, Porter JA (2002) Small-molecule modulators of Hedgehog signaling: identification and characterization of smoothened agonists and antagonists. J Biol 1(2):10PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    Wu X, Walker J, Zhang J, Ding S, Schultz PG (2004) Purmorphamine induces osteogenesis by activation of the hedgehog signaling pathway. Chem Biol 11(9):1229–1238PubMedCrossRefGoogle Scholar
  41. 41.
    Wang C, Wu H, Evron T, Vardy E, Han GW, Huang X-P, Hufeisen SJ, Mangano TJ, Urban DJ, Katritch V, Cherezov V, Caron MG, Roth BL, Stevens RC (2014) Structural basis for smoothened receptor modulation and chemoresistance to anticancer drugs. Nat Commun 5:4355PubMedPubMedCentralGoogle Scholar
  42. 42.
    DeCamp DL, Thompson TM, de Sauvage FJ, Lerner MR (2000) Smoothened activates Galphai-mediated signaling in frog melanophores. J Biol Chem 275(34):26322–26327PubMedCrossRefGoogle Scholar
  43. 43.
    Riobo NA, Saucy B, Dilizio C, Manning DR (2006) Activation of heterotrimeric G proteins by smoothened. Proc Natl Acad Sci USA 103(33):12607–12612PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    Shen F, Cheng L, Douglas AE, Riobo NA, Manning DR (2013) Smoothened is a fully competent activator of the heterotrimeric G protein G(i). Mol Pharmacol 83(3):691–697PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Xia R, Jia H, Fan J, Liu Y, Jia J (2012) USP8 promotes smoothened signaling by preventing its ubiquitination and changing its subcellular localization. PLoS Biol 10(1):e1001238PubMedPubMedCentralCrossRefGoogle Scholar
  46. 46.
    Huangfu D, Anderson KV (2005) Cilia and Hedgehog responsiveness in the mouse. Proc Natl Acad Sci USA 102(32):11325–11330PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    May SR, Ashique AM, Karlen M, Wang B, Shen Y, Zarbalis K, Reiter J, Ericson J, Peterson AS (2005) Loss of the retrograde motor for IFT disrupts localization of Smo to cilia and prevents the expression of both activator and repressor functions of Gli. Dev Biol 287(2):378–389PubMedCrossRefGoogle Scholar
  48. 48.
    Chen Y, Sasai N, Ma G, Yue T, Jia J, Briscoe J, Jiang J (2011) Sonic Hedgehog dependent phosphorylation by CK1α and GRK2 is required for ciliary accumulation and activation of smoothened. PLoS Biol 9(6):e1001083PubMedPubMedCentralCrossRefGoogle Scholar
  49. 49.
    Kuwabara PE, Labouesse M (2002) The sterol-sensing domain: multiple families, a unique role? Trends Genet 18(4):193–201PubMedCrossRefGoogle Scholar
  50. 50.
    Taipale J, Cooper MK, Maiti T, Beachy PA (2002) Patched acts catalytically to suppress the activity of Smoothened. Nature 418(6900):892–897PubMedCrossRefGoogle Scholar
  51. 51.
    Chen JK, Taipale J, Young KE, Maiti T, Beachy PA (2002) Small molecule modulation of smoothened activity. Proc Natl Acad Sci USA 99(22):14071–14076PubMedPubMedCentralCrossRefGoogle Scholar
  52. 52.
    Sharpe HJ, Wang W, Hannoush RN, de Sauvage FJ (2015) Regulation of the oncoprotein Smoothened by small molecules. Nat Chem Biol 11(4):246–255PubMedCrossRefGoogle Scholar
  53. 53.
    Martín V, Carrillo G, Torroja C, Guerrero I (2001) The sterol-sensing domain of patched protein seems to control smoothened activity through patched vesicular trafficking. Curr Biol CB 11(8):601–607PubMedCrossRefGoogle Scholar
  54. 54.
    Cooper AF, Yu KP, Brueckner M, Brailey LL, Johnson L, McGrath JM, Bale AE (2005) Cardiac and CNS defects in a mouse with targeted disruption of suppressor of fused. Development 132(19):4407–4417PubMedCrossRefGoogle Scholar
  55. 55.
    Corcoran RB, Scott MP (2006) Oxysterols stimulate Sonic hedgehog signal transduction and proliferation of medulloblastoma cells. Proc Natl Acad Sci USA 103(22):8408–8413PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    Callejo A, Culi J, Guerrero I (2008) Patched, the receptor of Hedgehog, is a lipoprotein receptor. Proc Natl Acad Sci USA 105(3):912–917PubMedPubMedCentralCrossRefGoogle Scholar
  57. 57.
    Khaliullina H, Panáková D, Eugster C, Riedel F, Carvalho M, Eaton S (2009) Patched regulates Smoothened trafficking using lipoprotein-derived lipids. Development 136(24):4111–4121PubMedCrossRefGoogle Scholar
  58. 58.
    Dwyer JR, Sever N, Carlson M, Nelson SF, Beachy PA, Parhami F (2007) Oxysterols are novel activators of the hedgehog signaling pathway in pluripotent mesenchymal cells. J Biol Chem 282(12):8959–8968PubMedCrossRefGoogle Scholar
  59. 59.
    Bijlsma MF, Spek CA, Zivkovic D, van de Water S, Rezaee F, Peppelenbosch MP (2006) Repression of smoothened by patched-dependent (pro-)vitamin D3 secretion. PLoS Biol 4(8):e232PubMedPubMedCentralCrossRefGoogle Scholar
  60. 60.
    DeLuca HF (2004) Overview of general physiologic features and functions of vitamin D. Am J Clin Nutr 80(6 Suppl):1689S–1696SPubMedGoogle Scholar
  61. 61.
    Rohatgi R, Milenkovic L, Corcoran RB, Scott MP (2009) Hedgehog signal transduction by Smoothened: pharmacologic evidence for a 2-step activation process. Proc Natl Acad Sci USA 106(9):3196–3201PubMedPubMedCentralCrossRefGoogle Scholar
  62. 62.
    Kim J, Kato M, Beachy PA (2009) Gli2 trafficking links Hedgehog-dependent activation of Smoothened in the primary cilium to transcriptional activation in the nucleus. Proc Natl Acad Sci USA 106(51):21666–21671PubMedPubMedCentralCrossRefGoogle Scholar
  63. 63.
    Ocbina PJR, Anderson KV (2008) Intraflagellar transport, cilia, and mammalian Hedgehog signaling: analysis in mouse embryonic fibroblasts. Dev Dyn 237(8):2030–2038PubMedPubMedCentralCrossRefGoogle Scholar
  64. 64.
    Vuolo L, Herrera A, Torroba B, Menendez A, Pons S (2015) Ciliary adenylyl cyclases control the Hedgehog pathway. J Cell Sci 128:2928–2937PubMedCrossRefGoogle Scholar
  65. 65.
    Varjosalo M, Li S-P, Taipale J (2006) Divergence of hedgehog signal transduction mechanism between Drosophila and mammals. Dev Cell 10(2):177–186PubMedCrossRefGoogle Scholar
  66. 66.
    Nedelcu D, Liu J, Xu Y, Jao C, Salic A (2013) Oxysterol binding to the extracellular domain of smoothened in Hedgehog signaling. Nat Chem Biol 9(9):557–564PubMedPubMedCentralCrossRefGoogle Scholar
  67. 67.
    Kim J, Hsia EYC, Brigui A, Plessis A, Beachy PA, Zheng X (2015) The role of ciliary trafficking in Hedgehog receptor signaling. Sci Signal 8(379):55Google Scholar
  68. 68.
    Dijkgraaf GJP, Alicke B, Weinmann L, Januario T, West K, Modrusan Z, Burdick D, Goldsmith R, Robarge K, Sutherlin D, Scales SJ, Gould SE, Yauch RL, de Sauvage FJ (2011) Small molecule inhibition of GDC-0449 refractory smoothened mutants and downstream mechanisms of drug resistance. Cancer Res 71(2):435–444PubMedCrossRefGoogle Scholar
  69. 69.
    Taipale J, Chen JK, Cooper MK, Wang B, Mann RK, Milenkovic L, Scott MP, Beachy PA (2000) Effects of oncogenic mutations in Smoothened and Patched can be reversed by cyclopamine. Nature 406(6799):1005–1009PubMedCrossRefGoogle Scholar
  70. 70.
    Tao H, Jin Q, Koo D-I, Liao X, Englund NP, Wang Y, Ramamurthy A, Schultz PG, Dorsch M, Kelleher J, Wu X (2011) Small molecule antagonists in distinct binding modes inhibit drug-resistant mutant of smoothened. Chem Biol 18(4):432–437PubMedCrossRefGoogle Scholar
  71. 71.
    Cooper MK, Wassif CA, Krakowiak PA, Taipale J, Gong R, Kelley RI, Porter FD, Beachy PA (2003) A defective response to Hedgehog signaling in disorders of cholesterol biosynthesis. Nat Genet 33(4):508–513PubMedCrossRefGoogle Scholar
  72. 72.
    Rohatgi R, Milenkovic L, Scott MP (2007) Patched1 regulates hedgehog signaling at the primary cilium. Science 317(5836):372–376Google Scholar
  73. 73.
    Milenkovic L, Weiss LE, Yoon J, Roth TL, Su YS, Sahl SJ, Scott MP, Moerner WE (2015) Single-molecule imaging of Hedgehog pathway protein Smoothened in primary cilia reveals binding events regulated by Patched1. Proc Natl Acad Sci USA 112(27):8320–8325PubMedPubMedCentralCrossRefGoogle Scholar
  74. 74.
    Gill S, Chow R, Brown AJ (2008) Sterol regulators of cholesterol homeostasis and beyond: the oxysterol hypothesis revisited and revised. Prog Lipid Res 47(6):391–404PubMedCrossRefGoogle Scholar
  75. 75.
    Riobó NA, Lu K, Ai X, Haines GM, Emerson CP (2006) Phosphoinositide 3-kinase and Akt are essential for Sonic Hedgehog signaling. Proc Natl Acad Sci USA 103(12):4505–4510PubMedPubMedCentralCrossRefGoogle Scholar
  76. 76.
    Buonamici S, Williams J, Morrissey M, Wang A, Guo R, Vattay A, Hsiao K, Yuan J, Green J, Ospina B, Yu Q, Ostrom L, Fordjour P, Anderson DL, Monahan JE, Kelleher JF, Peukert S, Pan S, Wu X, Maira SM, García-Echeverría C, Briggs KJ, Watkins DN, Yao Y, Lengauer C, Warmuth M, Sellers WR, Dorsch M (2010) Interfering with resistance to smoothened antagonists by inhibition of the PI3K pathway in medulloblastoma. Sci Transl Med 2(51):51ra70PubMedPubMedCentralCrossRefGoogle Scholar
  77. 77.
    Chen W, Ren X-R, Nelson CD, Barak LS, Chen JK, Beachy PA, de Sauvage F, Lefkowitz RJ (2004) Activity-dependent internalization of smoothened mediated by beta-arrestin 2 and GRK2. Science 306(5705):2257–2260PubMedCrossRefGoogle Scholar
  78. 78.
    Shenoy SK, Lefkowitz RJ (2005) Seven-transmembrane receptor signaling through beta-arrestin. Sci STKE 2005(308):cm10PubMedGoogle Scholar
  79. 79.
    Wade F, Espagne A, Persuy M-A, Vidic J, Monnerie R, Merola F, Pajot-Augy E, Sanz G (2011) Relationship between homo-oligomerization of a mammalian olfactory receptor and its activation state demonstrated by bioluminescence resonance energy transfer. J Biol Chem 286(17):15252–15259PubMedPubMedCentralCrossRefGoogle Scholar
  80. 80.
    Masdeu C, Faure H, Coulombe J, Schoenfelder A, Mann A, Brabet I, Pin J-P, Traiffort E, Ruat M (2006) Identification and characterization of Hedgehog modulator properties after functional coupling of Smoothened to G15. Biochem Biophys Res Commun 349(2):471–479PubMedCrossRefGoogle Scholar
  81. 81.
    Haycraft CJ, Banizs B, Aydin-Son Y, Zhang Q, Michaud EJ, Yoder BK (2005) Gli2 and Gli3 localize to cilia and require the intraflagellar transport protein polaris for processing and function. PLoS Genet 1(4):e53PubMedPubMedCentralCrossRefGoogle Scholar
  82. 82.
    Chen Y, Yue S, Xie L, Pu XH, Jin T, Cheng SY (2011) Dual phosphorylation of suppressor of fused (Sufu) by PKA and GSK3 regulates its stability and localization in the primary cilium. J Biol Chem 286(15):13502–13511PubMedPubMedCentralCrossRefGoogle Scholar
  83. 83.
    Fiol CJ, Mahrenholz AM, Wang Y, Roeske RW, Roach PJ (1987) Formation of protein kinase recognition sites by covalent modification of the substrate. Molecular mechanism for the synergistic action of casein kinase II and glycogen synthase kinase 3. J Biol Chem 262(29):14042–14048PubMedGoogle Scholar
  84. 84.
    Barzi M, Berenguer J, Menendez A, Alvarez-Rodriguez R, Pons S (2010) Sonic-hedgehog-mediated proliferation requires the localization of PKA to the cilium base. J Cell Sci 123(Pt 1):62–69PubMedCrossRefGoogle Scholar
  85. 85.
    Liu J, Zeng H, Liu A (2015) The loss of Hh responsiveness by a non-ciliary Gli2 variant. Development 142:1651–1660PubMedCrossRefGoogle Scholar
  86. 86.
    Niewiadomski P, Kong JH, Ahrends R, Ma Y, Humke EW, Khan S, Teruel MN, Novitch BG, Rohatgi R (2014) Gli protein activity is controlled by multisite phosphorylation in vertebrate Hedgehog signaling. Cell Rep 6(1):168–181PubMedPubMedCentralCrossRefGoogle Scholar
  87. 87.
    Pan Y, Wang C, Wang B (2009) Phosphorylation of Gli2 by protein kinase A is required for Gli2 processing and degradation and the Sonic Hedgehog-regulated mouse development. Dev Biol 326(1):177–189PubMedPubMedCentralCrossRefGoogle Scholar
  88. 88.
    Shi Q, Li S, Li S, Jiang A, Chen Y, Jiang J (2014) Hedgehog-induced phosphorylation by CK1 sustains the activity of Ci/Gli activator. Proc Natl Acad Sci USA 111:E5651–E5660PubMedPubMedCentralCrossRefGoogle Scholar
  89. 89.
    Kise Y, Morinaka A, Teglund S, Miki H (2009) Sufu recruits GSK3beta for efficient processing of Gli3. Biochem Biophys Res Commun 387(3):569–574PubMedCrossRefGoogle Scholar
  90. 90.
    Zeng H, Jia J, Liu A (2010) Coordinated translocation of mammalian Gli proteins and suppressor of fused to the primary cilium. PLoS One 5(12):e15900PubMedPubMedCentralCrossRefGoogle Scholar
  91. 91.
    Wen X, Lai CK, Evangelista M, Hongo J-A, de Sauvage FJ, Scales SJ (2010) Kinetics of hedgehog-dependent full-length Gli3 accumulation in primary cilia and subsequent degradation. Mol Cell Biol 30(8):1910–1922PubMedPubMedCentralCrossRefGoogle Scholar
  92. 92.
    Epstein DJ, Marti E, Scott MP, McMahon AP (1996) Antagonizing cAMP-dependent protein kinase A in the dorsal CNS activates a conserved Sonic hedgehog signaling pathway. Development 122(9):2885–2894PubMedGoogle Scholar
  93. 93.
    Fan CM, Porter JA, Chiang C, Chang DT, Beachy PA, Tessier-Lavigne M (1995) Long-range sclerotome induction by sonic hedgehog: direct role of the amino-terminal cleavage product and modulation by the cyclic AMP signaling pathway. Cell 81(3):457–465PubMedCrossRefGoogle Scholar
  94. 94.
    Hammerschmidt M, Bitgood MJ, McMahon AP (1996) Protein kinase A is a common negative regulator of Hedgehog signaling in the vertebrate embryo. Genes Dev 10(6):647–658PubMedCrossRefGoogle Scholar
  95. 95.
    Ungar AR, Moon RT (1996) Inhibition of protein kinase A phenocopies ectopic expression of hedgehog in the CNS of wild-type and cyclops mutant embryos. Dev Biol 178(1):186–191PubMedCrossRefGoogle Scholar
  96. 96.
    Javelaud D, Pierrat M-J, Mauviel A (2012) Crosstalk between TGF-β and hedgehog signaling in cancer. FEBS Lett 586(14):2016–2025PubMedCrossRefGoogle Scholar
  97. 97.
    Niewiadomski P, Zhujiang A, Youssef M, Waschek JA (2013) Interaction of PACAP with Sonic hedgehog reveals complex regulation of the hedgehog pathway by PKA. Cell Signal 25(11):2222–2230PubMedPubMedCentralCrossRefGoogle Scholar
  98. 98.
    Ayers KL, Thérond PP (2010) Evaluating Smoothened as a G-protein-coupled receptor for Hedgehog signalling. Trends Cell Biol 20(5):287–298PubMedCrossRefGoogle Scholar
  99. 99.
    Svärd J, Heby-Henricson K, Henricson KH, Persson-Lek M, Rozell B, Lauth M, Bergström A, Ericson J, Toftgård R, Teglund S (2006) Genetic elimination of Suppressor of fused reveals an essential repressor function in the mammalian Hedgehog signaling pathway. Dev Cell 10(2):187–197PubMedCrossRefGoogle Scholar
  100. 100.
    Cheng SY, Bishop JM (2002) Suppressor of Fused represses Gli-mediated transcription by recruiting the SAP18-mSin3 corepressor complex. Proc Natl Acad Sci USA 99(8):5442–5447PubMedPubMedCentralCrossRefGoogle Scholar
  101. 101.
    Kogerman P, Grimm T, Kogerman L, Krause D, Undén AB, Sandstedt B, Toftgård R, Zaphiropoulos PG (1999) Mammalian suppressor-of-fused modulates nuclear-cytoplasmic shuttling of Gli-1. Nat Cell Biol 1(5):312–319PubMedCrossRefGoogle Scholar
  102. 102.
    Merchant M, Vajdos FF, Ultsch M, Maun HR, Wendt U, Cannon J, Desmarais W, Lazarus RA, de Vos AM, de Sauvage FJ (2004) Suppressor of fused regulates Gli activity through a dual binding mechanism. Mol Cell Biol 24(19):8627–8641PubMedPubMedCentralCrossRefGoogle Scholar
  103. 103.
    Paces-Fessy M, Boucher D, Petit E, Paute-Briand S, Blanchet-Tournier M-F (2004) The negative regulator of Gli, Suppressor of fused (Sufu), interacts with SAP18, Galectin3 and other nuclear proteins. Biochem J 378(Pt 2):353–362PubMedPubMedCentralCrossRefGoogle Scholar
  104. 104.
    Chen M-H, Wilson CW, Li Y-J, Lo Law KK, Lu C-S, Gacayan R, Zhang X, Hui C, Chuang P-T (2009) Cilium-independent regulation of Gli protein function by Sufu in Hedgehog signaling is evolutionarily conserved. Genes Dev 23(16):1910–1928PubMedPubMedCentralCrossRefGoogle Scholar
  105. 105.
    Jia J, Kolterud A, Zeng H, Hoover A, Teglund S, Toftgård R, Liu A (2009) Suppressor of Fused inhibits mammalian Hedgehog signaling in the absence of cilia. Dev Biol 330(2):452–460PubMedPubMedCentralCrossRefGoogle Scholar
  106. 106.
    Pearse RV, Collier LS, Scott MP, Tabin CJ (1999) Vertebrate homologs of Drosophila suppressor of fused interact with the gli family of transcriptional regulators. Dev Biol 212(2):323–336PubMedPubMedCentralCrossRefGoogle Scholar
  107. 107.
    Barnfield PC, Zhang X, Thanabalasingham V, Yoshida M, Hui C (2005) Negative regulation of Gli1 and Gli2 activator function by Suppressor of fused through multiple mechanisms. Differentiation 73(8):397–405PubMedCrossRefGoogle Scholar
  108. 108.
    Oosterveen T, Kurdija S, Alekseenko Z, Uhde CW, Bergsland M, Sandberg M, Andersson E, Dias JM, Muhr J, Ericson J (2012) Mechanistic differences in the transcriptional interpretation of local and long-range Shh morphogen signaling. Dev Cell 23(5):1006–1019PubMedCrossRefGoogle Scholar
  109. 109.
    Peterson KA, Nishi Y, Ma W, Vedenko A, Shokri L, Zhang X, McFarlane M, Baizabal J-M, Junker JP, van Oudenaarden A, Mikkelsen T, Bernstein BE, Bailey TL, Bulyk ML, Wong WH, McMahon AP (2012) Neural-specific Sox2 input and differential Gli-binding affinity provide context and positional information in Shh-directed neural patterning. Genes Dev 26(24):2802–2816PubMedPubMedCentralCrossRefGoogle Scholar
  110. 110.
    Wang C, Pan Y, Wang B (2010) Suppressor of fused and Spop regulate the stability, processing and function of Gli2 and Gli3 full-length activators but not their repressors. Development 137(12):2001–2009PubMedPubMedCentralCrossRefGoogle Scholar
  111. 111.
    Bai CB, Stephen D, Joyner AL (2004) All mouse ventral spinal cord patterning by hedgehog is Gli dependent and involves an activator function of Gli3. Dev Cell 6(1):103–115PubMedCrossRefGoogle Scholar
  112. 112.
    Persson M, Stamataki D, te Welscher P, Andersson E, Böse J, Rüther U, Ericson J, Briscoe J (2002) Dorsal-ventral patterning of the spinal cord requires Gli3 transcriptional repressor activity. Genes Dev 16(22):2865–2878PubMedPubMedCentralCrossRefGoogle Scholar
  113. 113.
    Stone DM, Murone M, Luoh S, Ye W, Armanini MP, Gurney A, Phillips H, Brush J, Goddard A, de Sauvage FJ, Rosenthal A (1999) Characterization of the human suppressor of fused, a negative regulator of the zinc-finger transcription factor {Gli}. J Cell Sci 112(Pt 2):4437–4448PubMedGoogle Scholar
  114. 114.
    Dessaud E, Yang LL, Hill K, Cox B, Ulloa F, Ribeiro A, Mynett A, Novitch BG, Briscoe J (2007) Interpretation of the sonic hedgehog morphogen gradient by a temporal adaptation mechanism. Nature 450(7170):717–720PubMedCrossRefGoogle Scholar
  115. 115.
    Jeong J, McMahon AP (2005) Growth and pattern of the mammalian neural tube are governed by partially overlapping feedback activities of the hedgehog antagonists patched 1 and {Hhip}1. Development 132(1):143–154PubMedCrossRefGoogle Scholar
  116. 116.
    Cherry AL, Finta C, Karlström M, Jin Q, Schwend T, Astorga-Wells J, Zubarev RA, Del Campo M, Criswell AR, de Sanctis D, Jovine L, Toftgård R (2013) Structural basis of SUFU-GLI interaction in human Hedgehog signalling regulation. Acta Crystallogr D Biol Crystallogr 69(Pt 12):2563–2579PubMedPubMedCentralCrossRefGoogle Scholar
  117. 117.
    Zhang Y, Fu L, Qi X, Zhang Z, Xia Y, Jia J, Jiang J, Zhao Y, Wu G (2013) Structural insight into the mutual recognition and regulation between Suppressor of Fused and Gli/Ci. Nat Commun 4:2608PubMedGoogle Scholar
  118. 118.
    Cheng SY, Yue S (2008) Role and regulation of human tumor suppressor SUFU in Hedgehog signaling. Adv Cancer Res 101:29–43PubMedCrossRefGoogle Scholar
  119. 119.
    Kelley RL, Roessler E, Hennekam RC, Feldman GL, Kosaki K, Jones MC, Palumbos JC, Muenke M (1996) Holoprosencephaly in RSH/Smith-Lemli-Opitz syndrome: does abnormal cholesterol metabolism affect the function of Sonic Hedgehog? Am J Med Genet 66(4):478–484PubMedCrossRefGoogle Scholar
  120. 120.
    Incardona JP, Roelink H (2000) The role of cholesterol in Shh signaling and teratogen-induced holoprosencephaly. Cell Mol Life Sci 57(12):1709–1719PubMedCrossRefGoogle Scholar
  121. 121.
    Incardona JP, Lee JH, Robertson CP, Enga K, Kapur RP, Roelink H (2000) Receptor-mediated endocytosis of soluble and membrane-tethered Sonic hedgehog by Patched-1. Proc Natl Acad Sci USA 97(22):12044–12049PubMedPubMedCentralCrossRefGoogle Scholar
  122. 122.
    Lin C, Yao E, Wang K, Nozawa Y, Shimizu H, Johnson JR, Chen JN, Krogan NJ, Chuang PT (2014) Regulation of Sufu activity by p66β and Mycbp provides new insight into vertebrate Hedgehog signaling. Genes Dev 28(22):2547-2563PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer International Publishing 2016

Authors and Affiliations

  1. 1.Neuroscience Paris-Saclay Institute (Neuro-PSI), UMR 9197, CNRS, Université Paris-SudGif-sur-YvetteFrance
  2. 2.Institut Curie, Centre de RechercheOrsayFrance
  3. 3.CNRS UMR3347OrsayFrance
  4. 4.Univ. Paris Sud, Université Paris SaclayOrsayFrance
  5. 5.INSERM U1021OrsayFrance

Personalised recommendations